-
1
-
-
54249099241
-
Consistency of random forests and other aver-aging classifiers
-
Biau, G., Devroye, L., Lugosi, G.: Consistency of random forests and other aver-aging classifiers. Journal of Machine Learning Research 9, 2015-2033 (2008)
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2015-2033
-
-
Biau, G.1
Devroye, L.2
Lugosi, G.3
-
2
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging predictors. Machine Learning 24, 123-140 (1996)
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0035478854
-
Random forests
-
Breiman, L.: Random forests. Machine Learning 45, 5-32 (2001)
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
0344795635
-
Classification and regression trees
-
Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks (1984)
-
(1984)
Wadsworth and Brooks
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
7
-
-
0002117591
-
A further comparison of splitting rules for decision tree induction
-
Buntine, W., Niblett, T.: A further comparison of splitting rules for decision tree induction. Machine Learning 8, 75-85 (1992)
-
(1992)
Machine Learning
, vol.8
, pp. 75-85
-
-
Buntine, W.1
Niblett, T.2
-
9
-
-
33845245626
-
On kernel-target align-ment
-
Holmes, D., Jain, L. (eds.)
-
Cristianini, N., Kandola, J., Elisseeff, A., Shawe-Taylor, J.: On kernel-target align-ment. In: Holmes, D., Jain, L. (eds.) Innovations in Machine Learning: Theory and Application, pp. 205-255 (2006)
-
(2006)
Innovations in Machine Learning: Theory and Application
, pp. 205-255
-
-
Cristianini, N.1
Kandola, J.2
Elisseeff, A.3
Shawe-Taylor, J.4
-
11
-
-
0036161257
-
Linear programming boosting via column generation
-
Demiriz, A., Bennett, K., Shawe-Taylor, J.: Linear programming boosting via col-umn generation. Machine Learning 46, 225-254 (2002)
-
(2002)
Machine Learning
, vol.46
, pp. 225-254
-
-
Demiriz, A.1
Bennett, K.2
Shawe-Taylor, J.3
-
12
-
-
0034250160
-
An experimental comparison of three methods for constructing en-sembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T.: An experimental comparison of three methods for constructing en-sembles of decision trees: Bagging, boosting, and randomization. Machine Learn-ing 40, 139-157 (2000)
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.1
-
13
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: ICML, pp. 148-156 (1996)
-
(1996)
ICML
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.2
-
15
-
-
26844494532
-
Additive logistic regression: A statistical view of boosting
-
Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. The Annals of Statistics 38, 95-118 (2000)
-
(2000)
The Annals of Statistics
, vol.38
, pp. 95-118
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
17
-
-
33646430006
-
Extremely randomized trees
-
Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learn-ing 63, 3-42 (2006)
-
(2006)
Machine Learning
, vol.63
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
18
-
-
84898964855
-
Result analysis of the nips 2003 feature selection challenge
-
Saul, L.K., Weiss, Y., Bottou, L. (eds.) MIT Press, Cambridge
-
Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003 feature selection challenge. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neu-ral Information Processing Systems, vol. 17, pp. 545-552. MIT Press, Cambridge (2005)
-
(2005)
Advances in Neu-ral Information Processing Systems
, vol.17
, pp. 545-552
-
-
Guyon, I.1
Gunn, S.2
Ben-Hur, A.3
Dror, G.4
-
19
-
-
0003684449
-
-
Springer, Heidelberg
-
Hastie, T., Tibshirani, R., Friedman, J.: The elements ofstatistical learning: Data Mining, Inference and Prediction. Springer, Heidelberg (2009)
-
(2009)
The Elements Ofstatistical Learning: Data Mining Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
21
-
-
0034186937
-
On the algorithmic implementation of stochastic discrimination
-
Kleinberg, E.: On the algorithmic implementation of stochastic discrimination. IEEE Trans. Pattern Anal. Mach. Intell. 22, 473-490 (2000)
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, pp. 473-490
-
-
Kleinberg, E.1
-
22
-
-
0037403516
-
Measures ofdiversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva, L., Whitaker, C.: Measures ofdiversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51, 181-207 (2003)
-
(2003)
Machine Learning
, vol.51
, pp. 181-207
-
-
Kuncheva, L.1
Whitaker, C.2
-
23
-
-
41549137738
-
Support vector machinery for infinite ensemble learning
-
Lin, H.-T., Li, L.: Support vector machinery for infinite ensemble learning. Journal of Machine Learning Research 9, 941-973 (2008)
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 941-973
-
-
Lin, H.-T.1
Li, L.2
-
24
-
-
52249099075
-
Spectrum ofVariable-Random Trees
-
Liu, F.-T., Ting, K.-M., Yu, Y., Zhou, Z.-H.: Spectrum ofVariable-Random Trees. Journal of Artifical Intelligence Research 32, 355-384 (2008)
-
(2008)
Journal of Artifical Intelligence Research
, vol.32
, pp. 355-384
-
-
Liu, F.-T.1
Ting, K.-M.2
Yu, Y.3
Zhou, Z.-H.4
-
26
-
-
0342502195
-
Soft margins for adaboost
-
Ratsch, G., Onoda, T., Muller, K.-R.: Soft margins for adaboost. Machine Learn-ing 42, 287-320 (2001)
-
(2001)
Machine Learning
, vol.42
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Muller, K.-R.3
-
27
-
-
12844274244
-
Boosting as a regularized path to a maximum margin classifier
-
Rosset, S., Zhu, J., Hastie, T.: Boosting as a regularized path to a maximum margin classifier. Journal ofMachine Learning Research 5, 941-973 (2004)
-
(2004)
Journal OfMachine Learning Research
, vol.5
, pp. 941-973
-
-
Rosset, S.1
Zhu, J.2
Hastie, T.3
-
31
-
-
0026692226
-
Stacked generalization
-
Wolpert, D.: Stacked Generalization. Neural Networks 5, 241-259 (1992)
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.1
|