메뉴 건너뛰기




Volumn 45, Issue 1, 2012, Pages

Ensemble approaches for regression: A survey

Author keywords

[No Author keywords available]

Indexed keywords

ENSEMBLE LEARNING; INTEGRATION PHASE; LEARNING PROBLEM; PREDICTION ACCURACY; REGRESSION PROBLEM; THREE PHASIS;

EID: 84871245760     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/2379776.2379786     Document Type: Review
Times cited : (608)

References (162)
  • 2
    • 0003368229 scopus 로고    scopus 로고
    • A comparative evaluation of sequential feature selection algorithms
    • D. Fisher and H.-J. Lenz, Eds. Springer, Chapter 4
    • Aha, D. W. and Bankert, R. L. 1996. A Comparative Evaluation of Sequential Feature Selection Algorithms. in Learning From Data, D. Fisher and H.-J. Lenz, Eds. Springer, Chapter 4, 199-206.
    • (1996) Learning From Data , pp. 199-206
    • Aha, D.W.1    Bankert, R.L.2
  • 4
    • 33845667087 scopus 로고    scopus 로고
    • Feature subset selection using ant colony optimization
    • Al-Ani, A. 2005. Feature Subset Selection Using Ant Colony Optimization. Int. J.Comput. Intell. 2, 1, 53-58.
    • (2005) Int. J.Comput. Intell. , vol.2 , Issue.1 , pp. 53-58
    • Al-Ani, A.1
  • 5
    • 0033556775 scopus 로고    scopus 로고
    • Boosting regression estimators
    • Avnimelech, R. and Intrator, N. 1999. Boosting Regression Estimators. Neural Comput. 11, 499-520.
    • (1999) Neural Comput. , vol.11 , pp. 499-520
    • Avnimelech, R.1    Intrator, N.2
  • 7
    • 77953811058 scopus 로고    scopus 로고
    • Ensembles of jittered association rule classifiers
    • Azevedo, P. J. and Jorge, A. M. 2010. Ensembles of Jittered Association Rule Classifiers. Data Min. Knowl. Discov. 21, 1, 91-129.
    • (2010) Data Min. Knowl. Discov. , vol.21 , Issue.1 , pp. 91-129
    • Azevedo, P.J.1    Jorge, A.M.2
  • 8
    • 0037337904 scopus 로고    scopus 로고
    • Clustering ensembles of neural network models
    • Bakker, B. and Heskes, T. 2003. Clustering Ensembles of Neural Network Models. Neural Netw. 16, 2, 261- 269.
    • (2003) Neural Netw. , vol.16 , Issue.2 , pp. 261-269
    • Bakker, B.1    Heskes, T.2
  • 9
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • Bentley, J. L. 1975. Multidimensional Binary Search Trees Used For Associative Searching.Comm. Acm 18, 9, 509-517.
    • (1975) Comm. Acm , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.L.1
  • 13
    • 0037186681 scopus 로고    scopus 로고
    • Improving nonparametric regression methods by bagging and boosting
    • Borra, S. and Ciaccio, A. D. 2002. Improving Nonparametric Regression Methods By Bagging and Boosting.Comput. Statist. Data Anal. 38, 4, 407-420.
    • (2002) Comput. Statist. Data Anal. , vol.38 , Issue.4 , pp. 407-420
    • Borra, S.1    Ciaccio, A.D.2
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996A. Bagging Predictors. Mach. Learn. 26, 123-140.
    • (1996) Mach. Learn. , vol.26 , pp. 123-140
    • Breiman, L.1
  • 16
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman, L. 1996B. Heuristics of Instability and Stabilization in Model Selection. Ann. Statist. 24, 6, 2350-2383.
    • (1996) Ann. Statist. , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 17
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman, L. 1996C. Stacked Regressions. Mach. Learn. 24, 49-64.
    • (1996) Mach. Learn. , vol.24 , pp. 49-64
    • Breiman, L.1
  • 18
    • 0034276320 scopus 로고    scopus 로고
    • Randomizing outputs to increase prediction accuracy
    • Breiman, L. 2000. Randomizing Outputs To Increase Prediction Accuracy. Mach. Learn. 40, 3, 229-242.
