-
1
-
-
0030235637
-
Error reduction through learning multiple descriptions
-
Ali, K. M., & Pazzani, M. J. (1996). Error reduction through learning multiple descriptions. Machine Learning, 24(3), 173-202.
-
(1996)
Machine Learning
, vol.24
, Issue.3
, pp. 173-202
-
-
Ali, K.M.1
Pazzani, M.J.2
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1/2), 105-139.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
85051131411
-
Training a 3-node neural network is NP-complete (Extended abstract)
-
San Francisco, CA. Morgan Kaufmann
-
Blum, A., & Rivest, R. L. (1988). Training a 3-node neural network is NP-Complete (Extended abstract). In Proceedings of the 1988 Workshop on Computational Learning Theory, pp. 9-18 San Francisco, CA. Morgan Kaufmann.
-
(1988)
Proceedings of the 1988 Workshop on Computational Learning Theory
, pp. 9-18
-
-
Blum, A.1
Rivest, R.L.2
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0001920992
-
Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks
-
Chan, P. (Ed.)
-
Cherkauer, K. J. (1996). Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In Chan, P. (Ed.), Working Notes of the AAAI Workshop on Integrating Multiple Learned Models, pp. 15-21. Available from http://www.cs.fit.edu/~imlm/.
-
(1996)
Working Notes of the AAAI Workshop on Integrating Multiple Learned Models
, pp. 15-21
-
-
Cherkauer, K.J.1
-
6
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning.
-
(2000)
Machine Learning
-
-
Dietterich, T.G.1
-
8
-
-
0344729476
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Murray Hill, NJ
-
Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. Tech. rep., AT&T Bell Laboratories, Murray Hill, NJ.
-
(1995)
Tech. Rep., AT&T Bell Laboratories
-
-
Freund, Y.1
Schapire, R.E.2
-
11
-
-
0025627940
-
Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
-
Hornik, K., Stinchcombe, M., & White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 3, 551-560.
-
(1990)
Neural Networks
, vol.3
, pp. 551-560
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
12
-
-
0001815269
-
Constructing optimal binary decision trees is NP-complete
-
Hyafil, L., & Rivest, R. L. (1976). Constructing optimal binary decision trees is NP-Complete. Information Processing Letters, 5(1), 15-17.
-
(1976)
Information Processing Letters
, vol.5
, Issue.1
, pp. 15-17
-
-
Hyafil, L.1
Rivest, R.L.2
-
13
-
-
0000670848
-
Back propagation is sensitive to initial conditions
-
San Francisco, CA. Morgan Kaufmann
-
Kolen, J. F., & Pollack, J. B. (1991). Back propagation is sensitive to initial conditions. In Advances in Neural Information Processing Systems, Vol. 3, pp. 860-867 San Francisco, CA. Morgan Kaufmann.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 860-867
-
-
Kolen, J.F.1
Pollack, J.B.2
-
14
-
-
85012686183
-
Multiple decision trees
-
Schachter, R. D., Levitt, T. S., Kannal, L. N., & Lemmer, J. F. (Eds.) Elsevier Science, Amsterdam
-
Kwok, S. W., & Carter, C. (1990). Multiple decision trees. In Schachter, R. D., Levitt, T. S., Kannal, L. N., & Lemmer, J. F. (Eds.), Uncertainty in Artificial Intelligence 4, pp. 327-335. Elsevier Science, Amsterdam.
-
(1990)
Uncertainty in Artificial Intelligence
, vol.4
, pp. 327-335
-
-
Kwok, S.W.1
Carter, C.2
-
15
-
-
0004087397
-
Probabilistic inference using Markov chain Monte Carlo methods
-
University of Toronto, Toronto, CA
-
Neal, R. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Tech. rep. CRG-TR-93-1, Department of Computer Science, University of Toronto, Toronto, CA.
-
(1993)
Tech. Rep. CRG-TR-93-1, Department of Computer Science
-
-
Neal, R.1
-
16
-
-
85156199954
-
Improving committee diagnosis with resampling techniques
-
Touretzky, D. S., Mozer, M. C., & Hesselmo, M. E. (Eds.) Cambridge, MA. MIT Press
-
Parmanto, B., Munro, P. W., & Doyle, H. R. (1996). Improving committee diagnosis with resampling techniques. In Touretzky, D. S., Mozer, M. C., & Hesselmo, M. E. (Eds.), Advances in Neural Information Processing Systems, Vol. 8, pp. 882-888 Cambridge, MA. MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 882-888
-
-
Parmanto, B.1
Munro, P.W.2
Doyle, H.R.3
-
17
-
-
0030374103
-
Bootstrapping with noise: An effective regularization technique
-
Raviv, Y., & Intrator, N. (1996). Bootstrapping with noise: An effective regularization technique. Connection Science, 8(3-4), 355-372.
-
(1996)
Connection Science
, vol.8
, Issue.3-4
, pp. 355-372
-
-
Raviv, Y.1
Intrator, N.2
-
18
-
-
38049062780
-
Extending local learners with error-correcting output codes
-
Washington, D.C.
-
Ricci, F., & Aha, D. W. (1997). Extending local learners with error-correcting output codes. Tech. rep., Naval Center for Applied Research in Artificial Intelligence, Washington, D.C.
-
(1997)
Tech. Rep., Naval Center for Applied Research in Artificial Intelligence
-
-
Ricci, F.1
Aha, D.W.2
-
20
-
-
0002595663
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Fisher, D. (Ed.) Morgan Kaufmann
-
Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1997). Boosting the margin: A new explanation for the effectiveness of voting methods. In Fisher, D. (Ed.), Machine Learning: Proceedings of the Fourteenth International Conference. Morgan Kaufmann.
-
(1997)
Machine Learning: Proceedings of the Fourteenth International Conference
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
21
-
-
0031633979
-
Improved boosting algorithms using confidence-rated predictions
-
ACM Press, New York, NY
-
Schapire, R. E., & Singer, Y. (1998). Improved boosting algorithms using confidence-rated predictions. In Proc. 11th Annu. Conf. on Comput. Learning Theory, pp. 80-91. ACM Press, New York, NY.
-
(1998)
Proc. 11th Annu. Conf. on Comput. Learning Theory
, pp. 80-91
-
-
Schapire, R.E.1
Singer, Y.2
-
22
-
-
0030365938
-
Error correlation and error reduction in ensemble classifiers
-
Tumer, K., & Ghosh, J. (1996). Error correlation and error reduction in ensemble classifiers. Connection Science, 8(3-4), 385-404.
-
(1996)
Connection Science
, vol.8
, Issue.3-4
, pp. 385-404
-
-
Tumer, K.1
Ghosh, J.2
|