-
1
-
-
0034274591
-
A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
-
T.-S. Lim, W.-Y. Loh, and Y.-S. Shih, "A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms," Mach. Learn., vol. 40, no. 3, pp. 203-228, 2000
-
(2000)
Mach. Learn
, vol.40
, Issue.3
, pp. 203-228
-
-
Lim, T.-S.1
Loh, W.-Y.2
Shih, Y.-S.3
-
2
-
-
0001892558
-
Instance-based prediction of real-valued attributes
-
D. Kibler, D. W. Aha, and M. K. Albert, "Instance-based prediction of real-valued attributes," Comput. Intell., vol. 5, no. 2, pp. 51-57, 1989
-
(1989)
Comput. Intell
, vol.5
, Issue.2
, pp. 51-57
-
-
Kibler, D.1
Aha, D.W.2
Albert, M.K.3
-
3
-
-
84886952627
-
Learning SVM ranking functions from user feedback using document metadata and active learning in the biomedical domain
-
J. Fürnkranz and E. Hüllermeier Eds. New York, NY, USA: Springer Verlag
-
R. Arens, "Learning SVM ranking functions from user feedback using document metadata and active learning in the biomedical domain," in Preference Learning, J. Fürnkranz and E. Hüllermeier, Eds. New York, NY, USA: Springer-Verlag, 2010, pp. 363-383
-
(2010)
Preference Learning
, pp. 363-383
-
-
Arens, R.1
-
5
-
-
84855202615
-
A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach
-
K.-J. Kim and H. Ahn, "A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach," Comput. Oper. Res., vol. 39, no. 8, pp. 1800-1811, 2012
-
(2012)
Comput. Oper. Res
, vol.39
, Issue.8
, pp. 1800-1811
-
-
Kim, K.-J.1
Ahn, H.2
-
6
-
-
85156259646
-
Using the future to sort out the present: Rankprop and multitask learning for medical risk evaluation
-
R. Caruana, S. Baluja, and T. Mitchell, "Using the future to sort out the present: Rankprop and multitask learning for medical risk evaluation," in Proc. Adv. Neural Inf. Process. Syst., 1996, pp. 959-965
-
(1996)
Proc. Adv. Neural Inf. Process. Syst
, pp. 959-965
-
-
Caruana, R.1
Baluja, S.2
Mitchell, T.3
-
7
-
-
1942515261
-
Pranking with ranking
-
K. Crammer and Y. Singer, "Pranking with ranking," in Proc. NIPS, 2001, pp. 641-647
-
(2001)
Proc. NIPS
, pp. 641-647
-
-
Crammer, K.1
Singer, Y.2
-
8
-
-
31844446958
-
Learning to rank using gradient descent
-
DOI 10.1145/1102351.1102363, ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
-
C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender, "Learning to rank using gradient descent," in Proc. 22nd Int. Conf. Mach. Learn., 2005, pp. 89-96 (Pubitemid 43183320)
-
(2005)
ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
, pp. 89-96
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
9
-
-
21844453228
-
Gaussian processes for ordinal regression
-
Jan
-
W. Chu and Z. Ghahramani, "Gaussian processes for ordinal regression," J. Mach. Learn. Res., vol. 6, pp. 1019-1041, Jan. 2005
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 1019-1041
-
-
Chu, W.1
Ghahramani, Z.2
-
11
-
-
33847626350
-
Support vector ordinal regression
-
W. Chu and S. S. Keerthi, "Support vector ordinal regression," Neural Comput., vol. 19, no. 3, pp. 792-815, 2007
-
(2007)
Neural Comput
, vol.19
, Issue.3
, pp. 792-815
-
-
Chu, W.1
Keerthi, S.S.2
-
13
-
-
33745458393
-
Prediction of ordinal classes using regression trees
-
S. Kramer, G. Widmer, B. Pfahringer, and M. D. Groeve, "Prediction of ordinal classes using regression trees," in Proc. 12th Int. Symp. Found. Intell. Syst., 2000, pp. 426-434
-
(2000)
Proc. 12th Int. Symp. Found. Intell. Syst
, pp. 426-434
-
-
Kramer, S.1
Widmer, G.2
Pfahringer, B.3
Groeve, M.D.4
-
14
-
-
31844432421
-
Augmenting naive bayes for ranking
-
