-
1
-
-
66349129975
-
Towards a gold standard for promoter prediction evaluation
-
T. Abeel, Y. Van de Peer, and Y. Saeys. Towards a gold standard for promoter prediction evaluation. Bioinformatics, 2009.
-
(2009)
Bioinformatics
-
-
Abeel, T.1
Van De Peer, Y.2
Saeys, Y.3
-
2
-
-
79955812803
-
Variable sparsity kernel learning-algorithms and applications
-
To appear
-
J. Aflalo, A. Ben-Tal, C. Bhattacharyya, J. Saketha Nath, and S. Raman. Variable sparsity kernel learning-algorithms and applications. Journal of Machine Learning Research, 2011. To appear.
-
(2011)
Journal of Machine Learning Research
-
-
Aflalo, J.1
Ben-Tal, A.2
Bhattacharyya, C.3
Saketha Nath, J.4
Raman, S.5
-
3
-
-
55149088329
-
Convex multi-task feature learning
-
A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
4
-
-
84858766876
-
Exploring large feature spaces with hierarchical multiple kernel learning
-
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
-
F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 105-112, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 105-112
-
-
Bach, F.1
-
5
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In Proc. 21st ICML. ACM, 2004.
-
(2004)
Proc. 21st ICML. ACM
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
6
-
-
8344288229
-
Promoter prediction analysis on the whole human genome
-
DOI 10.1038/nbt1032
-
V. B. Bajic, S. L. Tan, Y. Suzuki, and S. Sugano. Promoter prediction analysis on the whole human genome. Nature Biotechnology, 22(11):1467-1473, 2004. (Pubitemid 39482869)
-
(2004)
Nature Biotechnology
, vol.22
, Issue.11
, pp. 1467-1473
-
-
Bajic, V.B.1
Sin, L.T.2
Suzuki, Y.3
Sugano, S.4
-
7
-
-
0038453192
-
Rademacher and gaussian complexities: Risk bounds and structural results
-
November
-
P.L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, November 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
8
-
-
0003713964
-
-
Second Edition. Athena Scientific, Belmont, MA
-
D.P. Bertsekas. Nonlinear Programming, Second Edition. Athena Scientific, Belmont, MA, 1999.
-
(1999)
Nonlinear Programming
-
-
Bertsekas, D.P.1
-
9
-
-
34547844158
-
Supervised reconstruction of biological networks with local models
-
DOI 10.1093/bioinformatics/btm204
-
K. Bleakley, G. Biau, and J.-P. Vert. Supervised reconstruction of biological networks with local models. Bioinformatics, 23:i57-i65, 2007. (Pubitemid 47244386)
-
(2007)
Bioinformatics
, vol.23
, Issue.13
-
-
Bleakley, K.1
Biau, G.2
Vert, J.-P.3
-
11
-
-
33846313242
-
Introduction to statistical learning theory
-
O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. In Olivier Bousquet, Ulrike von Luxburg, and Gunnar Rätsch, editors, Advanced Lectures on Machine Learning, volume 3176 of Lecture Notes in Computer Science, pages 169-207. Springer Berlin/Heidelberg, 2004. (Pubitemid 39741632)
-
(2004)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3176
, pp. 169-207
-
-
Bousquet, O.1
Boucheron, S.2
Lugosi, G.3
-
13
-
-
38049126285
-
Training a support vector machine in the primal
-
O. Chapelle. Training a support vector machine in the primal. Neural Computation, 2006.
-
(2006)
Neural Computation
-
-
Chapelle, O.1
-
15
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131-159, 2002. (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
16
-
-
79955811369
-
-
C. Cortes, A. Gretton, G. Lanckriet, M. Mohri, and A. Rostamizadeh. Proceedings of the NIPS Workshop on Kernel Learning: Automatic Selection of Optimal Kernels, 2008. URL http://www.cs.nyu.edu/learning-kernels.
-
(2008)
Proceedings of the NIPS Workshop on Kernel Learning: Automatic Selection of Optimal Kernels
-
-
Cortes, C.1
Gretton, A.2
Lanckriet, G.3
Mohri, M.4
Rostamizadeh, A.5
-
18
-
-
84858743760
-
Learning non-linear combinations of kernels
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
-
C. Cortes, M. Mohri, and A. Rostamizadeh. Learning non-linear combinations of kernels. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 396-404, 2009b.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 396-404
-
-
Cortes, C.1
Mohri, M.2
Rostamizadeh, A.3
-
22
-
-
0003336572
-
A probabilistic theory of pattern recognition
-
Springer, New York
-
L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Number 31 in Applications of Mathematics. Springer, New York, 1996.
