메뉴 건너뛰기




Volumn 1857 LNCS, Issue , 2000, Pages 1-15

Ensemble methods in machine learning

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE BOOSTING; MACHINE LEARNING; ALGORITHMS; ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); LEARNING SYSTEMS;

EID: 80053403826     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45014-9_1     Document Type: Conference Paper
Times cited : (5985)

References (22)
  • 1
    • 0030235637 scopus 로고    scopus 로고
    • Error reduction through learning multiple descriptions
    • Ali, K. M., & Pazzani, M. J. (1996). Error reduction through learning multiple descriptions. Machine Learning, 24(3), 173-202.
    • (1996) Machine Learning , vol.24 , Issue.3 , pp. 173-202
    • Ali, K.M.1    Pazzani, M.J.2
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1/2), 105-139.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 85051131411 scopus 로고
    • Training a 3-node neural network is NP-complete (Extended abstract)
    • San Francisco, CA. Morgan Kaufmann
    • Blum, A., & Rivest, R. L. (1988). Training a 3-node neural network is NP-Complete (Extended abstract). In Proceedings of the 1988 Workshop on Computational Learning Theory, pp. 9-18 San Francisco, CA. Morgan Kaufmann.
    • (1988) Proceedings of the 1988 Workshop on Computational Learning Theory , pp. 9-18
    • Blum, A.1    Rivest, R.L.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0001920992 scopus 로고    scopus 로고
    • Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks
    • Chan, P. (Ed.)
    • Cherkauer, K. J. (1996). Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In Chan, P. (Ed.), Working Notes of the AAAI Workshop on Integrating Multiple Learned Models, pp. 15-21. Available from http://www.cs.fit.edu/~imlm/.
    • (1996) Working Notes of the AAAI Workshop on Integrating Multiple Learned Models , pp. 15-21
    • Cherkauer, K.J.1
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning.
    • (2000) Machine Learning
    • Dietterich, T.G.1
  • 7
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2, 263-286.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 8
    • 0344729476 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Murray Hill, NJ
    • Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. Tech. rep., AT&T Bell Laboratories, Murray Hill, NJ.
    • (1995) Tech. Rep., AT&T Bell Laboratories
    • Freund, Y.1    Schapire, R.E.2
  • 11
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • Hornik, K., Stinchcombe, M., & White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 3, 551-560.
    • (1990) Neural Networks , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 12
    • 0001815269 scopus 로고
    • Constructing optimal binary decision trees is NP-complete
    • Hyafil, L., & Rivest, R. L. (1976). Constructing optimal binary decision trees is NP-Complete. Information Processing Letters, 5(1), 15-17.
    • (1976) Information Processing Letters , vol.5 , Issue.1 , pp. 15-17
    • Hyafil, L.1    Rivest, R.L.2
  • 13
    • 0000670848 scopus 로고
    • Back propagation is sensitive to initial conditions
    • San Francisco, CA. Morgan Kaufmann
    • Kolen, J. F., & Pollack, J. B. (1991). Back propagation is sensitive to initial conditions. In Advances in Neural Information Processing Systems, Vol. 3, pp. 860-867 San Francisco, CA. Morgan Kaufmann.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 860-867
    • Kolen, J.F.1    Pollack, J.B.2
  • 14
    • 85012686183 scopus 로고
    • Multiple decision trees
    • Schachter, R. D., Levitt, T. S., Kannal, L. N., & Lemmer, J. F. (Eds.) Elsevier Science, Amsterdam
    • Kwok, S. W., & Carter, C. (1990). Multiple decision trees. In Schachter, R. D., Levitt, T. S., Kannal, L. N., & Lemmer, J. F. (Eds.), Uncertainty in Artificial Intelligence 4, pp. 327-335. Elsevier Science, Amsterdam.
    • (1990) Uncertainty in Artificial Intelligence , vol.4 , pp. 327-335
    • Kwok, S.W.1    Carter, C.2
  • 15
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • University of Toronto, Toronto, CA
    • Neal, R. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Tech. rep. CRG-TR-93-1, Department of Computer Science, University of Toronto, Toronto, CA.
    • (1993) Tech. Rep. CRG-TR-93-1, Department of Computer Science
    • Neal, R.1
  • 16
    • 85156199954 scopus 로고    scopus 로고
    • Improving committee diagnosis with resampling techniques
    • Touretzky, D. S., Mozer, M. C., & Hesselmo, M. E. (Eds.) Cambridge, MA. MIT Press
    • Parmanto, B., Munro, P. W., & Doyle, H. R. (1996). Improving committee diagnosis with resampling techniques. In Touretzky, D. S., Mozer, M. C., & Hesselmo, M. E. (Eds.), Advances in Neural Information Processing Systems, Vol. 8, pp. 882-888 Cambridge, MA. MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 882-888
    • Parmanto, B.1    Munro, P.W.2    Doyle, H.R.3
  • 17
    • 0030374103 scopus 로고    scopus 로고
    • Bootstrapping with noise: An effective regularization technique
    • Raviv, Y., & Intrator, N. (1996). Bootstrapping with noise: An effective regularization technique. Connection Science, 8(3-4), 355-372.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 355-372
    • Raviv, Y.1    Intrator, N.2
  • 21
    • 0031633979 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • ACM Press, New York, NY
    • Schapire, R. E., & Singer, Y. (1998). Improved boosting algorithms using confidence-rated predictions. In Proc. 11th Annu. Conf. on Comput. Learning Theory, pp. 80-91. ACM Press, New York, NY.
    • (1998) Proc. 11th Annu. Conf. on Comput. Learning Theory , pp. 80-91
    • Schapire, R.E.1    Singer, Y.2
  • 22
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • Tumer, K., & Ghosh, J. (1996). Error correlation and error reduction in ensemble classifiers. Connection Science, 8(3-4), 385-404.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 385-404
    • Tumer, K.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.