H. Zhang, L. Jiang, and J. Su, "Augmenting naive bayes for ranking," in Proc. 22nd Int. Conf. Mach. Learn., 2005, pp. 1020-1027
-
(2005)
Proc. 22nd Int. Conf. Mach. Learn
, pp. 1020-1027
-
-
Zhang, H.1
Jiang, L.2
Su, J.3
-
15
-
-
84948166287
-
A simple approach to ordinal classification
-
Machine Learning: ECML 2001
-
E. Frank and M. Hall, "A simple approach to ordinal classification," in Proc. ECML, 2001, pp. 145-156 (Pubitemid 33331065)
-
(2001)
Lecture Notes in Computer Science
, Issue.2167
, pp. 145-156
-
-
Frank, E.1
Hall, M.2
-
16
-
-
34547698831
-
Learning to classify ordinal data: The data replication method
-
J. S. Cardoso and J. F. Pinto da Costa, "Learning to classify ordinal data: The data replication method," J. Mach. Learn. Res., vol. 8, pp. 1393-1429, Sep. 2007 (Pubitemid 47210277)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1393-1429
-
-
Cardoso, J.S.1
Pinto Da Costa, J.F.2
-
18
-
-
21844466146
-
-
NIPS, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA, USA. MIT Press
-
[Neural Information Processing Systems, NIPS, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA, USA: MIT Press, 2002, pp. 937-944
-
(2002)
Neural Information Processing Systems
, pp. 937-944
-
-
-
19
-
-
39649107920
-
Ordinal regression by extended binary classification
-
L. Li and H.-T. Lin, "Ordinal regression by extended binary classification," in Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 865-872
-
(2007)
Proc. Adv. Neural Inf. Process. Syst
, pp. 865-872
-
-
Li, L.1
Lin, H.-T.2
-
20
-
-
84876943494
-
Transductive ordinal regression
-
Sep.
-
C.-W. Seah, I. Tsang, and Y.-S. Ong, "Transductive ordinal regression," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 7, pp. 1074-1086, Sep. 2012
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst
, vol.23
, Issue.7
, pp. 1074-1086
-
-
Seah, C.-W.1
Tsang, I.2
Ong, Y.-S.3
-
21
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
Cambridge, MA, USA MIT Press
-
R. Herbrich, T. Graepel, and K. Obermayer, "Large margin rank boundaries for ordinal regression," in Advances Large Margin Classifiers. Cambridge, MA, USA: MIT Press, 2000, pp. 115-132
-
(2000)
Advances Large Margin Classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
22
-
-
0001306637
-
Regression models for ordinal data
-
P. McCullagh, "Regression models for ordinal data," J. R. Stat. Soc., Ser. B, Methodol., vol. 42, no. 2, pp. 109-142, 1980
-
(1980)
J. R. Stat. Soc., Ser. B, Methodol
, vol.42
, Issue.2
, pp. 109-142
-
-
McCullagh, P.1
-
23
-
-
84856733680
-
Learning partial ordinal class memberships with kernel-based proportional odds models
-
J. Verwaeren, W. Waegeman, and B. De Baets, "Learning partial ordinal class memberships with kernel-based proportional odds models," Comput. Stat. Data Anal., vol. 56, no. 4, pp. 928-942, 2012
-
(2012)
Comput. Stat. Data Anal
, vol.56
, Issue.4
, pp. 928-942
-
-
Verwaeren, J.1
Waegeman, W.2
De Baets, B.3
-
25
-
-
0000086449
-
Negatively correlated neural networks can produce best ensembles
-
Y. Liu and X. Yao, "Negatively correlated neural networks can produce best ensembles," Austral. J. Intell. Inf. Process. Syst., vol. 4, no. 3, pp. 176-185, 1997
-
(1997)
Austral. J. Intell. Inf. Process. Syst
, vol.4
, Issue.3
, pp. 176-185
-
-
Liu, Y.1
Yao, X.2
-
26
-
-
84884949945
-
Feature combiners with gategenerated weights for classification
-
Jan
-
A. Omari and A. R. Figueiras-Vidal, "Feature combiners with gategenerated weights for classification," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 158-163, Jan. 2013
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst
, vol.24
, Issue.1
, pp. 158-163
-
-