    • (2000) Mach. Learn. , vol.40 , Issue.3 , pp. 229-242
    • Breiman, L.1
  • 19
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. 2001A. Random Forests. Mach. Learn. 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 20
    • 0035575477 scopus 로고    scopus 로고
    • Using iterated bagging to debias regressions
    • Breiman, L. 2001B. Using Iterated Bagging To Debias Regressions. Mach. Learn. 45, 3, 261-277.
    • (2001) Mach. Learn. , vol.45 , Issue.3 , pp. 261-277
    • Breiman, L.1
  • 22
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • Brown, G., Wyatt, J. L., Harris, R., and Yao, X. 2005A. Diversity Creation Methods: A Survey and Categorisation. Inf. Fusion 6, 5-20.
    • (2005) Inf. Fusion , vol.6 , pp. 5-20
    • Brown, G.1    Wyatt, J.L.2    Harris, R.3    Yao, X.4
  • 23
    • 25444484657 scopus 로고    scopus 로고
    • Managing diversity in regression ensembles
    • Brown, G., Wyatt, J. L., and Tino, P. 2005B. Managing Diversity in Regression Ensembles. J. Mach. Learn. Res. 6, 1621-1650.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1621-1650
    • Brown, G.1    Wyatt, J.L.2    Tino, P.3
  • 25
    • 33746171809 scopus 로고    scopus 로고
    • Observations on bagging
    • Buja, A. and Stuetzle, W. 2006. Observations on Bagging. Statistica Sinica 16, 323-351.
    • (2006) Statistica Sinica , vol.16 , pp. 323-351
    • Buja, A.1    Stuetzle, W.2
  • 28
    • 40649111628 scopus 로고    scopus 로고
    • The influence of the pool of candidates on the performance of selection and combination techniques in ensembles
    • Coelho, G. P. and Von Zuben, F. J. 2006. the Influence of the Pool of Candidates on the Performance of Selection and Combination Techniques in Ensembles. in Proceedings of the International Joint Conference on Neural Networks. 10588-10595.
    • (2006) Proceedings of the International Joint Conference on Neural Networks. , pp. 10588-10595
    • Coelho, G.P.1    Van Zuben, F.J.2
  • 29
    • 84871223038 scopus 로고    scopus 로고
    • Delve. Delve: Data For Evaluating Learning in Valid Experiments
    • Delve. 2002. Delve: Data For Evaluating Learning in Valid Experiments. http://www.Cs.Toronto.Edu/Delve/
    • (2002)
  • 31
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: Four current directions
    • Dietterich, T. G. 1997. Machine-Learning Research: Four Current Directions. Ai Mag. 18, 4, 97-136.
    • (1997) Ai Mag. , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 35
    • 0036568038 scopus 로고    scopus 로고
    • Boosting methods for regression
    • Duffy, N. and Helmbold, D. 2002. Boosting Methods For Regression. Mach. Learn. 47, 153-200.
    • (2002) Mach. Learn. , vol.47 , pp. 153-200
    • Duffy, N.1    Helmbold, D.2
  • 36
    • 70449344715 scopus 로고    scopus 로고
    • An anticorrelation kernel for subsystem training in multiple classifier systems
    • Ferrer, L., Sǒnmez, K., and Shriberg, E. 2009. An Anticorrelation Kernel For Subsystem Training in Multiple Classifier Systems. J. Mach. Learn. Res. 10, 2079-2114.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2079-2114
    • Ferrer, L.1    Sǒnmez, K.2    Shriberg, E.3
  • 41
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y. and Schapire, R. E. 1997. A Decision-theoretic Generalization of on-Line Learning and An Application To Boosting. J.Comput. Syst. Sci. 55, 119-139.
    • (1997) J.Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 42
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. H. 1991. Multivariate Adaptive Regression Splines. the Ann. Statist. 19, 1, 1-141.
    • (1991) The Ann. Statist. , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.H.1
  • 44
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. H. 2001. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Statist. 29, 5, 1189-1232.
    • (2001) Ann. Statist. , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 45
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman, J. H. 2002. Stochastic Gradient Boosting.Comput. Statist. Data Anal. 38, 4, 367-378.
    • (2002) Comput. Statist. Data Anal. , vol.38 , Issue.4 , pp. 367-378
    • Friedman, J.H.1
  • 47
    • 21044454599 scopus 로고    scopus 로고
    • Cooperative coevolution of artificial neural network ensembles for pattern classification
    • Garćia-Pedrajas, N., Herv́As-Mart́inez, C., and Ortiz-Boyer, D. 2005. Cooperative Coevolution of Artificial Neural Network Ensembles For Pattern Classification. Ieee Trans. Evolut.Comput. 9, 3, 271-302.
