메뉴 건너뛰기




Volumn 26, Issue 5, 1998, Pages 1651-1686

Boosting the margin: A new explanation for the effectiveness of voting methods

Author keywords

Bagging; Boosting; Decision trees; Ensemble methods; Error correcting; Markov chain; Monte Carlo; Neural networks; Output coding

Indexed keywords


EID: 0032280519     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1024691352     Document Type: Article
Times cited : (1905)

References (42)
  • 1
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of a sigmoidal function
    • BARRON, A. R. (1993). Universal approximation bounds for superposition of a sigmoidal function. IEEE Trans. Inform. Theory 39 930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 2
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • BARTLETT, P. L. (1998). The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inform. Theory 44 525-536.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 525-536
    • Bartlett, P.L.1
  • 4
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • BAUM, E. B. and HAUSSLER, D. (1989). What size net gives valid generalization? Neural Computation 1 151-160.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • BREIMAN, L. (1996). Bagging predictors. Machine Learning 24 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0003929807 scopus 로고    scopus 로고
    • Prediction games and arcing classifiers
    • Univ. California, Berkeley
    • BREIMAN, L. (1997). Prediction games and arcing classifiers. Technical Report 504, Dept. Statistics, Univ. California, Berkeley.
    • (1997) Technical Report 504, Dept. Statistics , vol.504
    • Breiman, L.1
  • 8
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers (with discussion)
    • BREIMAN, L. (1998). Arcing classifiers (with discussion). Ann. Statist. 26 801-849.
    • (1998) Ann. Statist. , vol.26 , pp. 801-849
    • Breiman, L.1
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • CORTES, C. and VAPNIK, V. (1995). Support-vector networks. Machine Learning 20 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 0002457759 scopus 로고
    • Bounds for the uniform deviation of empirical measures
    • DEVROYE, L. (1982). Bounds for the uniform deviation of empirical measures. J. Multivariate Anal. 12 72-79.
    • (1982) J. Multivariate Anal. , vol.12 , pp. 72-79
    • Devroye, L.1
  • 13
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • DIETTERICH, T. G. and BAKIRI, G. (1995). Solving multiclass learning problems via error-correcting output codes. J. Artificial Intelligence Res. 2 263-286.
    • (1995) J. Artificial Intelligence Res. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 14
    • 0031531584 scopus 로고    scopus 로고
    • Rates of convex approximation in non-Hilbert spaces
    • DONAHUE, M. J., GURVITS, L., DARKEN, C. and SONTAG, E. (1997). Rates of convex approximation in non-Hilbert spaces. Constr. Approx. 13 187-220.
    • (1997) Constr. Approx. , vol.13 , pp. 187-220
    • Donahue, M.J.1    Gurvits, L.2    Darken, C.3    Sontag, E.4
  • 17
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • FREUND, Y. (1995). Boosting a weak learning algorithm by majority. Inform. Comput. 121 256-285.
    • (1995) Inform. Comput. , vol.121 , pp. 256-285
    • Freund, Y.1
  • 20
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • FREUND, Y. and SCHAPIRE, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55 119-139.
    • (1997) J. Comput. System Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 21
    • 84880689851 scopus 로고    scopus 로고
    • Adaptive game playing using multiplicative weights
    • To appear
    • FREUND, Y. and SCHAPIRE, R. E. (1998). Adaptive game playing using multiplicative weights. Games and Economic Behavior. To appear.
    • (1998) Games and Economic Behavior
    • Freund, Y.1    Schapire, R.E.2
  • 24
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hubert space and convergence rates for projection pursuit regression and neural network training
    • JONES, L. K. (1992). A simple lemma on greedy approximation in Hubert space and convergence rates for projection pursuit regression and neural network training. Ann. Statist. 20 608-613.
    • (1992) Ann. Statist. , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 27
    • 0001556720 scopus 로고    scopus 로고
    • Efficient agnostic learning of neural networks with bounded fan-in
    • LEE, W. S., BARTLETT, P. L. and WILLIAMSON, R. C. (1996). Efficient agnostic learning of neural networks with bounded fan-in. IEEE Trans. Inform. Theory 42 2118-2132.
    • (1996) IEEE Trans. Inform. Theory , vol.42 , pp. 2118-2132
    • Lee, W.S.1    Bartlett, P.L.2    Williamson, R.C.3
  • 33
    • 0001703864 scopus 로고
    • On the density of families of sets
    • SAUER, N. (1972). On the density of families of sets. J. Combin. Theory Ser. A 13 145-147.
    • (1972) J. Combin. Theory Ser. A , vol.13 , pp. 145-147
    • Sauer, N.1
  • 34
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • SCHAPIRE, R. E. (1990). The strength of weak learnability. Machine Learning 5 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 37
    • 84898928884 scopus 로고    scopus 로고
    • Training methods for adaptive boosting of neural networks for character recognition
    • MIT Press
    • SCHWENK, H. and BENGIO, Y. (1998). Training methods for adaptive boosting of neural networks for character recognition. Advances in Neural Information Processing Systems 10 647-653. MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 647-653
    • Schwenk, H.1    Bengio, Y.2
  • 42
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • VAPNIK, V. N. and CHERVONENKIS, A. YA. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16 264-280.
    • (1971) Theory Probab. Appl. , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Ya.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.