Omari, A.1
Figueiras-Vidal, A.R.2
-
27
-
-
84857518260
-
An ensemble of weighted support vector machines for ordinal regression
-
W. Waegeman and L. Boullart, "An ensemble of weighted support vector machines for ordinal regression," Int. J. Comput. Syst. Sci. Eng., vol. 3, no. 1, pp. 47-51, 2009
-
(2009)
Int. J. Comput. Syst. Sci. Eng
, vol.3
, Issue.1
, pp. 47-51
-
-
Waegeman, W.1
Boullart, L.2
-
28
-
-
33750681345
-
Large-margin thresholded ensembles for ordinal regression: Theory and practice
-
Algorithmic Learning Theory - 17th International Conference, ALT 2006, Proceedings
-
H.-T. Lin and L. Li, "Large-margin thresholded ensembles for ordinal regression: Theory and practice," in Proc. 17th Int. Conf. Algorithmic Learn. Theory, 2006, pp. 319-333 (Pubitemid 44705637)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4264
, pp. 319-333
-
-
Lin, H.-T.1
Li, L.2
-
29
-
-
84867570390
-
Combining ordinal preferences by boosting
-
Sep
-
H.-T. Lin and L. Li, "Combining ordinal preferences by boosting," in Proc. ECML/PKDD 2009, Sep., pp. 69-83
-
Proc. ECML/PKDD 2009
, pp. 69-83
-
-
Lin, H.-T.1
Li, L.2
-
30
-
-
0030085913
-
Analysis of decision boundaries in linearly combined neural classifiers
-
DOI 10.1016/0031-3203(95)00085-2
-
K. Tumer and J. Ghosh, "Analysis of decision boundaries in linearly combined neural classifiers," Pattern Recognit., vol. 29, no. 2, pp. 341-348, 1996 (Pubitemid 126397840)
-
(1996)
Pattern Recognition
, vol.29
, Issue.2
, pp. 341-348
-
-
Tumer, K.1
Ghosh, J.2
-
31
-
-
0030365938
-
Error correlation and error reduction in ensemble classifiers
-
K. Tumer and J. Ghosh, "Error correlation and error reduction in ensemble classifiers," Connection Sci., vol. 8, no. 3, pp. 385-404, 1996
-
(1996)
Connection Sci
, vol.8
, Issue.3
, pp. 385-404
-
-
Tumer, K.1
Ghosh, J.2
-
32
-
-
0033485370
-
Ensemble learning via negative correlation
-
Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Netw., vol. 12, no. 10, pp. 1399-1404, 1999
-
(1999)
Neural Netw
, vol.12
, Issue.10
, pp. 1399-1404
-
-
Liu, Y.1
Yao, X.2
-
33
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996 (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
35
-
-
28244489252
-
Fast neural network ensemble learning via negative-correlation data correction
-
DOI 10.1109/TNN.2005.852859
-
Z. S. Chan and N. Kasabov, "Fast neural network ensemble learning via negative-correlation data correction," IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1707-1710, Nov. 2005 (Pubitemid 41709665)
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, Issue.6
, pp. 1707-1710
-
-
Chan, Z.S.H.1
Kasabov, N.2
-
36
-
-
10444221886
-
Diversity creation methods: A survey and categorisation
-
G. Brown, J. Wyatt, R. Harris, and X. Yao, "Diversity creation methods: A survey and categorisation," J. Inf. Fusion, vol. 6, no. 1, pp. 5-20, 2005
-
(2005)
J. Inf. Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
37
-
-
14544278410
-
Online ranking by projecting
-
DOI 10.1162/0899766052530848
-
K. Crammer and Y. Singer, "Online ranking by projecting," Neural Comput., vol. 17, no. 1, pp. 145-175, 2005 (Pubitemid 40305886)
-
(2005)
Neural Computation
, vol.17
, Issue.1
, pp. 145-175
-
-
Crammer, K.1
Singer, Y.2
-
38
-
-
33847626350
-
Support vector ordinal regression
-
W. Chu and S. S. Keerthi, "Support vector ordinal regression," Neural Comput., vol. 19, no. 3, pp. 792-815, 2007
-
(2007)
Neural Comput
, vol.19
, Issue.3
, pp. 792-815
-
-
Chu, W.1
Keerthi, S.S.2
-
39
-
-
79951675527
-
Logistic regression by means of evolutionary radial basis function neural networks
-
Feb.
