메뉴 건너뛰기




Volumn 6323 LNAI, Issue PART 3, 2010, Pages 67-82

Learning with ensembles of randomized trees: New insights

Author keywords

Ensemble Learning; Infinite Ensembles; Kernel Target Alignment; Randomized Trees Ensembles

Indexed keywords

BASIS FUNCTIONS; ENSEMBLE CLASSIFIERS; ENSEMBLE LEARNING; GENERALIZATION ERROR; INFINITE ENSEMBLES; KERNEL TARGET ALIGNMENT; LEARNING ABILITIES; LINEAR SEPARATORS; MACHINE-LEARNING; MAJORITY VOTING; POST PROCESS; POST PROCESSING; RANDOM FORESTS; RANDOMIZED TREES ENSEMBLES; VOTING SCHEMES;

EID: 77958023968     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-15939-8_5     Document Type: Conference Paper
Times cited : (6)

References (31)
  • 1
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of random forests and other aver-aging classifiers
    • Biau, G., Devroye, L., Lugosi, G.: Consistency of random forests and other aver-aging classifiers. Journal of Machine Learning Research 9, 2015-2033 (2008)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2015-2033
    • Biau, G.1    Devroye, L.2    Lugosi, G.3
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Machine Learning 24, 123-140 (1996)
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Machine Learning 45, 5-32 (2001)
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for decision tree induction
    • Buntine, W., Niblett, T.: A further comparison of splitting rules for decision tree induction. Machine Learning 8, 75-85 (1992)
    • (1992) Machine Learning , vol.8 , pp. 75-85
    • Buntine, W.1    Niblett, T.2
  • 11
    • 0036161257 scopus 로고    scopus 로고
    • Linear programming boosting via column generation
    • Demiriz, A., Bennett, K., Shawe-Taylor, J.: Linear programming boosting via col-umn generation. Machine Learning 46, 225-254 (2002)
    • (2002) Machine Learning , vol.46 , pp. 225-254
    • Demiriz, A.1    Bennett, K.2    Shawe-Taylor, J.3
  • 12
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing en-sembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T.: An experimental comparison of three methods for constructing en-sembles of decision trees: Bagging, boosting, and randomization. Machine Learn-ing 40, 139-157 (2000)
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 13
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: ICML, pp. 148-156 (1996)
    • (1996) ICML , pp. 148-156
    • Freund, Y.1    Schapire, R.2
  • 15
    • 26844494532 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. The Annals of Statistics 38, 95-118 (2000)
    • (2000) The Annals of Statistics , vol.38 , pp. 95-118
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 18
    • 84898964855 scopus 로고    scopus 로고
    • Result analysis of the nips 2003 feature selection challenge
    • Saul, L.K., Weiss, Y., Bottou, L. (eds.) MIT Press, Cambridge
    • Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003 feature selection challenge. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neu-ral Information Processing Systems, vol. 17, pp. 545-552. MIT Press, Cambridge (2005)
    • (2005) Advances in Neu-ral Information Processing Systems , vol.17 , pp. 545-552
    • Guyon, I.1    Gunn, S.2    Ben-Hur, A.3    Dror, G.4
  • 21
    • 0034186937 scopus 로고    scopus 로고
    • On the algorithmic implementation of stochastic discrimination
    • Kleinberg, E.: On the algorithmic implementation of stochastic discrimination. IEEE Trans. Pattern Anal. Mach. Intell. 22, 473-490 (2000)
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , pp. 473-490
    • Kleinberg, E.1
  • 22
    • 0037403516 scopus 로고    scopus 로고
    • Measures ofdiversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva, L., Whitaker, C.: Measures ofdiversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51, 181-207 (2003)
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 23
    • 41549137738 scopus 로고    scopus 로고
    • Support vector machinery for infinite ensemble learning
    • Lin, H.-T., Li, L.: Support vector machinery for infinite ensemble learning. Journal of Machine Learning Research 9, 941-973 (2008)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 941-973
    • Lin, H.-T.1    Li, L.2
  • 27
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • Rosset, S., Zhu, J., Hastie, T.: Boosting as a regularized path to a maximum margin classifier. Journal ofMachine Learning Research 5, 941-973 (2004)
    • (2004) Journal OfMachine Learning Research , vol.5 , pp. 941-973
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 31
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D.: Stacked Generalization. Neural Networks 5, 241-259 (1992)
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.