-
(1996)
Applications of Mathematics
, Issue.31
-
-
Devroye, L.1
Györfi, L.2
Lugosi, G.3
-
23
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
R. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871-1874, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.1
Chang, K.W.2
Hsieh, C.J.3
Wang, X.R.4
Lin, C.J.5
-
24
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order information for training support vector machines. Journal of Machine Learning Research, 6:1889-1918, 2005. (Pubitemid 41798130)
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1889-1918
-
-
Fan, R.-E.1
Chen, P.-H.2
Lin, C.-J.3
-
28
-
-
0004236492
-
-
John Hopkins, University Press, Baltimore, London, 3rd edition
-
G.H. Golub and C.F. van Loan. Matrix Computations. John Hopkins University Press, Baltimore, London, 3rd edition, 1996.
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.F.2
-
29
-
-
56449124689
-
Localized multiple kernel learning
-
New York, NY, USA, ACM. ISBN 978-1-60558-205-4
-
M. Gönen and E. Alpaydin. Localized multiple kernel learning. In ICML '08: Proceedings of the 25th international conference on Machine learning, pages 352-359, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4. doi: http://doi.acm.org/10.1145/1390156.1390201.
-
(2008)
ICML '08: Proceedings of the 25th International Conference on Machine Learning
, pp. 352-359
-
-
Gönen, M.1
Alpaydin, E.2
-
32
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Cambridge, MA, MIT Press
-
T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169-184, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
34
-
-
0345863935
-
The KEGG resource for deciphering the genome
-
M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The KEGG resource for deciphering the genome. Nucleic Acids Res, 32:D277-D280, 2004. (Pubitemid 38081656)
-
(2004)
Nucleic Acids Research
, vol.32
-
-
Kanehisa, M.1
Goto, S.2
Kawashima, S.3
Okuno, Y.4
Hattori, M.5
-
35
-
-
0015000439
-
Some results on tchebycheffian spline functions
-
G. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions. J. Math. Anal. Applic., 33:82-95, 1971.
-
(1971)
J. Math. Anal. Applic.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.1
Wahba, G.2
-
37
-
-
84858738634
-
Efficient and accurate lp-norm multiple kernel learning
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors., MIT Press
-
M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. MÜller, and A. Zien. Efficient and accurate lp-norm multiple kernel learning. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 997-1005. MIT Press, 2009a.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 997-1005
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Laskov, P.4
Müller, K.-R.5
Zien, A.6
-
38
-
-
70350633038
-
Feature selection for density level-sets
-
W. L. Buntine, M. Grobelnik, D. Mladenic, and J. Shawe-Taylor, editors
-
M. Kloft, S. Nakajima, and U. Brefeld. Feature selection for density level-sets. In W. L. Buntine, M. Grobelnik, D. Mladenic, and J. Shawe-Taylor, editors, Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD), pages 692-704, 2009b.
-
(2009)
Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD)
, pp. 692-704
-
-
Kloft, M.1
Nakajima, S.2
Brefeld, U.3
-
40
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30:1-50, 2002. (Pubitemid 37095367)
-
(2002)
Annals of Statistics
, vol.30
, Issue.1
, pp. 1-50
-
-
Koltchinskii, V.1
Panchenko, D.2
-
41
-
-
8844278523
-
Learning the kernel matrix with semi-definite programming
-
G. Lanckriet, N. Cristianini, L. E. Ghaoui, P. Bartlett, and M. I. Jordan. Learning the kernel matrix with semi-definite programming. JMLR, 5:27-72, 2004.
-
(2004)
JMLR
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Ghaoui, L.E.3
Bartlett, P.4
Jordan, M.I.5
-
42
-
-
33646887390
-
On the limited memory BFGS method for large scale optimization
-
D.C. Liu and J. Nocedal. On the limited memory method for large scale optimization. Mathematical Programming B, 45(3):503-528, 1989. (Pubitemid 20660315)
-
(1989)
Mathematical Programming, Series B
, vol.45
, Issue.3
, pp. 503-528
-
-
Liu Dong, C.1
Nocedal Jorge2
-
44
-
-
0142063407
-
Novelty detection: A review - Part 1: Statistical approaches
-
M. Markou and S. Singh. Novelty detection: a review - part 1: statistical approaches. Signal Processing, 83:2481-2497, 2003a.
-
(2003)
Signal Processing
, vol.83
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
45
-
-
0142126712
-
Novelty detection: A review - Part 2: Neural network based approaches
-
M. Markou and S. Singh. Novelty detection: a review - part 2: neural network based approaches. Signal Processing, 83:2499-2521, 2003b.
