메뉴 건너뛰기




Volumn 20, Issue 1, 2008, Pages 26-39

Neural-based learning classifier systems

Author keywords

Classification; Data mining; Evolutionary computing and genetic algorithms; Neural nets; Representations; Rule based processing

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; EVOLUTIONARY ALGORITHMS; NEURAL NETWORKS;

EID: 36649012798     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2007.190671     Document Type: Article
Times cited : (95)

References (38)
  • 1
    • 0000459241 scopus 로고    scopus 로고
    • C-Net: A method for generating non-deterministic and dynamic multivariate decision trees
    • H. A. Abbass, M. Towsey, and G. D. Finn. C-Net: A method for generating non-deterministic and dynamic multivariate decision trees. Knowledge and Information Systems, 3(2): 184-197, 2001.
    • (2001) Knowledge and Information Systems , vol.3 , Issue.2 , pp. 184-197
    • Abbass, H.A.1    Towsey, M.2    Finn, G.D.3
  • 2
    • 0043284115 scopus 로고    scopus 로고
    • Accuracy-based learning classifier systems: Models, analysis and applications to classification tasks
    • E. Bernadó-Mansilla and J. M. Garrell-Guiu. Accuracy-based learning classifier systems: models, analysis and applications to classification tasks. Evolutionary Computation, 11(3):209-238, 2003.
    • (2003) Evolutionary Computation , vol.11 , Issue.3 , pp. 209-238
    • Bernadó-Mansilla, E.1    Garrell-Guiu, J.M.2
  • 3
    • 36649025195 scopus 로고    scopus 로고
    • E. Bernado-Mansilla, X. Llorà, and J. M. Garrell-Guiu. XCS and GALE: a comparative study of two learning classifier systems with six other learning algorithms on classification tasks. In Proceedings of the 4th International Workshop on Learning Classifier Systems (IWLCS2001), pages 337-341, 200.1. Short version published in Genetic and Evolutionary Compution Conference (GECCO2001).
    • E. Bernado-Mansilla, X. Llorà, and J. M. Garrell-Guiu. XCS and GALE: a comparative study of two learning classifier systems with six other learning algorithms on classification tasks. In Proceedings of the 4th International Workshop on Learning Classifier Systems (IWLCS2001), pages 337-341, 200.1. Short version published in Genetic and Evolutionary Compution Conference (GECCO2001).
  • 4
    • 10444241776 scopus 로고    scopus 로고
    • PhD thesis, School of Computer Science, The University of Birmingham
    • G. Brown. Diversity in Neural Network Ensembles. PhD thesis, School of Computer Science, The University of Birmingham, 2004.
    • (2004) Diversity in Neural Network Ensembles
    • Brown, G.1
  • 5
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: a survey and categorisation. Information Fusion, 6(1):5-20, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 7
  • 10
    • 36649012741 scopus 로고    scopus 로고
    • H. H. Dam, H. A. Abbass, and C. Lokan. Be real! XCS with continuous valued inputs. In Proceedings of the Eighth International Workshop on Learning Classifier Systems (IWLCS-2005), Washington D.C., USA, 2005.
    • H. H. Dam, H. A. Abbass, and C. Lokan. Be real! XCS with continuous valued inputs. In Proceedings of the Eighth International Workshop on Learning Classifier Systems (IWLCS-2005), Washington D.C., USA, 2005.
  • 11
    • 36649034201 scopus 로고    scopus 로고
    • Speciation techniques in evolved ensembles with negative correlation learning
    • Vancouver, Canada
    • P. Duell, I. Fermin, and X. Yao. Speciation techniques in evolved ensembles with negative correlation learning. In IEEE Congress on Evolutionary Computation, pages 16-21, Vancouver, Canada, 2006.
    • (2006) IEEE Congress on Evolutionary Computation , pp. 16-21
    • Duell, P.1    Fermin, I.2    Yao, X.3
  • 14
    • 0003463297 scopus 로고
    • University of Michigan Press, Ann Arbor, Republished by the MIT press, 1992
    • J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, 1975. Republished by the MIT press, 1992.
    • (1975) Adaptation in Natural and Artificial Systems
    • Holland, J.H.1
  • 16
    • 0000746883 scopus 로고
    • Escaping Brittleness: The Possibilities of GeneralPurpose Learning Algorithms Applied to Parallel Rule-Based Systems
    • Mitchell, Michalski, and Carbonell, editors, chapter 20, Morgan Kaufmann
    • J. H. Holland. Escaping Brittleness: The Possibilities of GeneralPurpose Learning Algorithms Applied to Parallel Rule-Based Systems. In Mitchell, Michalski, and Carbonell, editors, Machine Learning, an Artificial Intelligence Approach. Volume II, chapter 20, pages 593-623. Morgan Kaufmann, 1986.
    • (1986) Machine Learning, an Artificial Intelligence Approach , vol.2 , pp. 593-623
    • Holland, J.H.1
  • 17
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Network, 2(5):359-366, 1989.
    • (1989) Neural Network , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 18
    • 35048891595 scopus 로고    scopus 로고
    • J. Hurst and L. Bull. A self-adaptive neural learning classifier system, with constructivism for mobile robot control. In Parallel Problem Solving from Nature - PPSN VIII, pages 942-951. Springer, 2004.
    • J. Hurst and L. Bull. A self-adaptive neural learning classifier system, with constructivism for mobile robot control. In Parallel Problem Solving from Nature - PPSN VIII, pages 942-951. Springer, 2004.
  • 19
    • 0042525838 scopus 로고    scopus 로고