    • (2005) IEEE Trans. Evolut.Comput. , vol.9 , Issue.3 , pp. 271-302
    • Garćia-Pedrajas, N.1    Herv́As-Mart́inez, C.2    Ortiz-Boyer, D.3
  • 48
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., Bienenstock, E., and Doursat, R. 1992. Neural Networks and the Bias/Variance Dilemma. Neural Comput. 4, 1, 1-58.
    • (1992) Neural Comput. , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 50
    • 14544297375 scopus 로고    scopus 로고
    • Neural network ensembles: Evaluation of aggregation algorithms
    • Granitto, P., Verdes, P., and Ceccatto, H. 2005. Neural Network Ensembles: Evaluation of Aggregation Algorithms. Artif. Intell. 163, 2, 139-162.
    • (2005) Artif. Intell. , vol.163 , Issue.2 , pp. 139-162
    • Granitto, P.1    Verdes, P.2    Ceccatto, H.3
  • 53
  • 56
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho, T. K. 1998. the Random Subspace Method For Constructing Decision Forests. Ieee Trans. Pattern Anal. Mach. Intell. 20, 8, 832-844.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 57
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Islam, M. M., Yao, X., and Murase, K. 2003. A Constructive Algorithm For Training Cooperative Neural Network Ensembles. Ieee Trans. Neural Netw. 14, 4, 820-834.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.4 , pp. 820-834
    • Islam, M.M.1    Yao, X.2    Murase, K.3
  • 58
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Jain, A. and Zongker, D. 1997. Feature Selection: Evaluation, Application, and Small Sample Performance. Ieee Trans. Pattern Anal. Mach. Intell. 19, 2, 153-158.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 59
    • 33745317786 scopus 로고    scopus 로고
    • An experiment with association rules and classification: Post-bagging and conviction
    • Springer
    • Jorge, A. M. and Azevedo, P. J. 2005. An Experiment With Association Rules and Classification: Post-Bagging and Conviction. in Discovery Science. Lecture Notes in Computer Science, Vol. 3735. Springer, 137-149.
    • (2005) Discovery Science. Lecture Notes in Computer Science , vol.3735 , pp. 137-149
    • Jorge, A.M.1    Azevedo, P.J.2
  • 60
    • 0142025124 scopus 로고    scopus 로고
    • Constructing support vector machine ensemble
    • Kim, H.-C., Pang, S., Je, H.-M., Kim, D., and Bang, S.-Y. 2003. Constructing Support Vector Machine Ensemble. Pattern Recogn. 36, 12, 2757-2767.
    • (2003) Pattern Recogn. , vol.36 , Issue.12 , pp. 2757-2767
    • Kim, H.-C.1    Pang, S.2    Je, H.-M.3    Kim, D.4    Bang, S.-Y.5
  • 61
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • Kivinen, J. and Warmuth, M. K. 1997. Exponentiated Gradient Versus Gradient Descent For Linear Predictors. Inf.Comput. 132, 1, 1-63.
    • (1997) Inf.Comput. , vol.132 , Issue.1 , pp. 1-63
    • Kivinen, J.1    Warmuth, M.K.2
  • 62
    • 38349135448 scopus 로고    scopus 로고
    • From dynamic classifier selection to dynamic ensemble selection
    • Ko, A. H.-R., Sabourin, R., and Britto Jr., A. D. S. 2008. From Dynamic Classifier Selection To Dynamic Ensemble Selection. Pattern Recogn. 41, 1718-1731.
    • (2008) Pattern Recogn. , vol.41 , pp. 1718-1731
    • Ko, A.H.-R.1    Sabourin, R.2    Britto Jr., S.A.D.3
  • 64
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • Kolter, J. Z. andmaloof, M. A. 2007. Dynamic Weighted Majority: An Ensemble Method For Drifting Concepts. J. Mach. Learn. Res. 8, 2755-2790.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 65
  • 66
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Krogh, A. and Vedelsby, J. 1995. Neural Network Ensembles, Cross Validation, and Active Learning. Adv. Neural Inf. Process. Syst. 7, 231-238.
    • (1995) Adv. Neural Inf. Process. Syst. , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 67
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers: An experiment
    • Kuncheva, L. I. 2002. Switching Between Selection and Fusion in Combining Classifiers: An Experiment. Ieee Trans. Syst. Man Cybernet. B32, 2, 146-156.
