메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 953-997

ℓp-norm multiple kernel learning

Author keywords

Bioinformatics; Block coordinate descent; Convex conjugate; Generalization bounds; Large scale optimization; Learning kernels; Multiple kernel learning; Non sparse; Rademacher complexity; Support vector machine

Indexed keywords

BLOCK COORDINATE DESCENT; CONVEX CONJUGATE; GENERALIZATION BOUNDS; LARGE SCALE OPTIMIZATION; LEARNING KERNELS; MULTIPLE KERNEL LEARNING; NON-SPARSE; RADEMACHER COMPLEXITY;

EID: 79955848223     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (445)

References (86)
  • 1
    • 66349129975 scopus 로고    scopus 로고
    • Towards a gold standard for promoter prediction evaluation
    • T. Abeel, Y. Van de Peer, and Y. Saeys. Towards a gold standard for promoter prediction evaluation. Bioinformatics, 2009.
    • (2009) Bioinformatics
    • Abeel, T.1    Van De Peer, Y.2    Saeys, Y.3
  • 3
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 4
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
    • F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 105-112, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 105-112
    • Bach, F.1
  • 6
    • 8344288229 scopus 로고    scopus 로고
    • Promoter prediction analysis on the whole human genome
    • DOI 10.1038/nbt1032
    • V. B. Bajic, S. L. Tan, Y. Suzuki, and S. Sugano. Promoter prediction analysis on the whole human genome. Nature Biotechnology, 22(11):1467-1473, 2004. (Pubitemid 39482869)
    • (2004) Nature Biotechnology , vol.22 , Issue.11 , pp. 1467-1473
    • Bajic, V.B.1    Sin, L.T.2    Suzuki, Y.3    Sugano, S.4
  • 7
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • November
    • P.L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, November 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 8
    • 0003713964 scopus 로고    scopus 로고
    • Second Edition. Athena Scientific, Belmont, MA
    • D.P. Bertsekas. Nonlinear Programming, Second Edition. Athena Scientific, Belmont, MA, 1999.
    • (1999) Nonlinear Programming
    • Bertsekas, D.P.1
  • 9
    • 34547844158 scopus 로고    scopus 로고
    • Supervised reconstruction of biological networks with local models
    • DOI 10.1093/bioinformatics/btm204
    • K. Bleakley, G. Biau, and J.-P. Vert. Supervised reconstruction of biological networks with local models. Bioinformatics, 23:i57-i65, 2007. (Pubitemid 47244386)
    • (2007) Bioinformatics , vol.23 , Issue.13
    • Bleakley, K.1    Biau, G.2    Vert, J.-P.3
  • 13
    • 38049126285 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • O. Chapelle. Training a support vector machine in the primal. Neural Computation, 2006.
    • (2006) Neural Computation
    • Chapelle, O.1
  • 15
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 18
    • 84858743760 scopus 로고    scopus 로고
    • Learning non-linear combinations of kernels
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • C. Cortes, M. Mohri, and A. Rostamizadeh. Learning non-linear combinations of kernels. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 396-404, 2009b.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 396-404
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 22
    • 0003336572 scopus 로고    scopus 로고
    • A probabilistic theory of pattern recognition
    • Springer, New York
    • L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Number 31 in Applications of Mathematics. Springer, New York, 1996.
    • (1996) Applications of Mathematics , Issue.31
    • Devroye, L.1    Györfi, L.2    Lugosi, G.3
  • 24
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order information for training support vector machines. Journal of Machine Learning Research, 6:1889-1918, 2005. (Pubitemid 41798130)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 28
    • 0004236492 scopus 로고    scopus 로고
    • John Hopkins, University Press, Baltimore, London, 3rd edition
    • G.H. Golub and C.F. van Loan. Matrix Computations. John Hopkins University Press, Baltimore, London, 3rd edition, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 32
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Cambridge, MA, MIT Press