-
(2003)
Signal Processing
, vol.83
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
47
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
DOI 10.1109/72.914517, PII S1045922701037146
-
K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning algorithms. IEEE Neural Networks, 12(2):181-201, May 2001. (Pubitemid 32371478)
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Muller, K.-R.1
Mika, S.2
Ratsch, G.3
Tsuda, K.4
Scholkopf, B.5
-
49
-
-
77956529614
-
On the algorithmics and applications of a mixed-norm based kernel learning formulation
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
-
J. S. Nath, G. Dinesh, S. Ramanand, C. Bhattacharyya, A. Ben-Tal, and K. R. Ramakrishnan. On the algorithmics and applications of a mixed-norm based kernel learning formulation. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 844-852, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 844-852
-
-
Nath, J.S.1
Dinesh, G.2
Ramanand, S.3
Bhattacharyya, C.4
Ben-Tal, A.5
Ramakrishnan, K.R.6
-
50
-
-
14944353419
-
Prox-method with rate of convergence O(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems
-
DOI 10.1137/S1052623403425629
-
A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15:229-251, 2004. (Pubitemid 40360669)
-
(2005)
SIAM Journal on Optimization
, vol.15
, Issue.1
, pp. 229-251
-
-
Nemirovski, A.1
-
54
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Cambridge, MA, MIT Press
-
J. Piatt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Piatt, J.1
-
55
-
-
34547971778
-
More efficiency in multiple kernel learning
-
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. More efficiency in multiple kernel learning. In ICML, pages 775-782, 2007.
-
(2007)
ICML
, pp. 775-782
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
56
-
-
57249084590
-
SimpleMKL
-
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal of Machine Learning Research, 9:2491-2521, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
58
-
-
45149115870
-
Improved functional prediction of proteins by learning kernel combinations inmultilabel settings
-
ISSN 1471-2105
-
V. Roth and B. Fischer. Improved functional prediction of proteins by learning kernel combinations inmultilabel settings. BMC Bioinformatics, 8(Suppl 2):S12, 2007. ISSN 1471-2105.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 2
-
-
Roth, V.1
Fischer, B.2
-
63
-
-
0347243182
-
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
-
B. Schölkopf, A.J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998. (Pubitemid 128463674)
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Scholkopf, B.1
Smola, A.2
Muller, K.-R.3
-
64
-
-
0032594954
-
Input space vs. feature space in kernel-based methods
-
September
-
B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A.J. Smola. Input space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5): 1000-1017, September 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Müller, K.-R.5
Rätsch, G.6
Smola, A.J.7
-
65
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
DOI 10.1162/089976601750264965
-
B. Schölkopf, J. Piatt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7): 1443-1471, 2001. (Pubitemid 33595028)
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Scholkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
67
-
-
26444467746
-
Learning interpretable SVMs for biological sequence classification
-
Research in Computational Molecular Biology: 9th Annual International Conference, RECOMB 2005. Proceedings
-
S. Sonnenburg, G. Rätsch, and C. Schäfer. Learning interpretable SVMs for biological sequence classification. In RECOMB 2005, LNBI3500, pages 389-407. Springer-Verlag Berlin Heidelberg, 2005. (Pubitemid 41420679)
-
(2005)
Lecture Notes in Bioinformatics (Subseries of Lecture Notes in Computer Science)
, vol.3500
, pp. 389-407
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
-
68
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7:1531-1565, July 2006a. (Pubitemid 44373694)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
Scholkopf, B.4
-
69
-
-
33747871991
-
ARTS: Accurate recognition of transcription starts in human
-
DOI 10.1093/bioinformatics/btl250
-
S. Sonnenburg, A. Zien, and G. Rätsch. Arts: Accurate recognition of transcription starts in human. Bioinformatics, 22(14):e472-e480, 2006b. (Pubitemid 44288318)
-
(2006)
Bioinformatics
, vol.22
, Issue.14
-
-
Sonnenburg, S.1
Zien, A.2
Ratsch, G.3
-
70
-
-
77954666305
-
The SHOGUN machine learning toolbox
-
S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona, A. Binder, C. Gehl, and V. Franc. The SHOGUN Machine Learning Toolbox. Journal of Machine Learning Research, 2010.
-
(2010)
Journal of Machine Learning Research
-
-
Sonnenburg, S.1
Rätsch, G.2
Henschel, S.3
Widmer, C.4
Behr, J.5
Zien, A.6
De Bona, F.7
Binder, A.8
Gehl, C.9
Franc, V.10
-
72
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictors (with discussion)
-
M. Stone. Cross-validatory choice and assessment of statistical predictors (with discussion). Journal of the Royal Statistical Society, B36:111-147, 1974.
