메뉴 건너뛰기




Volumn 50, Issue , 2015, Pages 82-91

Ensemble methods for wind and solar power forecasting - A state-of-the-art review

Author keywords

Ensemble method; Solar irradiance forecasting; Wind power forecasting; Wind speed forecasting

Indexed keywords

SOLAR ENERGY; SOLAR RADIATION; WEATHER FORECASTING; WIND EFFECTS; WIND SPEED;

EID: 84929622158     PISSN: 13640321     EISSN: 18790690     Source Type: Journal    
DOI: 10.1016/j.rser.2015.04.081     Document Type: Review
Times cited : (364)

References (55)
  • 1
    • 33244491943 scopus 로고    scopus 로고
    • A comparison of a few statistical models for making quantile wind power forecasts
    • J.B. Bremnes A comparison of a few statistical models for making quantile wind power forecasts Wind Energy 9 2006 3 11
    • (2006) Wind Energy , vol.9 , pp. 3-11
    • Bremnes, J.B.1
  • 2
    • 47149095417 scopus 로고    scopus 로고
    • Artificial intelligence techniques for photovoltaic applications: A review
    • A. Mellit, and S.A. Kalogirou Artificial intelligence techniques for photovoltaic applications: a review Prog Energy Combust Sci 34 2008 574 632
    • (2008) Prog Energy Combust Sci , vol.34 , pp. 574-632
    • Mellit, A.1    Kalogirou, S.A.2
  • 3
    • 78650045524 scopus 로고    scopus 로고
    • A review of wind power and wind speed forecasting methods with different time horizons
    • Arlington, TX
    • Soman S, Zareipour H, Malik O, Mandal P. A review of wind power and wind speed forecasting methods with different time horizons. In: North American power symposium (NAPS2010), Arlington, TX; 2010. p. 1-8.
    • (2010) North American Power Symposium (NAPS2010) , pp. 1-8
    • Soman, S.1    Zareipour, H.2    Malik, O.3    Mandal, P.4
  • 4
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: A review
    • S.A. Kalogirou Artificial neural networks in renewable energy systems applications: a review Renew Sustain Energy Rev 5 2001 373 401
    • (2001) Renew Sustain Energy Rev , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 5
    • 33748316563 scopus 로고    scopus 로고
    • Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis
    • J.C. Cao, and S.H. Cao Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis Energy 31 15 2006 3435 3445
    • (2006) Energy , vol.31 , Issue.15 , pp. 3435-3445
    • Cao, J.C.1    Cao, S.H.2
  • 7
    • 84859070373 scopus 로고    scopus 로고
    • Application of auto-regressive models to U.K. Wind speed data for power system impact studies
    • D.C. Hill, D. McMillan, K.R.W. Bell, and D. Infield Application of auto-regressive models to U.K. wind speed data for power system impact studies IEEE Trans Sustain Energy 3 1 2012 134 141
    • (2012) IEEE Trans Sustain Energy , vol.3 , Issue.1 , pp. 134-141
    • Hill, D.C.1    McMillan, D.2    Bell, K.R.W.3    Infield, D.4
  • 8
    • 50849132200 scopus 로고    scopus 로고
    • A literature review of wind forecasting technology in the world
    • Lausanne, Switzerland
    • Wu Y-K, Hong J-S. A literature review of wind forecasting technology in the world. In: IEEE Power Tech, Lausanne, Switzerland; 2007. p. 504-9.
    • (2007) IEEE Power Tech , pp. 504-509
    • Wu, Y.-K.1    Hong, J.-S.2
  • 12
    • 84861823295 scopus 로고    scopus 로고
    • Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters
    • F. Wang, Z. Mi, S. Su, and H. Zhao Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters Energies 5 2012 1355 1370
    • (2012) Energies , vol.5 , pp. 1355-1370
    • Wang, F.1    Mi, Z.2    Su, S.3    Zhao, H.4
  • 13
    • 75449088043 scopus 로고    scopus 로고
    • An adaptive model for predicting of global, direct and diffuse hourly solar irradiance
    • A. Mellit, H. Eleuch, M. Benghanem, C. Elaoun, and A.M. Pavan An adaptive model for predicting of global, direct and diffuse hourly solar irradiance Energy Convers Manag 51 2010 771 782
    • (2010) Energy Convers Manag , vol.51 , pp. 771-782
    • Mellit, A.1    Eleuch, H.2    Benghanem, M.3    Elaoun, C.4    Pavan, A.M.5
  • 15
    • 84908310749 scopus 로고    scopus 로고
    • Current state of the art in solar forecasting
    • California Institute for Energy and Environment
    • Kleissl J. Current state of the art in solar forecasting. In: California renewable energy forecasting, resource data and mapping. California Institute for Energy and Environment; 2010. p. A1-26.
    • (2010) California Renewable Energy Forecasting, Resource Data and Mapping , pp. A1-26
    • Kleissl, J.1
  • 17
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • D. Opitz, and R. Maclin Popular ensemble methods: an empirical study J Artif Intell Res 11 1999 169 196