    • T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169-184, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 35
    • 0015000439 scopus 로고
    • Some results on tchebycheffian spline functions
    • G. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions. J. Math. Anal. Applic., 33:82-95, 1971.
    • (1971) J. Math. Anal. Applic. , vol.33 , pp. 82-95
    • Kimeldorf, G.1    Wahba, G.2
  • 37
    • 84858738634 scopus 로고    scopus 로고
    • Efficient and accurate lp-norm multiple kernel learning
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors., MIT Press
    • M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. MÜller, and A. Zien. Efficient and accurate lp-norm multiple kernel learning. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 997-1005. MIT Press, 2009a.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 997-1005
    • Kloft, M.1    Brefeld, U.2    Sonnenburg, S.3    Laskov, P.4    Müller, K.-R.5    Zien, A.6
  • 40
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30:1-50, 2002. (Pubitemid 37095367)
    • (2002) Annals of Statistics , vol.30 , Issue.1 , pp. 1-50
    • Koltchinskii, V.1    Panchenko, D.2
  • 42
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • D.C. Liu and J. Nocedal. On the limited memory method for large scale optimization. Mathematical Programming B, 45(3):503-528, 1989. (Pubitemid 20660315)
    • (1989) Mathematical Programming, Series B , vol.45 , Issue.3 , pp. 503-528
    • Liu Dong, C.1    Nocedal Jorge2
  • 44
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review - Part 1: Statistical approaches
    • M. Markou and S. Singh. Novelty detection: a review - part 1: statistical approaches. Signal Processing, 83:2481-2497, 2003a.
    • (2003) Signal Processing , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 45
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review - Part 2: Neural network based approaches
    • M. Markou and S. Singh. Novelty detection: a review - part 2: neural network based approaches. Signal Processing, 83:2499-2521, 2003b.
    • (2003) Signal Processing , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 49
    • 77956529614 scopus 로고    scopus 로고
    • On the algorithmics and applications of a mixed-norm based kernel learning formulation
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • J. S. Nath, G. Dinesh, S. Ramanand, C. Bhattacharyya, A. Ben-Tal, and K. R. Ramakrishnan. On the algorithmics and applications of a mixed-norm based kernel learning formulation. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 844-852, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 844-852
    • Nath, J.S.1    Dinesh, G.2    Ramanand, S.3    Bhattacharyya, C.4    Ben-Tal, A.5    Ramakrishnan, K.R.6
  • 50
    • 14944353419 scopus 로고    scopus 로고
    • Prox-method with rate of convergence O(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems
    • DOI 10.1137/S1052623403425629
    • A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15:229-251, 2004. (Pubitemid 40360669)
    • (2005) SIAM Journal on Optimization , vol.15 , Issue.1 , pp. 229-251
    • Nemirovski, A.1
  • 54
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Cambridge, MA, MIT Press
    • J. Piatt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Piatt, J.1
  • 55
    • 34547971778 scopus 로고    scopus 로고
    • More efficiency in multiple kernel learning
    • A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. More efficiency in multiple kernel learning. In ICML, pages 775-782, 2007.
    • (2007) ICML , pp. 775-782
    • Rakotomamonjy, A.1    Bach, F.2    Canu, S.3    Grandvalet, Y.4
  • 58
    • 45149115870 scopus 로고    scopus 로고
    • Improved functional prediction of proteins by learning kernel combinations inmultilabel settings
    • ISSN 1471-2105
    • V. Roth and B. Fischer. Improved functional prediction of proteins by learning kernel combinations inmultilabel settings. BMC Bioinformatics, 8(Suppl 2):S12, 2007. ISSN 1471-2105.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 2
    • Roth, V.1    Fischer, B.2
  • 63
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Schölkopf, A.J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 65