    • (2002) IEEE Trans. Syst. Man Cybernet. , vol.B32 , Issue.2 , pp. 146-156
    • Kuncheva, L.I.1
  • 71
    • 0030342815 scopus 로고    scopus 로고
    • Combining estimates in regression and classification
    • Leblanc, M. and Tibshirani, R. 1996.Combining Estimates in Regression and Classification. J. Amer. Statist. Assoc. 91, 1641-1650.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1641-1650
    • Leblanc, M.1    Tibshirani, R.2
  • 74
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu, Y. and Yao, X. 1999. Ensemble Learning Via Negative Correlation. Neural Netw. 12, 1399-1404.
    • (1999) Neural Netw. , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 75
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • Liu, Y., Yao, X., and Higuchi, T. 2000. Evolutionary Ensembles With Negative Correlation Learning. Ieee Trans. Evolut.Comput. 4, 4, 380-387.
    • (2000) IEEE Trans. Evolut.Comput. , vol.4 , Issue.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 80
    • 33750460241 scopus 로고    scopus 로고
    • Using boosting to prune bagging ensembles
    • Martinez-Munoz, G. and Suarez, A. 2007. Using Boosting To Prune Bagging Ensembles. Pattern Recogn. Lett. 28, 1, 156-165.
    • (2007) Pattern Recogn. Lett. , vol.28 , Issue.1 , pp. 156-165
    • Martinez-Munoz, G.1    Suarez, A.2
  • 83
    • 84861377110 scopus 로고    scopus 로고
    • Comparing state-of-the-art regression methods for long term travel time prediction
    • Mendes-Moreira, J., Jorge, A. M., Freire De Sousa, J., and Soares, C. 2012.Comparing State-of-the-Art Regression Methods For Long Term Travel Time Prediction. Intell. Data Anal. 16, 3.
    • (2012) Intell. Data Anal. , Issue.16 , pp. 3
    • Mendes-Moreira, J.1    Jorge, A.M.2    Freire De Sousa, J.3    Soares, C.4
  • 85
    • 77953694561 scopus 로고    scopus 로고
    • Skew estimation of document images using bagging
    • Meng, G., Pan, C., Zheng, N." and Sun, C. 2010. Skew Estimation of Document Images Using Bagging. Ieee Trans. Image Process. 19, 7, 1837-1846.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.7 , pp. 1837-1846
    • Meng, G.1    Pan, C.2    Zheng, N.3    Sun, C.4
  • 88
    • 0032675169 scopus 로고    scopus 로고
    • A principal components approach to combining regression estimates
    • Merz, C. J. and Pazzani, M. J. 1999. A Principal Components Approach To Combining Regression Estimates. Mach. Learn. 36, 9-32.
    • (1999) Mach. Learn. , vol.36 , pp. 9-32
    • Merz, C.J.1    Pazzani, M.J.2
  • 89
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • Meyer, D., Leisch, F., and Hornik, K. 2003. the Support Vector Machine Under Test. Neurocomput. 55, 1-2, 169-186.
    • (2003) Neurocomput. , vol.55 , Issue.1-2 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 90
    • 84871222706 scopus 로고    scopus 로고
    • Mlg, U. D. 2011. http://Mlg.Ucd.Ie/
    • , vol.2011
    • Mlg, U.D.1
  • 92
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti, S., Tamayo, P., Mesirov, J., and Golub, T. 2003. Consensus Clustering: A Resampling-Based Method For Class Discovery and Visualization of Gene Expression Microarray Data. Mach. Learn., 91- 118.
    • (2003) Mach. Learn. , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 96
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • Opitz, D. W. and Shavlik, J. W. 1996. Generating Accurate and Diverse Members of A Neural-Network Ensemble. Adv. Neural Inf. Process. Syst. 8, 535-541.
    • (1996) Adv. Neural Inf. Process. Syst. , vol.8 , pp. 535-541
    • Opitz, D.W.1    Shavlik, J.W.2
  • 97
    • 31144437540 scopus 로고    scopus 로고
    • Cixl2: A crossover operator for evolutionary algorithms based on population features
    • Ortiz-Boyer, D., Hervas-Martinez, C., and Garcia-Pendrajas, N. 2005. Cixl2: A Crossover Operator For Evolutionary Algorithms Based on Population Features. J. Artif. Intell. Res. 24, 1-48.