    • (1999) J Artif Intell Res , vol.11 , pp. 169-196
    • Opitz, D.1    Maclin, R.2
  • 20
    • 84867623602 scopus 로고    scopus 로고
    • Application of adaboost-based bp neural network for short-term wind speed forecast
    • J. Wu, B. Zhang, and K. Wang Application of adaboost-based bp neural network for short-term wind speed forecast Power Syst Technol 36 9 2012 221 225
    • (2012) Power Syst Technol , vol.36 , Issue.9 , pp. 221-225
    • Wu, J.1    Zhang, B.2    Wang, K.3
  • 22
    • 5044245475 scopus 로고    scopus 로고
    • Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data
    • A. Sozen, E. Arcaklýogcblu, and M. Ozalp Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data Energy Convers Manag 45 2004 18 19
    • (2004) Energy Convers Manag , vol.45 , pp. 18-19
    • Sozen, A.1    Arcaklýogcblu, E.2    Ozalp, M.3
  • 24
    • 34648852323 scopus 로고    scopus 로고
    • Locally recurrent neural networks for wind speed prediction using spatial correlation
    • T. Barbounis, and J. Theocharis Locally recurrent neural networks for wind speed prediction using spatial correlation Inf Sci 177 24 2007 5775 5797
    • (2007) Inf Sci , vol.177 , Issue.24 , pp. 5775-5797
    • Barbounis, T.1    Theocharis, J.2
  • 26
    • 54949136699 scopus 로고    scopus 로고
    • Comparison between singular vectors and breeding vectors as initial perturbations for the ECMWF ensemble prediction system
    • L. Magnusson, M. Leutbecher, and E. Källén Comparison between singular vectors and breeding vectors as initial perturbations for the ECMWF ensemble prediction system Mon Weather Rev 136 11 2007 4092 4104
    • (2007) Mon Weather Rev , vol.136 , Issue.11 , pp. 4092-4104
    • Magnusson, L.1    Leutbecher, M.2    Källén, E.3
  • 28
    • 85151983461 scopus 로고    scopus 로고
    • Wind energy forecasting in the Irish power system using a multi-scheme ensemble prediction system
    • University College Cork
    • Lang S. Wind energy forecasting in the Irish power system using a multi-scheme ensemble prediction system. Technical Report, University College Cork; 2007.
    • (2007) Technical Report
    • Lang, S.1
  • 30
    • 84929624854 scopus 로고    scopus 로고
    • Ensemble prediction systems
    • Hydrometeorological Prediction Center; July
    • Manousos P. Ensemble prediction systems. Technical Report, Hydrometeorological Prediction Center; July 2006.
    • (2006) Technical Report
    • Manousos, P.1
  • 33
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach Learn 24 1996 123 140
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 34
    • 33745780111 scopus 로고    scopus 로고
    • Experiments with AdaBoost.RT, an improved boosting scheme for regression
    • D.L. Shrestha, and D.P. Solomatine Experiments with AdaBoost.RT, an improved boosting scheme for regression Neural Comput 18 7 2006 1678 1710
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1678-1710
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 35
    • 2942570109 scopus 로고    scopus 로고
    • A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
    • I. Damousis, M. Alexiadis, J. Theocharis, and P. Dokopoulos A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation IEEE Trans Energy Convers 19 2 2004 352 361
    • (2004) IEEE Trans Energy Convers , vol.19 , Issue.2 , pp. 352-361
    • Damousis, I.1    Alexiadis, M.2    Theocharis, J.3    Dokopoulos, P.4
  • 36
    • 67650062041 scopus 로고    scopus 로고
    • Wind power ensemble forecasting using wind speed and direction ensembles from ECMWF or NCEP
    • Denmark Project PSO
    • Nielsen H, Madsen H, Nielsen T, Badger J, Giebel G, Landberg L, et al. Wind power ensemble forecasting using wind speed and direction ensembles from ECMWF or NCEP. Technical Report, Denmark Project PSO; 2005.
    • (2005) Technical Report
    • Nielsen, H.1    Madsen, H.2    Nielsen, T.3    Badger, J.4    Giebel, G.5    Landberg, L.6
  • 38
    • 84859562589 scopus 로고    scopus 로고
    • Verification of the ECMWF ensemble forecasts of wind speed against analyses and observations
    • P. Pinson, and R. Hagedorn Verification of the ECMWF ensemble forecasts of wind speed against analyses and observations Meteorol Appl 19 4 2012 484 500
    • (2012) Meteorol Appl , vol.19 , Issue.4 , pp. 484-500
    • Pinson, P.1    Hagedorn, R.2
  • 39
    • 0001727173 scopus 로고    scopus 로고
    • Ensemble forecasting in the short to medium range: Report from a workshop
    • 2653:efitst>2.3.CO;2
    • Thomas M, Hamill TM, Steven L, Mullen, Chris Snyder, David P. Baumhefner, Zoltan Toth. Ensemble forecasting in the short to medium range: report from a workshop. Bull Amer Meteor Soc 2000;81:2653-2664, 10.1175/1520-0477(2000)081 <2653:efitst>2.3.CO;2
