메뉴 건너뛰기




Volumn 24, Issue 11, 2013, Pages 1836-1849

Negative correlation ensemble learning for ordinal regression

Author keywords

Negative correlation learning (NCL); neural network ensembles; ordinal regression; threshold methods

Indexed keywords

ENSEMBLE LEARNING; GENERALIZATION PERFORMANCE; NEGATIVE CORRELATION; NEGATIVE CORRELATION LEARNING; NETWORK THRESHOLDS; NEURAL NETWORK ENSEMBLES; ORDINAL REGRESSION; THRESHOLD METHODS;

EID: 84886953869     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2013.2268279     Document Type: Article
Times cited : (35)

References (58)
  • 1
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • T.-S. Lim, W.-Y. Loh, and Y.-S. Shih, "A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms," Mach. Learn., vol. 40, no. 3, pp. 203-228, 2000
    • (2000) Mach. Learn , vol.40 , Issue.3 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 2
    • 0001892558 scopus 로고
    • Instance-based prediction of real-valued attributes
    • D. Kibler, D. W. Aha, and M. K. Albert, "Instance-based prediction of real-valued attributes," Comput. Intell., vol. 5, no. 2, pp. 51-57, 1989
    • (1989) Comput. Intell , vol.5 , Issue.2 , pp. 51-57
    • Kibler, D.1    Aha, D.W.2    Albert, M.K.3
  • 3
    • 84886952627 scopus 로고    scopus 로고
    • Learning SVM ranking functions from user feedback using document metadata and active learning in the biomedical domain
    • J. Fürnkranz and E. Hüllermeier Eds. New York, NY, USA: Springer Verlag
    • R. Arens, "Learning SVM ranking functions from user feedback using document metadata and active learning in the biomedical domain," in Preference Learning, J. Fürnkranz and E. Hüllermeier, Eds. New York, NY, USA: Springer-Verlag, 2010, pp. 363-383
    • (2010) Preference Learning , pp. 363-383
    • Arens, R.1
  • 5
    • 84855202615 scopus 로고    scopus 로고
    • A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach
    • K.-J. Kim and H. Ahn, "A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach," Comput. Oper. Res., vol. 39, no. 8, pp. 1800-1811, 2012
    • (2012) Comput. Oper. Res , vol.39 , Issue.8 , pp. 1800-1811
    • Kim, K.-J.1    Ahn, H.2
  • 6
    • 85156259646 scopus 로고    scopus 로고
    • Using the future to sort out the present: Rankprop and multitask learning for medical risk evaluation
    • R. Caruana, S. Baluja, and T. Mitchell, "Using the future to sort out the present: Rankprop and multitask learning for medical risk evaluation," in Proc. Adv. Neural Inf. Process. Syst., 1996, pp. 959-965
    • (1996) Proc. Adv. Neural Inf. Process. Syst , pp. 959-965
    • Caruana, R.1    Baluja, S.2    Mitchell, T.3
  • 7
    • 1942515261 scopus 로고    scopus 로고
    • Pranking with ranking
    • K. Crammer and Y. Singer, "Pranking with ranking," in Proc. NIPS, 2001, pp. 641-647
    • (2001) Proc. NIPS , pp. 641-647
    • Crammer, K.1    Singer, Y.2
  • 9
    • 21844453228 scopus 로고    scopus 로고
    • Gaussian processes for ordinal regression
    • Jan
    • W. Chu and Z. Ghahramani, "Gaussian processes for ordinal regression," J. Mach. Learn. Res., vol. 6, pp. 1019-1041, Jan. 2005
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1019-1041
    • Chu, W.1    Ghahramani, Z.2
  • 10
    • 0033322991 scopus 로고    scopus 로고
    • Support vector learning for ordinal regression
    • R. Herbrich, T. Graepel, and K. Obermayer, "Support vector learning for ordinal regression," in Proc. Int. Conf. Artif. Neural Netw., 1999, pp. 97-102 (Pubitemid 30519921)
    • (1999) IEE Conference Publication , vol.1 , Issue.470 , pp. 97-102
    • Herbrich Ralf1    Graepel Thore2    Obermayer Klaus3
  • 11
    • 33847626350 scopus 로고    scopus 로고
    • Support vector ordinal regression
    • W. Chu and S. S. Keerthi, "Support vector ordinal regression," Neural Comput., vol. 19, no. 3, pp. 792-815, 2007
    • (2007) Neural Comput , vol.19 , Issue.3 , pp. 792-815
    • Chu, W.1    Keerthi, S.S.2
  • 15
    • 84948166287 scopus 로고    scopus 로고
    • A simple approach to ordinal classification