    • (2005) J. Artif. Intell. Res. , vol.24 , pp. 1-48
    • Ortiz-Boyer, D.1    Hervas-Martinez, C.2    Garcia-Pendrajas, N.3
  • 98
    • 0030352275 scopus 로고    scopus 로고
    • Reducing variance of committee prediction with resampling techniques
    • 405-425
    • Parmanto, B., Munro, P, W., and Doyle, H. R. 1996. Reducing Variance of Committee Prediction With Resampling Techniques. Connect. Sci. 8, 3-4, 405-425.
    • (1996) Connect. Sci. , vol.8 , Issue.3-4
    • Parmanto, B.1    Munro P, W.2    Doyle, H.R.3
  • 99
    • 0030585190 scopus 로고    scopus 로고
    • Engineering multiversion neural-net systems
    • Partridge, D. and Yates, W. B. 1996. Engineering Multiversion Neural-Net Systems. Neural Comput. 8, 4, 869-893.
    • (1996) Neural Comput. , vol.8 , Issue.4 , pp. 869-893
    • Partridge, D.1    Yates, W.2
  • 100
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • R. Mammone, Ed. Chapman-Hall
    • Perrone, M. P. and Cooper, L. N. 1993. When Networks Disagree: Ensemble Methods For Hybrid Neural Networks. in Neural Networks For Speech and Image Processing, R. Mammone, Ed. Chapman-Hall.
    • (1993) Neural Networks For Speech and Image Processing
    • Perrone, M.P.1    Cooper, L.N.2
  • 101
    • 77949901722 scopus 로고    scopus 로고
    • Ensemble learning
    • Polikar, R. 2009. Ensemble Learning. Scholarpedia 4, 1, 2776.
    • (2009) Scholarpedia , vol.4 , Issue.1 , pp. 2776
    • Polikar, R.1
  • 104
    • 34548100943 scopus 로고    scopus 로고
    • Multi-classifier systems: Review and a roadmap for developers
    • Ranawana, R. and Palade, V. 2006. Multi-Classifier Systems: Review and A Roadmap For Developers. Int. J. Hybrid Intell. Syst. 3, 1, 35-61.
    • (2006) Int. J. Hybrid Intell. Syst. , vol.3 , Issue.1 , pp. 35-61
    • Ranawana, R.1    Palade, V.2
  • 105
    • 0036643047 scopus 로고    scopus 로고
    • Sparse regression ensembles in infinite and finite hypothesis spaces
    • Ratsch, G.,Demiriz, A., and Bennett, K. P. 2002. Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces. Mach. Learn. 48, 189-218.
    • (2002) Mach. Learn. , vol.48 , pp. 189-218
    • Ratsch G.Demiriz, A.1    Bennett, K.P.2
  • 106
    • 0030374103 scopus 로고    scopus 로고
    • Bootstrapping with noise: An effective regularization technique
    • Raviv, Y. and Intrator, N. 1996. Bootstrapping With Noise: An Effective Regularization Technique. Connect. Sci. 8, 3-4, 355-372.
    • (1996) Connect. Sci. , vol.8 , Issue.3-4 , pp. 355-372
    • Raviv, Y.1    Intrator, N.2
  • 108
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • Robnik-Sikonja, M. and Kononenko, I. 2003. theoretical and Empirical Analysis of Relieff and Rrelieff. Mach. Learn. 53, 1-2, 23-69.
    • (2003) Mach. Learn. , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 110
    • 58549093526 scopus 로고    scopus 로고
    • Collective-agreement-based pruning of ensembles
    • Rokach, L. 2009A. Collective-Agreement-Based Pruning of Ensembles.Comput. Statist. Data Anal. 53, 1015-1026.
    • (2009) Comput. Statist. Data Anal. , vol.53 , pp. 1015-1026
    • Rokach, L.1
  • 112
    • 69449097857 scopus 로고    scopus 로고
    • Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
    • Rokach, L. 2009C. Taxonomy For Characterizing Ensemble Methods in Classification Tasks: A Review and Annotated Bibliography.Comput. Statist. Data Anal. 53, 12, 4046-4072.
    • (2009) Comput. Statist. Data Anal. , vol.53 , Issue.12 , pp. 4046-4072
    • Rokach, L.1
  • 113
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Rokach, L. 2010. Ensemble-Based Classifiers. Artif. Intell. Rev. 33, 1-39.