    • (2000) Bull Amer Meteor Soc , vol.81 , pp. 2653-2664
    • Thomas, M.1    Hamill, T.M.2    Steven, L.3    Mullen4    Snyder, C.5    Baumhefner, D.P.6    Toth, Z.7
  • 40
    • 77949570119 scopus 로고    scopus 로고
    • A hybrid statistical method to predict wind speed and wind power
    • H. Liu, H.-Q. Tian, C. Chen, and Y.-F. Li A hybrid statistical method to predict wind speed and wind power Renew Energy 35 2010 1857 1861
    • (2010) Renew Energy , vol.35 , pp. 1857-1861
    • Liu, H.1    Tian, H.-Q.2    Chen, C.3    Li, Y.-F.4
  • 41
    • 78650402541 scopus 로고    scopus 로고
    • Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in portugal
    • J. Catalão, H. Pousinho, and V. Mendes Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in portugal IEEE Trans Sustain Energy 2 1 2011 50 59
    • (2011) IEEE Trans Sustain Energy , vol.2 , Issue.1 , pp. 50-59
    • Catalão, J.1    Pousinho, H.2    Mendes, V.3
  • 43
    • 84919905211 scopus 로고    scopus 로고
    • EMD-kNN models for wind speed forecasting
    • Y. Ren, and P.N. Suganthan EMD-kNN models for wind speed forecasting J Power Energy Eng 2 4 2014 176 185
    • (2014) J Power Energy Eng , vol.2 , Issue.4 , pp. 176-185
    • Ren, Y.1    Suganthan, P.N.2
  • 44
    • 85010081751 scopus 로고    scopus 로고
    • A novel empirical mode decomposition with support vector regression for wind speed forecasting
    • Y. Ren, P.N. Suganthan, and N. Srikanth A novel empirical mode decomposition with support vector regression for wind speed forecasting IEEE Trans Neural Netw Learn Syst PP 99 2015 1
    • (2015) IEEE Trans Neural Netw Learn Syst , Issue.99 , pp. 1
    • Ren, Y.1    Suganthan, P.N.2    Srikanth, N.3
  • 45
    • 84919905288 scopus 로고    scopus 로고
    • A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
    • Y. Ren, P.N. Suganthan, and N. Srikanth A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods IEEE Trans Sustain Energy 6 1 2015 236 244
    • (2015) IEEE Trans Sustain Energy , vol.6 , Issue.1 , pp. 236-244
    • Ren, Y.1    Suganthan, P.N.2    Srikanth, N.3
  • 47
    • 78649276197 scopus 로고    scopus 로고
    • Output prediction of wind power generation system using complex-valued neural network
    • Taipei, Taiwan
    • Kitajima T, Yasuno T. Output prediction of wind power generation system using complex-valued neural network. In: SICE annual conference (SICE2010), Taipei, Taiwan; 2010. p. 3610-3.
    • (2010) SICE Annual Conference (SICE2010) , pp. 3610-3613
    • Kitajima, T.1    Yasuno, T.2
  • 49
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • J. Shi, J. Guo, and S. Zheng Evaluation of hybrid forecasting approaches for wind speed and power generation time series Renew Sustain Energy Rev 16 2012 3471 3480
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 3471-3480
    • Shi, J.1    Guo, J.2    Zheng, S.3
  • 51
    • 0032828938 scopus 로고    scopus 로고
    • Daily insolation forecasting using a multi-stage neural network
    • Y. Kemmoku, S. Orita, S. Nakagawa, and T. Sakakibara Daily insolation forecasting using a multi-stage neural network Solar Energy 66 3 1999 193 199
    • (1999) Solar Energy , vol.66 , Issue.3 , pp. 193-199
    • Kemmoku, Y.1    Orita, S.2    Nakagawa, S.3    Sakakibara, T.4
  • 52
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis
    • N. Huang, Z. Shen, S. Long, M. Wu, H. Shih, and Q. Zheng The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis Proc R Soc Lond A 454 1998 903 995
    • (1998) Proc R Soc Lond A , vol.454 , pp. 903-995
    • Huang, N.1    Shen, Z.2    Long, S.3    Wu, M.4    Shih, H.5    Zheng, Q.6
  • 53
    • 79954620339 scopus 로고    scopus 로고
    • Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN
    • J. Wu, and C.C. Keong Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN Solar Energy 85 5 2011 808 817
    • (2011) Solar Energy , vol.85 , Issue.5 , pp. 808-817
    • Wu, J.1    Keong, C.C.2
  • 54
    • 85152087639 scopus 로고    scopus 로고
    • July 2012
    • National data buoy center historical data, URL: (http://www.ndbc.noaa.gov/historical-data.shtmlhttp://www.ndbc.noaa.gov/historical-data.shtml); July 2012.
    • National Data Buoy Center Historical Data
  • 55
    • 77951129083 scopus 로고    scopus 로고
    • February 2014
    • National solar radiation data base. URL: (http://rredc.nrel.gov/solar/old-data/nsrdb/http://rredc.nrel.gov/solar/old-data/nsrdb/); February 2014.
    • National Solar Radiation Data Base


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.