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the support of a high-dimensional distribution
    • DOI 10.1162/089976601750264965
    • B. Schölkopf, J. Piatt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7): 1443-1471, 2001. (Pubitemid 33595028)
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1443-1471
    • Scholkopf, B.1    Platt, J.C.2    Shawe-Taylor, J.3    Smola, A.J.4    Williamson, R.C.5
  • 69
    • 33747871991 scopus 로고    scopus 로고
    • ARTS: Accurate recognition of transcription starts in human
    • DOI 10.1093/bioinformatics/btl250
    • S. Sonnenburg, A. Zien, and G. Rätsch. Arts: Accurate recognition of transcription starts in human. Bioinformatics, 22(14):e472-e480, 2006b. (Pubitemid 44288318)
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Sonnenburg, S.1    Zien, A.2    Ratsch, G.3
  • 72
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictors (with discussion)
    • M. Stone. Cross-validatory choice and assessment of statistical predictors (with discussion). Journal of the Royal Statistical Society, B36:111-147, 1974.
    • (1974) Journal of the Royal Statistical Society , vol.B36 , pp. 111-147
    • Stone, M.1
  • 73
    • 0036081146 scopus 로고    scopus 로고
    • DBTSS: Database of human transcriptional start sites and full-length cDNAs
    • Y. Suzuki, R. Yamashita, K. Nakai, and S. Sugano. dbTSS: Database of human transcriptional start sites and full-length cDNAs. Nucleic Acids Research, 30(1):328-331, 2002. (Pubitemid 34679576)
    • (2002) Nucleic Acids Research , vol.30 , Issue.1 , pp. 328-331
    • Suzuki, Y.1    Yamashita, R.2    Nakai, K.3    Sugano, S.4
  • 75
    • 79952039980 scopus 로고    scopus 로고
    • Composite kernel learning
    • ISSN 0885-6125
    • M. Szafranski, Y. Grandvalet, and A. Rakotomamonjy. Composite kernel learning. Mach. Learn., 79(1-2):73-103, 2010. ISSN 0885-6125. doi: http://dx.doi.org/10.1007/s10994-009-5150-6.
    • (2010) Mach. Learn. , vol.79 , Issue.1-2 , pp. 73-103
    • Szafranski, M.1    Grandvalet, Y.2    Rakotomamonjy, A.3
  • 76
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • DOI 10.1016/S0167-8655(99)00087-2
    • D.M.J. Tax and R.P.W. Duin. Support vector domain description. Pattern Recognition Letters, 20 (11-13):1191-1199, 1999. (Pubitemid 32261897)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 80
    • 84863385308 scopus 로고    scopus 로고
    • An extended level method for efficient multiple kernel learning
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
    • Z. Xu, R. Jin, I. King, and M. Lyu. An extended level method for efficient multiple kernel learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1825-1832, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 1825-1832
    • Xu, Z.1    Jin, R.2    King, I.3    Lyu, M.4
  • 82
    • 29144446142 scopus 로고    scopus 로고
    • Supervised enzyme network inference from the integration of genomic data and chemical information
    • DOI 10.1093/bioinformatics/bti1012
    • Y. Yamanishi, , J.-P. Vert, and M. Kanehisa. Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics, 21:i468-i477, 2005. (Pubitemid 41794521)
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Yamanishi, Y.1    Vert, J.-P.2    Kanehisa, M.3
  • 83
    • 70349857949 scopus 로고    scopus 로고
    • Class prediction from disparate biological data sources using an iterative multi-kernel algorithm
    • Visakan Kadirkamanathan, Guido Sanguinetti, Mark Girolami, Mahesan Niranjan, and Josselin Noirel, editors., Pattern Recognition in Bioinformatics, Springer Berlin/Heidelberg
    • Y. Ying, C. Campbell, T. Damoulas, and M. Girolami. Class prediction from disparate biological data sources using an iterative multi-kernel algorithm. In Visakan Kadirkamanathan, Guido Sanguinetti, Mark Girolami, Mahesan Niranjan, and Josselin Noirel, editors, Pattern Recognition in Bioinformatics, volume 5780 of Lecture Notes in Computer Science, pages 427-438. Springer Berlin/Heidelberg, 2009.
    • (2009) Lecture Notes in Computer Science , vol.5780 , pp. 427-438
    • Ying, Y.1    Campbell, C.2    Damoulas, T.3    Girolami, M.4
  • 84


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.