메뉴 건너뛰기




Volumn 46, Issue 3, 2013, Pages 769-787

Stratified sampling for feature subspace selection in random forests for high dimensional data

Author keywords

Classification; Decision trees; Ensemble classifier; High dimensional data; Random forests; Stratified sampling

Indexed keywords

DATA SETS; ENSEMBLE CLASSIFIERS; FEATURE SUBSPACE; GENE CLASSIFICATION; HIGH DIMENSIONAL DATA; IMAGE CATEGORIZATION; IN-BUILDINGS; NEAREST NEIGHBOR ALGORITHM; RANDOM FOREST ALGORITHM; RANDOM FORESTS; REAL DATA SETS; SIMPLE RANDOM SAMPLING; STATE-OF-THE-ART ALGORITHMS; STRATIFIED SAMPLING; SYNTHETIC DATA;

EID: 84870244637     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2012.09.005     Document Type: Article
Times cited : (146)

References (45)
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees bagging, boosting, and randomization
    • T. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees bagging, boosting, and randomization Machine Learning 40 2 2000 139 157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.1
  • 5
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Y. Amit, and D. Geman Shape quantization and recognition with randomized trees Neural Computation 9 7 1997 1545 1588
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 10
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • R. Díaz-Uriarte, and A. de Andrés Gene selection and classification of microarray data using random forest BMC Bioinformatics 7 1 2006 3
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 3
    • Díaz-Uriarte, R.1    De Andrés, A.2
  • 12
    • 77953351710 scopus 로고    scopus 로고
    • An application of random forests to a genome-wide association dataset: Methodological considerations and new findings
    • B. Goldstein, A. Hubbard, A. Cutler, and L. Barcellos An application of random forests to a genome-wide association dataset: methodological considerations and new findings BMC Genetics 11 1 2010 49
    • (2010) BMC Genetics , vol.11 , Issue.1 , pp. 49
    • Goldstein, B.1    Hubbard, A.2    Cutler, A.3    Barcellos, L.4
  • 13
    • 64549095229 scopus 로고    scopus 로고
    • Performance of random forest when SNPs are in linkage disequilibrium
    • Y. Meng, Y. Yu, L. Cupples, L. Farrer, and K. Lunetta Performance of random forest when SNPs are in linkage disequilibrium BMC Bioinformatics 10 1 2009 78
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 78
    • Meng, Y.1    Yu, Y.2    Cupples, L.3    Farrer, L.4    Lunetta, K.5
  • 14
    • 77954485448 scopus 로고    scopus 로고
    • On safari to random jungle a fast implementation of random forests for high-dimensional data
    • D. Schwarz, I. König, and A. Ziegler On safari to random jungle a fast implementation of random forests for high-dimensional data Bioinformatics 26 14 2010 1752
    • (2010) Bioinformatics , vol.26 , Issue.14 , pp. 1752
    • Schwarz, D.1    König, I.2    Ziegler, A.3
  • 22
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 24
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research four current directions
    • T. Dietterich Machine learning research four current directions AIM Magazine 18 1997 97 136
    • (1997) AIM Magazine , vol.18 , pp. 97-136
    • Dietterich, T.1
  • 25
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms bagging, boosting, and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms bagging, boosting, and variants Machine Learning 36 1-2 1999 105 139
    • (1999) Machine Learning , vol.36 , Issue.12 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 29
  • 33
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the roc curve for multiple class classification problems
    • D. Hand, and R. Till A simple generalisation of the area under the roc curve for multiple class classification problems Machine Learning 45 2 2001 171 186
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.1    Till, R.2
  • 35
    • 8644258401 scopus 로고    scopus 로고
    • A statistical approach to texture classification from single images
    • M. Varma, and A. Zisserman A statistical approach to texture classification from single images International Journal of Computer Vision 62 1-2 2005 61 81
    • (2005) International Journal of Computer Vision , vol.62 , Issue.12 , pp. 61-81
    • Varma, M.1    Zisserman, A.2
  • 38
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe Distinctive image features from scale-invariant keypoints International Journal of Computer Vision 60 2 2004 91 110
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.