-
(1974)
Journal of the Royal Statistical Society
, vol.B36
, pp. 111-147
-
-
Stone, M.1
-
73
-
-
0036081146
-
DBTSS: Database of human transcriptional start sites and full-length cDNAs
-
Y. Suzuki, R. Yamashita, K. Nakai, and S. Sugano. dbTSS: Database of human transcriptional start sites and full-length cDNAs. Nucleic Acids Research, 30(1):328-331, 2002. (Pubitemid 34679576)
-
(2002)
Nucleic Acids Research
, vol.30
, Issue.1
, pp. 328-331
-
-
Suzuki, Y.1
Yamashita, R.2
Nakai, K.3
Sugano, S.4
-
75
-
-
79952039980
-
Composite kernel learning
-
ISSN 0885-6125
-
M. Szafranski, Y. Grandvalet, and A. Rakotomamonjy. Composite kernel learning. Mach. Learn., 79(1-2):73-103, 2010. ISSN 0885-6125. doi: http://dx.doi.org/10.1007/s10994-009-5150-6.
-
(2010)
Mach. Learn.
, vol.79
, Issue.1-2
, pp. 73-103
-
-
Szafranski, M.1
Grandvalet, Y.2
Rakotomamonjy, A.3
-
76
-
-
0033220728
-
Support vector domain description
-
DOI 10.1016/S0167-8655(99)00087-2
-
D.M.J. Tax and R.P.W. Duin. Support vector domain description. Pattern Recognition Letters, 20 (11-13):1191-1199, 1999. (Pubitemid 32261897)
-
(1999)
Pattern Recognition Letters
, vol.20
, Issue.11-13
, pp. 1191-1199
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
78
-
-
71149100224
-
More generality in efficient multiple kernel learning
-
New York, NY, USA, ACM
-
M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In Proceedings of the 26th Annual International Conference on Machine Learning (ICML), pages 1065-1072, New York, NY, USA, 2009. ACM.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning (ICML)
, pp. 1065-1072
-
-
Varma, M.1
Babu, B.R.2
-
80
-
-
84863385308
-
An extended level method for efficient multiple kernel learning
-
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
-
Z. Xu, R. Jin, I. King, and M. Lyu. An extended level method for efficient multiple kernel learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1825-1832, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 1825-1832
-
-
Xu, Z.1
Jin, R.2
King, I.3
Lyu, M.4
-
81
-
-
77956547440
-
Simple and efficient multiple kernel learning by group lasso
-
Z. Xu, R. Jin, H. Yang, I. King, and M. Lyu. Simple and efficient multiple kernel learning by group lasso. In Proceedings of the 27th Conference on Machine Learning (ICML 2010), 2010.
-
(2010)
Proceedings of the 27th Conference on Machine Learning (ICML 2010)
-
-
Xu, Z.1
Jin, R.2
Yang, H.3
King, I.4
Lyu, M.5
-
82
-
-
29144446142
-
Supervised enzyme network inference from the integration of genomic data and chemical information
-
DOI 10.1093/bioinformatics/bti1012
-
Y. Yamanishi, , J.-P. Vert, and M. Kanehisa. Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics, 21:i468-i477, 2005. (Pubitemid 41794521)
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 1
-
-
Yamanishi, Y.1
Vert, J.-P.2
Kanehisa, M.3
-
83
-
-
70349857949
-
Class prediction from disparate biological data sources using an iterative multi-kernel algorithm
-
Visakan Kadirkamanathan, Guido Sanguinetti, Mark Girolami, Mahesan Niranjan, and Josselin Noirel, editors., Pattern Recognition in Bioinformatics, Springer Berlin/Heidelberg
-
Y. Ying, C. Campbell, T. Damoulas, and M. Girolami. Class prediction from disparate biological data sources using an iterative multi-kernel algorithm. In Visakan Kadirkamanathan, Guido Sanguinetti, Mark Girolami, Mahesan Niranjan, and Josselin Noirel, editors, Pattern Recognition in Bioinformatics, volume 5780 of Lecture Notes in Computer Science, pages 427-438. Springer Berlin/Heidelberg, 2009.
-
(2009)
Lecture Notes in Computer Science
, vol.5780
, pp. 427-438
-
-
Ying, Y.1
Campbell, C.2
Damoulas, T.3
Girolami, M.4
-
84
-
-
77954853785
-
L2-norm multiple kernel learning and its application to biomedical data fusion
-
ISSN 1471-2105
-
S. Yu, T. Falck, A. Daemen, L.-C. Tranchevent, J. Suykens, B. De Moor, and Y. Moreau. L2-norm multiple kernel learning and its application to biomedical data fusion. BMC Bioinformatics, 11 (1):309, 2010. ISSN 1471-2105.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 309
-
-
Yu, S.1
Falck, T.2
Daemen, A.3
Tranchevent, L.-C.4
Suykens, J.5
De Moor, B.6
Moreau, Y.7
|