-
P. A. Gutiérrez, C. Hervas-Martínez, and F. J. Martínez-Estudillo, "Logistic regression by means of evolutionary radial basis function neural networks," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 246-263, Feb. 2011
-
(2011)
IEEE Trans. Neural Netw
, vol.22
, Issue.2
, pp. 246-263
-
-
Gutiérrez, P.A.1
Hervas-Martínez, C.2
Martínez-Estudillo, F.J.3
-
41
-
-
79960893968
-
Evolutionary q-gaussian radial basis functions neural networks for multi-classification
-
F. Fernández-Navarro, C. Hervás-Martínez, P. A. Gutierrez, and M. Carboreno, "Evolutionary q-gaussian radial basis functions neural networks for multi-classification," Neural Netw., vol. 24, no. 7, pp. 779-784, 2011
-
(2011)
Neural Netw
, vol.24
, Issue.7
, pp. 779-784
-
-
Fernández-Navarro, F.1
Hervás-Martínez, C.2
Gutierrez, P.A.3
Carboreno, M.4
-
42
-
-
79951853422
-
Evolutionary q-gaussian radial basis function neural network to determine the microbial growth/no growth interface of Staphylococcus aureus
-
F. Fernández-Navarro, C. Hervás-Martínez, M. Cruz, P. A. Gutierrez, and A. Valero, "Evolutionary q-gaussian radial basis function neural network to determine the microbial growth/no growth interface of Staphylococcus aureus," Appl. Soft Comput., vol. 11, no. 3, pp. 3012-3020, 2011
-
(2011)
Appl. Soft Comput
, vol.11
, Issue.3
, pp. 3012-3020
-
-
Fernández-Navarro, F.1
Hervás-Martínez, C.2
Cruz, M.3
Gutierrez, P.A.4
Valero, A.5
-
43
-
-
80955178270
-
MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks
-
F. Fernández-Navarro, C. Hervás-Martínez, J. Sánchez-Monedero, and P. A. Gutierrez, "MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks," Neurocomputing, vol. 74, no. 16, pp. 2502-2510, 2011
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2502-2510
-
-
Fernández-Navarro, F.1
Hervás-Martínez, C.2
Sánchez-Monedero, J.3
Gutierrez, P.A.4
-
44
-
-
32544450795
-
Ensemble learning using multi-objective evolutionary algorithms
-
DOI 10.1007/s10852-005-9020-3, Special Issue on Adaptive Learning Algorithms. Guest Editor: Hujun Yin
-
A. Chandra and X. Yao, "Ensemble learning using multi-objective evolutionary algorithms," J. Math. Model. Algorithms, vol. 5, no. 4, pp. 417-445, 2006 (Pubitemid 44371147)
-
(2006)
Journal of Mathematical Modelling and Algorithms
, vol.5
, Issue.4
, pp. 417-445
-
-
Chandra, A.1
Yao, X.2
-
45
-
-
32544431928
-
Evolving hybrid ensembles of learning machines for better generalisation
-
DOI 10.1016/j.neucom.2005.12.014, PII S0925231205003188
-
A. Chandra and X. Yao, "Evolving hybrid ensembles of learning machines for better generalisation," Neurocomputing, vol. 69, nos. 7-9, pp. 686-700, 2006 (Pubitemid 43230374)
-
(2006)
Neurocomputing
, vol.69
, Issue.7-9 SPEC. ISS.