    • Machine Learning: ECML 2001
    • E. Frank and M. Hall, "A simple approach to ordinal classification," in Proc. ECML, 2001, pp. 145-156 (Pubitemid 33331065)
    • (2001) Lecture Notes in Computer Science , Issue.2167 , pp. 145-156
    • Frank, E.1    Hall, M.2
  • 16
    • 34547698831 scopus 로고    scopus 로고
    • Learning to classify ordinal data: The data replication method
    • J. S. Cardoso and J. F. Pinto da Costa, "Learning to classify ordinal data: The data replication method," J. Mach. Learn. Res., vol. 8, pp. 1393-1429, Sep. 2007 (Pubitemid 47210277)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1393-1429
    • Cardoso, J.S.1    Pinto Da Costa, J.F.2
  • 18
    • 21844466146 scopus 로고    scopus 로고
    • NIPS, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA, USA. MIT Press
    • [Neural Information Processing Systems, NIPS, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA, USA: MIT Press, 2002, pp. 937-944
    • (2002) Neural Information Processing Systems , pp. 937-944
  • 19
    • 39649107920 scopus 로고    scopus 로고
    • Ordinal regression by extended binary classification
    • L. Li and H.-T. Lin, "Ordinal regression by extended binary classification," in Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 865-872
    • (2007) Proc. Adv. Neural Inf. Process. Syst , pp. 865-872
    • Li, L.1    Lin, H.-T.2
  • 21
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • Cambridge, MA, USA MIT Press
    • R. Herbrich, T. Graepel, and K. Obermayer, "Large margin rank boundaries for ordinal regression," in Advances Large Margin Classifiers. Cambridge, MA, USA: MIT Press, 2000, pp. 115-132
    • (2000) Advances Large Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 22
    • 0001306637 scopus 로고
    • Regression models for ordinal data
    • P. McCullagh, "Regression models for ordinal data," J. R. Stat. Soc., Ser. B, Methodol., vol. 42, no. 2, pp. 109-142, 1980
    • (1980) J. R. Stat. Soc., Ser. B, Methodol , vol.42 , Issue.2 , pp. 109-142
    • McCullagh, P.1
  • 23
    • 84856733680 scopus 로고    scopus 로고
    • Learning partial ordinal class memberships with kernel-based proportional odds models
    • J. Verwaeren, W. Waegeman, and B. De Baets, "Learning partial ordinal class memberships with kernel-based proportional odds models," Comput. Stat. Data Anal., vol. 56, no. 4, pp. 928-942, 2012
    • (2012) Comput. Stat. Data Anal , vol.56 , Issue.4 , pp. 928-942
    • Verwaeren, J.1    Waegeman, W.2    De Baets, B.3
  • 25
    • 0000086449 scopus 로고    scopus 로고
    • Negatively correlated neural networks can produce best ensembles
    • Y. Liu and X. Yao, "Negatively correlated neural networks can produce best ensembles," Austral. J. Intell. Inf. Process. Syst., vol. 4, no. 3, pp. 176-185, 1997
    • (1997) Austral. J. Intell. Inf. Process. Syst , vol.4 , Issue.3 , pp. 176-185
    • Liu, Y.1    Yao, X.2
  • 26
    • 84884949945 scopus 로고    scopus 로고
    • Feature combiners with gategenerated weights for classification
    • Jan
    • A. Omari and A. R. Figueiras-Vidal, "Feature combiners with gategenerated weights for classification," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 158-163, Jan. 2013
    • (2013) IEEE Trans. Neural Netw. Learn. Syst , vol.24 , Issue.1 , pp. 158-163
    • Omari, A.1    Figueiras-Vidal, A.R.2
  • 27
    • 84857518260 scopus 로고    scopus 로고
    • An ensemble of weighted support vector machines for ordinal regression
    • W. Waegeman and L. Boullart, "An ensemble of weighted support vector machines for ordinal regression," Int. J. Comput. Syst. Sci. Eng., vol. 3, no. 1, pp. 47-51, 2009
    • (2009) Int. J. Comput. Syst. Sci. Eng , vol.3 , Issue.1 , pp. 47-51
    • Waegeman, W.1    Boullart, L.2
  • 29
    • 84867570390 scopus 로고    scopus 로고
    • Combining ordinal preferences by boosting
    • Sep
    • H.-T. Lin and L. Li, "Combining ordinal preferences by boosting," in Proc. ECML/PKDD 2009, Sep., pp. 69-83
    • Proc. ECML/PKDD 2009 , pp. 69-83
    • Lin, H.-T.1    Li, L.2
  • 30