    • M. M. Islam, X. Yao, and K. Murase. A. constructive algorithm, for training cooperative neural network ensembles. IEEE Transactions on Neural Networks, 14(4):820-834, 2003.
    • M. M. Islam, X. Yao, and K. Murase. A. constructive algorithm, for training cooperative neural network ensembles. IEEE Transactions on Neural Networks, 14(4):820-834, 2003.
  • 20
    • 0347779886 scopus 로고    scopus 로고
    • What should a classifier system learn and how should we measure it?
    • June
    • T. Kovacs. What should a classifier system learn and how should we measure it? Journal of Soft Computing, 6(3-4):171-182, June 2002.
    • (2002) Journal of Soft Computing , vol.6 , Issue.3-4 , pp. 171-182
    • Kovacs, T.1
  • 21
    • 1542293638 scopus 로고    scopus 로고
    • Extending the representation of classifier conditions part I: From, messy coding to S-expressions
    • W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Morgan Kaufmann
    • P. L. Lanzi and A. Perrucci. Extending the representation of classifier conditions part I: From, messy coding to S-expressions. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 1, pages 337-344. Morgan Kaufmann, 1999.
    • (1999) Proceedings of the Genetic and Evolutionary Computation Conference , vol.1 , pp. 337-344
    • Lanzi, P.L.1    Perrucci, A.2
  • 22
    • 36649013604 scopus 로고    scopus 로고
    • P. L. Lanzi and A. Perrucci. Extending the representation of classifier conditions part II: From messy coding to S-expressions. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, andR. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference, 1, pages 345-352. Morgan Kaufmann, 1999.
    • P. L. Lanzi and A. Perrucci. Extending the representation of classifier conditions part II: From messy coding to S-expressions. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, andR. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 1, pages 345-352. Morgan Kaufmann, 1999.
  • 24
    • 1942483371 scopus 로고    scopus 로고
    • PhD thesis, University College, The University of New South Wales, Australian Defence Force Academy, Canberra, Australia
    • Y. Liu. Negative Correlation Learning and Evolutionary Design of Neural Network Ensembles. PhD thesis, University College, The University of New South Wales, Australian Defence Force Academy, Canberra, Australia, 1999.
    • (1999) Negative Correlation Learning and Evolutionary Design of Neural Network Ensembles
    • Liu, Y.1
  • 30
    • 0031420798 scopus 로고    scopus 로고
    • The neural basis of cognitive development: A. constructivist manifesto
    • S. Quartz and T. Sejnowski. The neural basis of cognitive development: A. constructivist manifesto. Brain and Behavioral Sciences, 20(4):537-596, 1997.
    • (1997) Brain and Behavioral Sciences , vol.20 , Issue.4 , pp. 537-596
    • Quartz, S.1    Sejnowski, T.2
  • 32
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural nets
    • A. Sharkey. On combining artificial neural nets. Connection Science, 8:299-313, 1996.
    • (1996) Connection Science , vol.8 , pp. 299-313
    • Sharkey, A.1
  • 33
    • 84947604413 scopus 로고    scopus 로고
    • M. Skurichina, L. Kuncheva, and R. Duin. Bagging and boosting for the nearest mean classifier: Effects of sample size on diversity and accuracy. In International Workshop on Multiple Classifier Systems, pages 62-7.1. Springer, 2002.
    • M. Skurichina, L. Kuncheva, and R. Duin. Bagging and boosting for the nearest mean classifier: Effects of sample size on diversity and accuracy. In International Workshop on Multiple Classifier Systems, pages 62-7.1. Springer, 2002.
  • 35
    • 0001387704 scopus 로고
    • Classifier fitness based on accuracy
    • S. W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149-175, 1995.
    • (1995) Evolutionary Computation , vol.3 , Issue.2 , pp. 149-175
    • Wilson, S.W.1
  • 36
    • 0000648788 scopus 로고    scopus 로고
    • Generalization in the XCS classifier system
    • J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors, University of Wisconsin, Madison, Wisconsin, USA, Morgan Kaufmann
    • S. W. Wilson. Generalization in the XCS classifier system. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages 665-674, University of Wisconsin, Madison, Wisconsin, USA, 1998. Morgan Kaufmann.
    • (1998) Genetic Programming 1998: Proceedings of the Third Annual Conference , pp. 665-674
    • Wilson, S.W.1
  • 37
    • 0042643357 scopus 로고
    • Get real! XCS with continuous-valued inputs
    • P. Lanzi, W. Stolzmann, and S. Wilson, editors, Learning Classifier Systems, From Foundations to Applications, Berlin, Springer-Verlag
    • S. W. Wilson. Get real! XCS with continuous-valued inputs. In P. Lanzi, W. Stolzmann, and S. Wilson, editors, Learning Classifier Systems, From Foundations to Applications, LNAI-1813, pages 209-219, Berlin, 2000. Springer-Verlag.
    • (1813) LNAI , pp. 209-219
    • Wilson, S.W.1
  • 38
    • 84942897286 scopus 로고    scopus 로고
    • Mining oblique data with. XCS
    • P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors, Proceedings of the Third International Workshop IWLCS-2000
    • S. W. Wilson. Mining oblique data with. XCS. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors, Proceedings of the Third International Workshop (IWLCS-2000), Lecture Notes in Artificial Intelligence, pages 158-174, 2001.
    • (2001) Lecture Notes in Artificial Intelligence , pp. 158-174
    • Wilson, S.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.