-
2
-
-
26944453996
-
Learning convex combinations of continuously parameterized basic kernels
-
A. Argyriou, C. A. Micchelli, and M. Pontil. Learning convex combinations of continuously parameterized basic kernels. In COLT, pages 338-352, 2005.
-
(2005)
COLT
, pp. 338-352
-
-
Argyriou, A.1
Micchelli, C.A.2
Pontil, M.3
-
3
-
-
84858766876
-
Exploring large feature spaces with hierarchical multiple kernel learning
-
F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In NIPS, pages 105-112, 2008.
-
(2008)
NIPS
, pp. 105-112
-
-
Bach, F.1
-
4
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F. Bach, G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML, 2004.
-
(2004)
ICML
-
-
Bach, F.1
Lanckriet, G.2
Jordan, M.I.3
-
6
-
-
78149327741
-
Kernel methods for deep learning
-
Y. Cho and L. K. Saul. Kernel methods for deep learning. In NIPS, pages 342-350, 2009.
-
(2009)
NIPS
, pp. 342-350
-
-
Cho, Y.1
Saul, L.K.2
-
7
-
-
78149334888
-
Large-margin classification in infinite neural networks
-
Y. Cho and L. K. Saul. Large-margin classification in infinite neural networks. Neural Computation, 22(10):2678-2697, 2010.
-
(2010)
Neural Computation
, vol.22
, Issue.10
, pp. 2678-2697
-
-
Cho, Y.1
Saul, L.K.2
-
8
-
-
84858743760
-
Learning non-linear combinations of kernels
-
C. Cortes, M. Mohri, and A. Rostamizadeh. Learning non-linear combinations of kernels. In NIPS, 2009.
-
(2009)
NIPS
-
-
Cortes, C.1
Mohri, M.2
Rostamizadeh, A.3
-
9
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
56449124689
-
Localized multiple kernel learning
-
M. Gönen and E. Alpaydin. Localized multiple kernel learning. In ICML, pages 352-359, 2008.
-
(2008)
ICML
, pp. 352-359
-
-
Gönen, M.1
Alpaydin, E.2
-
13
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
14
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.2
-
15
-
-
51049096780
-
Kernel methods in machine learning
-
T. Hofmann, B. Scholkopf, and A. J. Smola. Kernel methods in machine learning. The Annals of Statistics, 36(3):1171-1220, 2008.
-
(2008)
The Annals of Statistics
, vol.36
, Issue.3
, pp. 1171-1220
-
-
Hofmann, T.1
Scholkopf, B.2
Smola, A.J.3
-
18
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G. R. G. Lanckriet, N. Cristianini, P. L. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.L.3
Ghaoui, L.E.4
Jordan, M.I.5
-
19
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
H. Larochelle, D. Erhan, A. C. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, pages 473-480, 2007.
-
(2007)
ICML
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.C.3
Bergstra, J.4
Bengio, Y.5
-
20
-
-
84898970836
-
Kernel PCA and denoising in feature spaces
-
S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz, and G. Rätsch. Kernel pca and denoising in feature spaces. In NIPS, pages 536-542, 1998.
-
(1998)
NIPS
, pp. 536-542
-
-
Mika, S.1
Schölkopf, B.2
Smola, A.J.3
Müller, K.-R.4
Scholz, M.5
Rätsch, G.6
-
21
-
-
34547971778
-
More efficiency in multiple kernel learning
-
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. More efficiency in multiple kernel learning. In ICML, pages 775-782, 2007.
-
(2007)
ICML
, pp. 775-782
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
24
-
-
84864066318
-
A general and efficient multiple kernel learning algorithm
-
S. Sonnenburg, G. Rätsch, and C. Schäfer. A general and efficient multiple kernel learning algorithm. In NIPS, 2005.
-
(2005)
NIPS
-
-
Sonnenburg, S.1
Rätsch, G.2
Schäfer, C.3
-
25
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. Rätsch, C. Rätsch, and B. Schölkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7:1531-1565, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Rätsch, G.2
Rätsch, C.3
Schölkopf, B.4
-
26
-
-
33746031418
-
Learning bounds for support vector machines with learned kernels
-
N. Srebro and S. Ben-David. Learning bounds for support vector machines with learned kernels. In COLT, pages 169-183, 2006.
-
(2006)
COLT
, pp. 169-183
-
-
Srebro, N.1
Ben-David, S.2
-
28
-
-
71149100224
-
More generality in efficient multiple kernel learning
-
M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In ICML, page 134, 2009.
-
(2009)
ICML
, pp. 134
-
-
Varma, M.1
Babu, B.R.2
-
29
-
-
84863385308
-
An extended level method for efficient multiple kernel learning
-
Z. Xu, R. Jin, I. King, and M. R. Lyu. An extended level method for efficient multiple kernel learning. In NIPS, pages 1825-1832, 2008.
-
(2008)
NIPS
, pp. 1825-1832
-
-
Xu, Z.1
Jin, R.2
King, I.3
Lyu, M.R.4
-
30
-
-
84898069211
-
Generalization bounds for learning the kernel
-
Y. Ying and C. Campbell. Generalization bounds for learning the kernel. In COLT, 2009.
-
(2009)
COLT
-
-
Ying, Y.1
Campbell, C.2
-
32
-
-
0347585601
-
Kernel logistic regression and the import vector machine
-
J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. In NIPS, pages 1081-1088, 2001.
-
(2001)
NIPS
, pp. 1081-1088
-
-
Zhu, J.1
Hastie, T.2
|