메뉴 건너뛰기




Volumn 37, Issue 3, 1999, Pages 297-336

Improved boosting algorithms using confidence-rated predictions

Author keywords

[No Author keywords available]

Indexed keywords

DECISION THEORY; ENCODING (SYMBOLS); TREES (MATHEMATICS);

EID: 0033281701     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007614523901     Document Type: Article
Times cited : (2499)

References (26)
  • 1
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Bartlett, P.L. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2), 525-536.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., & Kohavi, R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1/2):105-139, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E.B., & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1(1), 151-160.
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 4
    • 0030819669 scopus 로고    scopus 로고
    • Empirical support for winnow and weighted-majority based algorithms: Results on a calendar scheduling domain
    • Blum, A. (1997). Empirical support for winnow and weighted-majority based algorithms: results on a calendar scheduling domain. Machine Learning, 26, 5-23.
    • (1997) Machine Learning , vol.26 , pp. 5-23
    • Blum, A.1
  • 5
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3), 801-849.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 7
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • to appear
    • Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, to appear.
    • Machine Learning
    • Dietterich, T.G.1
  • 8
  • 13
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R.E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 16
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural net and other learning applications Information and Computation, 100(1), 78-150.
    • (1992) Information and Computation , vol.100 , Issue.1 , pp. 78-150
    • Haussler, D.1
  • 24
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R.E., Freund, Y., Bartlett, P., & Lee, W.S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5), 1651-1686.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 25
    • 84880677797 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • to appear
    • Schapire, R.E., & Singer, Y. BoosTexter: A boosting-based system for text categorization. Machine Learning, to appear.
    • Machine Learning
    • Schapire, R.E.1    Singer, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.