메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1771-1776

Combining interpretable fuzzy rule-based classifiers via multi-objective hierarchical evolutionary algorithm

Author keywords

Ensemble diversity; Ensemble pruning; Fuzzy rule based systems (FRBCs); Interpretability; Multi objective evolutionary algorithm (MOEAs)

Indexed keywords

ENSEMBLE DIVERSITY; ENSEMBLE PRUNING; FUZZY RULE-BASED SYSTEMS; INTERPRETABILITY; MULTI OBJECTIVE EVOLUTIONARY ALGORITHMS;

EID: 83755186783     PISSN: 1062922X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSMC.2011.6083928     Document Type: Conference Paper
Times cited : (20)

References (23)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine learning, 24(2):123-140, 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0000308566 scopus 로고
    • Real-coded genetic algorithms and interval-schemata
    • L.J. Eshelman. Real-coded genetic algorithms and interval-schemata. Foundations of genetic algorithms, 2:187-202, 1993.
    • (1993) Foundations of Genetic Algorithms , vol.2 , pp. 187-202
    • Eshelman, L.J.1
  • 5
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119-139, 1997.
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 6
    • 77953111519 scopus 로고    scopus 로고
    • Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems
    • M.J. Gacto, R. Alcalá, and F. Herrera. Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems. Fuzzy Systems, IEEE Transactions on, 18(3):515-531, 2010.
    • (2010) Fuzzy Systems, IEEE Transactions on , vol.18 , Issue.3 , pp. 515-531
    • Gacto, M.J.1    Alcalá, R.2    Herrera, F.3
  • 7
    • 0032136585 scopus 로고    scopus 로고
    • Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis
    • F. Herrera, M. Lozano, and J.L. Verdegay. Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artificial Intelligence Review, 12:265-319, 1998. (Pubitemid 128514089)
    • (1998) Artificial Intelligence Review , vol.12 , Issue.4 , pp. 265-319
    • Herrera, F.1    Lozano, M.2    Verdegay, J.L.3
  • 9
    • 50149088662 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers
    • H. Ishibuchi and Y. Nojima. Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers. International Journal of Hybrid Intelligent Systems, 3(3):129-145, 2006.
    • (2006) International Journal of Hybrid Intelligent Systems , vol.3 , Issue.3 , pp. 129-145
    • Ishibuchi, H.1    Nojima, Y.2
  • 10
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka. Selecting fuzzy if-then rules for classification problems using genetic algorithms. Fuzzy Systems, IEEE Transactions on, 3(3):260-270, 1995.
    • (1995) Fuzzy Systems, IEEE Transactions on , vol.3 , Issue.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 11
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L.I. Kuncheva and C.J. Whitaker. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2):181-207, 2003.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 13
    • 54049102777 scopus 로고    scopus 로고
    • Interpretability constraints for fuzzy information granulation
    • Corrado Mencar and Anna Maria Fanelli. Interpretability constraints for fuzzy information granulation. Inf. Sci., 178(24):4585-4618, 2008.
    • (2008) Inf. Sci. , vol.178 , Issue.24 , pp. 4585-4618
    • Mencar, C.1    Fanelli, A.M.2
  • 14
    • 70350542555 scopus 로고    scopus 로고
    • Effects of diversity measures on the design of ensemble classifiers by multiobjective genetic fuzzy rule selection with a multi-classifier coding scheme
    • Y. Nojima and H. Ishibuchi. Effects of diversity measures on the design of ensemble classifiers by multiobjective genetic fuzzy rule selection with a multi-classifier coding scheme. Hybrid Artificial Intelligence Systems, pages 755-763, 2008.
    • (2008) Hybrid Artificial Intelligence Systems , pp. 755-763
    • Nojima, Y.1    Ishibuchi, H.2
  • 15
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • DOI 10.1109/91.940965, PII S1063670601065365, Fuzzy Logic at the Turn of the Millennium
    • H. Roubos and M. Setnes. Compact and transparent fuzzy models and classifiers through iterative complexity reduction. Fuzzy Systems, IEEE Transactions on, 9(4):516-524, 2001. (Pubitemid 32933039)
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.4 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 16
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire. The strength of weak learnability. Machine learning, 5(2): 197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 18
    • 0034294243 scopus 로고    scopus 로고
    • Ga-fuzzy modeling and classification: Complexity and performance
    • M. Setnes and H. Roubos. Ga-fuzzy modeling and classification: complexity and performance. Fuzzy Systems, IEEE Transactions on, 8(5):509-522, 2000.
    • (2000) Fuzzy Systems, IEEE Transactions on , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, H.2
  • 19
    • 33845326152 scopus 로고    scopus 로고
    • Agent based multi-objective approach to generating interpretable fuzzy systems
    • H. Wang, S. Kwong, Y. Jin, and C.H. Tsang. Agent based multi-objective approach to generating interpretable fuzzy systems. Multi-Objective Machine Learning, pages 339-364, 2006.
    • (2006) Multi-Objective Machine Learning , pp. 339-364
    • Wang, H.1    Kwong, S.2    Jin, Y.3    Tsang, C.H.4
  • 21
    • 9644257194 scopus 로고    scopus 로고
    • Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
    • H. Wang, S. Kwong, Y. Jin, W. Wei, and KF Man. Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy sets and systems, 149(1):149-186, 2005.
    • (2005) Fuzzy Sets and Systems , vol.149 , Issue.1 , pp. 149-186
    • Wang, H.1    Kwong, S.2    Jin, Y.3    Wei, W.4    Man, K.F.5
  • 22
    • 77957915289 scopus 로고    scopus 로고
    • On generating interpretable and precise fuzzy systems based on pareto multi-objective cooperative co-evolutionary algorithm
    • Y. Zhang, X. Wu, Z. Xing, and W.L. Hu. On generating interpretable and precise fuzzy systems based on pareto multi-objective cooperative co-evolutionary algorithm. Applied Soft Computing, 11(1):1284-1294, 2011.
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 1284-1294
    • Zhang, Y.1    Wu, X.2    Xing, Z.3    Hu, W.L.4
  • 23
    • 52949088628 scopus 로고    scopus 로고
    • Low-level interpretability and high-level interpretability: A unified view of data-driven interpretable fuzzy system modelling
    • Shang-Ming Zhou and John Q. Gan. Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets and Systems, 159(23):3091-3131, 2008.
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.23 , pp. 3091-3131
    • Zhou, S.-M.1    Gan, J.Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.