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • DOI 10.1016/0031-3203(95)00085-2
    • K. Tumer and J. Ghosh, "Analysis of decision boundaries in linearly combined neural classifiers," Pattern Recognit., vol. 29, no. 2, pp. 341-348, 1996 (Pubitemid 126397840)
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 31
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • K. Tumer and J. Ghosh, "Error correlation and error reduction in ensemble classifiers," Connection Sci., vol. 8, no. 3, pp. 385-404, 1996
    • (1996) Connection Sci , vol.8 , Issue.3 , pp. 385-404
    • Tumer, K.1    Ghosh, J.2
  • 32
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Netw., vol. 12, no. 10, pp. 1399-1404, 1999
    • (1999) Neural Netw , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 33
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 35
    • 28244489252 scopus 로고    scopus 로고
    • Fast neural network ensemble learning via negative-correlation data correction
    • DOI 10.1109/TNN.2005.852859
    • Z. S. Chan and N. Kasabov, "Fast neural network ensemble learning via negative-correlation data correction," IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1707-1710, Nov. 2005 (Pubitemid 41709665)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1707-1710
    • Chan, Z.S.H.1    Kasabov, N.2
  • 36
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J. Wyatt, R. Harris, and X. Yao, "Diversity creation methods: A survey and categorisation," J. Inf. Fusion, vol. 6, no. 1, pp. 5-20, 2005
    • (2005) J. Inf. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 37
    • 14544278410 scopus 로고    scopus 로고
    • Online ranking by projecting
    • DOI 10.1162/0899766052530848
    • K. Crammer and Y. Singer, "Online ranking by projecting," Neural Comput., vol. 17, no. 1, pp. 145-175, 2005 (Pubitemid 40305886)
    • (2005) Neural Computation , vol.17 , Issue.1 , pp. 145-175
    • Crammer, K.1    Singer, Y.2
  • 38
    • 33847626350 scopus 로고    scopus 로고
    • Support vector ordinal regression
    • W. Chu and S. S. Keerthi, "Support vector ordinal regression," Neural Comput., vol. 19, no. 3, pp. 792-815, 2007
    • (2007) Neural Comput , vol.19 , Issue.3 , pp. 792-815
    • Chu, W.1    Keerthi, S.S.2
  • 39
    • 79951675527 scopus 로고    scopus 로고
    • Logistic regression by means of evolutionary radial basis function neural networks
    • Feb.
    • P. A. Gutiérrez, C. Hervas-Martínez, and F. J. Martínez-Estudillo, "Logistic regression by means of evolutionary radial basis function neural networks," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 246-263, Feb. 2011
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.2 , pp. 246-263
    • Gutiérrez, P.A.1    Hervas-Martínez, C.2    Martínez-Estudillo, F.J.3
  • 41
    • 79960893968 scopus 로고    scopus 로고
    • Evolutionary q-gaussian radial basis functions neural networks for multi-classification
    • F. Fernández-Navarro, C. Hervás-Martínez, P. A. Gutierrez, and M. Carboreno, "Evolutionary q-gaussian radial basis functions neural networks for multi-classification," Neural Netw., vol. 24, no. 7, pp. 779-784, 2011
    • (2011) Neural Netw , vol.24 , Issue.7 , pp. 779-784
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Gutierrez, P.A.3    Carboreno, M.4
  • 42
    • 79951853422 scopus 로고    scopus 로고
    • Evolutionary q-gaussian radial basis function neural network to determine the microbial growth/no growth interface of Staphylococcus aureus
    • F. Fernández-Navarro, C. Hervás-Martínez, M. Cruz, P. A. Gutierrez, and A. Valero, "Evolutionary q-gaussian radial basis function neural network to determine the microbial growth/no growth interface of Staphylococcus aureus," Appl. Soft Comput., vol. 11, no. 3, pp. 3012-3020, 2011
    • (2011) Appl. Soft Comput , vol.11 , Issue.3 , pp. 3012-3020
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Cruz, M.3    Gutierrez, P.A.4    Valero, A.5
  • 43
    • 80955178270 scopus 로고    scopus 로고
    • MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks
    • F. Fernández-Navarro, C. Hervás-Martínez, J. Sánchez-Monedero, and P. A. Gutierrez, "MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks," Neurocomputing, vol. 74, no. 16, pp. 2502-2510, 2011
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2502-2510
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Sánchez-Monedero, J.3    Gutierrez, P.A.4
  • 44
    • 32544450795 scopus 로고    scopus 로고
    • Ensemble learning using multi-objective evolutionary algorithms
    • DOI 10.1007/s10852-005-9020-3, Special Issue on Adaptive Learning Algorithms. Guest Editor: Hujun Yin
    • A. Chandra and X. Yao, "Ensemble learning using multi-objective evolutionary algorithms," J. Math. Model. Algorithms, vol. 5, no. 4, pp. 417-445, 2006 (Pubitemid 44371147)
    • (2006) Journal of Mathematical Modelling and Algorithms , vol.5 , Issue.4 , pp. 417-445
    • Chandra, A.1    Yao, X.2
  • 45
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • DOI 10.1016/j.neucom.2005.12.014, PII S0925231205003188
    • A. Chandra and X. Yao, "Evolving hybrid ensembles of learning machines for better generalisation," Neurocomputing, vol. 69, nos. 7-9, pp. 686-700, 2006 (Pubitemid 43230374)
    • (2006) Neurocomputing , vol.69 , Issue.7-9 SPEC. ISS. , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 46
    • 33750127404 scopus 로고    scopus 로고
    • Accuracy/diversity and ensemble MLP classifier design
    • DOI 10.1109/TNN.2006.875979
    • T. Windeatt, "Accuracy/diversity and ensemble MLP classifier design," IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 1194-1211, Sep. 2006 (Pubitemid 46445178)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.5 , pp. 1194-1211
    • Windeatt, T.1
  • 49
    • 84886950905 scopus 로고    scopus 로고
    • [Online]
    • [Online]. Available: http://www.ics.uci.edu/mlearn/MLRepository.html
  • 53
    • 0000335983 scopus 로고
    • Bayesian methods for backpropagation networks
    • New York, NY, USA: Springer Verlag ch. 6
    • D. J. C. Mackay, "Bayesian methods for backpropagation networks," in Models of Neural Networks III. New York, NY, USA: Springer-Verlag, 1994, ch. 6, pp. 211-254
    • (1994) Models of Neural Networks III , pp. 211-254
    • Mackay, D.J.C.1
  • 54
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Jan
    • J. Dem?ar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1-30
    • Demar, J.1
  • 55
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman, "A comparison of alternative tests of significance for the problem of m rankings," Anna. Math. Stat., vol. 11, no. 1, pp. 86-92, 1940
    • (1940) Anna. Math. Stat , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 56
    • 72149122081 scopus 로고    scopus 로고
    • Regularized negative correlation learning for neural network ensembles
    • Dec
    • H. Chen and X. Yao, "Regularized negative correlation learning for neural network ensembles," IEEE Trans. Neural Netw., vol. 20, no. 12, pp. 1962-1979, Dec. 2009
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.12 , pp. 1962-1979
    • Chen, H.1    Yao, X.2
  • 57
    • 84864119523 scopus 로고    scopus 로고
    • Relationships between diversity of classification ensembles and single-class performance measures
    • Jan
    • S. Wang and X. Yao, "Relationships between diversity of classification ensembles and single-class performance measures," IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 206-219, Jan. 2013
    • (2013) IEEE Trans. Knowl. Data Eng , vol.25 , Issue.1 , pp. 206-219
    • Wang, S.1    Yao, X.2
  • 58
    • 84864153221 scopus 로고    scopus 로고
    • Multi-class imbalance problems: Analysis and potential solutions
    • Aug.
    • S. Wang and X. Yao, "Multi-class imbalance problems: Analysis and potential solutions," IEEE Trans. Syst., Man Cybern., Part-B, Cybern., vol. 42, no. 4, pp. 1119-1130, Aug. 2012.
    • (2012) IEEE Trans. Syst., Man Cybern., Part-B, Cybern , vol.42 , Issue.4 , pp. 1119-1130
    • Wang, S.1    Yao, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.