, pp. 686-700
-
-
Chandra, A.1
Yao, X.2
-
46
-
-
33750127404
-
Accuracy/diversity and ensemble MLP classifier design
-
DOI 10.1109/TNN.2006.875979
-
T. Windeatt, "Accuracy/diversity and ensemble MLP classifier design," IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 1194-1211, Sep. 2006 (Pubitemid 46445178)
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.5
, pp. 1194-1211
-
-
Windeatt, T.1
-
49
-
-
84886950905
-
-
[Online]
-
[Online]. Available: http://www.ics.uci.edu/mlearn/MLRepository.html
-
-
-
-
50
-
-
77949512941
-
Evaluation measures for ordinal regression
-
Dec
-
S. Baccianella, A. Esuli, and F. Sebastiani, "Evaluation measures for ordinal regression," in Proc. 2009 9th Int. Conf. Intell. Syst. Design Appl., Dec., pp. 283-287
-
Proc. 2009 9th Int. Conf. Intell. Syst. Design Appl
, pp. 283-287
-
-
Baccianella, S.1
Esuli, A.2
Sebastiani, F.3
-
52
-
-
76749092270
-
The weka data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The weka data mining software: An update," SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10-18, 2009
-
(2009)
SIGKDD Explorations Newslett
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
53
-
-
0000335983
-
Bayesian methods for backpropagation networks
-
New York, NY, USA: Springer Verlag ch. 6
-
D. J. C. Mackay, "Bayesian methods for backpropagation networks," in Models of Neural Networks III. New York, NY, USA: Springer-Verlag, 1994, ch. 6, pp. 211-254
-
(1994)
Models of Neural Networks III
, pp. 211-254
-
-
Mackay, D.J.C.1
-
54
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Jan
-
J. Dem?ar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1-30
-
-
Demar, J.1
-
55
-
-
0001837148
-
A comparison of alternative tests of significance for the problem of m rankings
-
M. Friedman, "A comparison of alternative tests of significance for the problem of m rankings," Anna. Math. Stat., vol. 11, no. 1, pp. 86-92, 1940
-
(1940)
Anna. Math. Stat
, vol.11
, Issue.1
, pp. 86-92
-
-
Friedman, M.1
-
56
-
-
72149122081
-
Regularized negative correlation learning for neural network ensembles
-
Dec
-
H. Chen and X. Yao, "Regularized negative correlation learning for neural network ensembles," IEEE Trans. Neural Netw., vol. 20, no. 12, pp. 1962-1979, Dec. 2009
-
(2009)
IEEE Trans. Neural Netw
, vol.20
, Issue.12
, pp. 1962-1979
-
-
Chen, H.1
Yao, X.2
-
57
-
-
84864119523
-
Relationships between diversity of classification ensembles and single-class performance measures
-
Jan
-
S. Wang and X. Yao, "Relationships between diversity of classification ensembles and single-class performance measures," IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 206-219, Jan. 2013
-
(2013)
IEEE Trans. Knowl. Data Eng
, vol.25
, Issue.1
, pp. 206-219
-
-
Wang, S.1
Yao, X.2
-
58
-
-
84864153221
-
Multi-class imbalance problems: Analysis and potential solutions
-
Aug.
-
S. Wang and X. Yao, "Multi-class imbalance problems: Analysis and potential solutions," IEEE Trans. Syst., Man Cybern., Part-B, Cybern., vol. 42, no. 4, pp. 1119-1130, Aug. 2012.
-
(2012)
IEEE Trans. Syst., Man Cybern., Part-B, Cybern
, vol.42
, Issue.4
, pp. 1119-1130
-
-
Wang, S.1
Yao, X.2
|