    • (2010) Artif. Intell. Rev. , Issue.33 , pp. 1-39
    • Rokach, L.1
  • 115
    • 33845445703 scopus 로고    scopus 로고
    • A weighted combination of stacking and dynamic integration
    • Rooney, N. and Patterson, D. 2007. A Weighted Combination of Stacking and Dynamic Integration. Pattern Recogn. 40, 4, 1385-1388.
    • (2007) Pattern Recogn. , vol.40 , Issue.4 , pp. 1385-1388
    • Rooney, N.1    Patterson, D.2
  • 117
    • 0030367578 scopus 로고    scopus 로고
    • Ensemble learning using decorrelated neural networks
    • Rosen, B. E. 1996. Ensemble Learning Using Decorrelated Neural Networks. Connect. Sci. 8, 3-4, 373-383.
    • (1996) Connect. Sci. , vol.8 , Issue.3-4 , pp. 373-383
    • Rosen, B.E.1
  • 119
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. 1990. the Strength of Weak Learnability. Mach. Learn. 5, 2, 197-227.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 122
    • 33745780111 scopus 로고    scopus 로고
    • Experiments with adaboost.rt, an improved boosting scheme for regression
    • Shrestha, D. L. and Solomatine, D. P. 2006. Experiments With Adaboost.Rt, An Improved Boosting Scheme For Regression. Neural Comput. 18, 1678-1710.
    • (2006) Neural Comput. , vol.18 , pp. 1678-1710
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 125
    • 21844490598 scopus 로고
    • Bounded-variable least squares: An algorithm and applications
    • Stark, P. and Parker, R. 1995. Bounded-Variable Least Squares: An Algorithm and Applications.Comput. Statist. 10, 2, 129-141.
    • (1995) Comput. Statist. , vol.10 , Issue.2 , pp. 129-141
    • Stark, P.1    Parker, R.2
  • 126
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. 1974. Cross-Validatory Choice and Assessment of Statistical Predictions. J. Roy. Statist. Soc. B36, 2, 111-147.
    • (1974) J. Roy. Statist. Soc. , vol.B36 , Issue.2 , pp. 111-147
    • Stone, M.1
  • 127
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles: A knowledge reuse framework for combining multiple partitions
    • Strehl, A. and Ghosh, J. 2003. Cluster Ensembles: A Knowledge Reuse Framework For Combining Multiple Partitions. J. Mach. Learn. Res. 3, 583-617.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 130
    • 77954062293 scopus 로고    scopus 로고
    • Predicting changes in protein thermostability brought about by single- or multi-site mutations
    • Tian, J.,Wu, N., Chu, X., and Fan, Y. 2010. Predicting Changes in Protein thermostability Brought About By Single- Or Multi-Site Mutations. Bmc Bioinf. 11, 370.
    • (2010) Bmc Bioinf. , Issue.11 , pp. 370
    • Tian J.Wu, N.1    Chu, X.2    Fan, Y.3
  • 131
    • 0037365188 scopus 로고    scopus 로고
    • Combining classifiers with meta decision trees
    • Todorovski, L. and Dzeroski, S. 2003.Combining Classifiers With Meta Decision Trees. Mach. Learn. 50, 3, 223-249.
    • (2003) Mach. Learn. , vol.50 , Issue.3 , pp. 223-249
    • Todorovski, L.1    Dzeroski, S.2
  • 132
    • 84871224675 scopus 로고    scopus 로고
    • Regression Datasets
    • Torgo, L. Regression Datasets. http://www.Liaad.Up.Pt/Ltorgo/Regression/ Datasets.html.
    • Torgo, L.1
  • 133
    • 85153970023 scopus 로고
    • Combining estimators using non-constant weighting functions
    • Tresp, V. and Taniguchi, M. 1995.Combining Estimators Using Non-Constant Weighting Functions. Adv. Neural Inf. Process. Syst. 7, 419-426.
    • (1995) Adv. Neural Inf. Process. Syst. , vol.7 , pp. 419-426
    • Tresp, V.1    Taniguchi, M.2
  • 139
    • 35348907876 scopus 로고    scopus 로고
    • Dynamic integration of classifiers for handling concept drift
    • Tsymbal, A., Pechenizkiy, M., Cunningham, P., and Puuronen, S. 2008. Dynamic Integration of Classifiers For Handling Concept Drift. Inf. Fusion 9, 1, 56-68.
    • (2008) Inf. Fusion , vol.9 , Issue.1 , pp. 56-68
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3    Puuronen, S.4
  • 145
    • 4344706336 scopus 로고    scopus 로고
    • Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
    • Webb, G. I. and Zheng, Z. 2004. Multistrategy Ensemble Learning: Reducing Error By Combining Ensemble Learning Techniques. Ieee Trans. Knowl. Data Engin. 16, 8, 980-991.
    • (2004) IEEE Trans. Knowl. Data Engin. , vol.16 , Issue.8 , pp. 980-991
    • Webb, G.I.1    Zheng, Z.2
  • 146
    • 77954760375 scopus 로고    scopus 로고
    • Comparing the effectiveness of several modeling methods for fault prediction
    • Weyuker, E. J., Ostrand, T. J., and Bell, R. M. 2010.Comparing the Effectiveness of Several Modeling Methods For Fault Prediction. Empir. Softw. Engin. 15, 277-295.
    • (2010) Empir. Softw. Engin. , vol.15 , pp. 277-295
    • Weyuker, E.J.1    Ostrand, T.J.2    Bell, R.M.3
  • 148
  • 149
    • 84871183659 scopus 로고    scopus 로고
    • Data mining: Practical machine learning tools and techniques
    • Witten, I. H. and Frank, E. 2011. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann.
    • (2011) Morgan Kaufmann
    • Witten, I.H.1    Frank, E.2
  • 150
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. H. 1992. Stacked Generalization. Neural Netw. 5, 2, 241-259.
    • (1992) Neural Netw. , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 151
    • 0031121318 scopus 로고    scopus 로고
    • Combination of multiple classifiers using local accuracy estimates
    • Woods, K. 1997.Combination of Multiple Classifiers Using Local Accuracy Estimates. Ieee Trans. Pattern Anal. Mach. Intell. 19, 4, 405-410.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.4 , pp. 405-410
    • Woods, K.1
  • 152
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Yang, J. and Honavar, V. 1997. Feature Subset Selection Using A Genetic Algorithm. Ieee Trans. Intell. Syst. 13, 2, 44-49.
    • (1997) IEEE Trans. Intell. Syst. , vol.13 , Issue.2 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 154
    • 0034844341 scopus 로고    scopus 로고
    • Neural network ensembles and their application to traffic flow prediction in telecommunications networks
    • Yao, X., Fischer, M., and Brown, G. 2001. Neural Network Ensembles and their Application To Traffic Flow Prediction in Telecommunications Networks. Neural Netw. 1, 693-698.
    • (2001) Neural Netw. , vol.1 , pp. 693-698
    • Yao, X.1    Fischer, M.2    Brown, G.3
  • 156
    • 0008538776 scopus 로고    scopus 로고
    • Mit Press, Chapter A Gradient-Based Boosting Algorithm For Regression Problems
    • Zemel, R. S. and Pitassi, T. 2001. Advances in Neuralinformation Processing Systems. Vol. 13. Mit Press, Chapter A Gradient-Based Boosting Algorithm For Regression Problems, 696-702.
    • (2001) Advances in Neuralinformation Processing Systems. , vol.13 , pp. 696-702
    • Zemel, R.S.1    Pitassi, T.2
  • 158
    • 37349035781 scopus 로고    scopus 로고
    • An empirical study of using rotation forest to improve regressors
    • Zhang, C.-X., Zhang, J.-S., and Wang, G.-W. 2008. An Empirical Study of Using Rotation Forest To Improve Regressors. Appl. Math.Comput. 195, 2, 618-629.
    • (2008) Appl. Math.Comput. , vol.195 , Issue.2 , pp. 618-629
    • Zhang, C.-X.1    Zhang, J.-S.2    Wang, G.-W.3
  • 160
    • 68749107987 scopus 로고    scopus 로고
    • A fast ensemble pruning algorithm based on pattern mining process
    • Zhao, Q.-L., Jiang, Y.-H., and Xu, M. 2009. A Fast Ensemble Pruning Algorithm Based on Pattern Mining Process. Data Min. Knowl. Discov. 19, 277-292.
    • (2009) Data Min. Knowl. Discov. , vol.19 , pp. 277-292
    • Zhao, Q.-L.1    Jiang, Y.-H.2    Xu, M.3
  • 162
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou, Z.-H., Wu, J., and Tang, W. 2002. Ensembling Neural Networks: Many Could Be Better Than All. Artif. Intell. 137, 239-263.
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.