메뉴 건너뛰기




Volumn 143, Issue , 2014, Pages 347-361

A unified evolutionary training scheme for single and ensemble of feedforward neural network

Author keywords

Artificial neural network; Ensemble; Evolutionary algorithm; Orthogonal array

Indexed keywords

CLASSIFICATION (OF INFORMATION); EVOLUTIONARY ALGORITHMS; NEURAL NETWORKS;

EID: 84904798148     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.05.057     Document Type: Article
Times cited : (28)

References (69)
  • 3
    • 0033559165 scopus 로고    scopus 로고
    • Artificial neural network for predicting alpha-turn types
    • Cai Y.D., Chou K.C. Artificial neural network for predicting alpha-turn types. Anal. Biochem. 1999, 268:407-409.
    • (1999) Anal. Biochem. , vol.268 , pp. 407-409
    • Cai, Y.D.1    Chou, K.C.2
  • 4
    • 0003578240 scopus 로고
    • An empirical study of learning speed in back-propagation networks
    • School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
    • Fahlman S.E. An empirical study of learning speed in back-propagation networks. Technical Report CMU-CS-88-162 1988, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.
    • (1988) Technical Report CMU-CS-88-162
    • Fahlman, S.E.1
  • 7
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X. Evolving artificial neural networks. Proc. IEEE 1999, 87(9):1423-1447.
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 10
    • 0032095527 scopus 로고    scopus 로고
    • Making use of population information in evolutionary artificial neural networks
    • Yao X., Liu Y. Making use of population information in evolutionary artificial neural networks. IEEE Trans. Syst., Man, Cybern., Part B: Cybern. 1998, 28(3):417-425.
    • (1998) IEEE Trans. Syst., Man, Cybern., Part B: Cybern. , vol.28 , Issue.3 , pp. 417-425
    • Yao, X.1    Liu, Y.2
  • 11
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • Yao X., Liu Y. A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Netw. 1997, 8:694-713.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 13
    • 0037361327 scopus 로고    scopus 로고
    • Learning polynomial feedforward neural networks by genetic programming and backpropagation
    • Nikolaev N., Iba H. Learning polynomial feedforward neural networks by genetic programming and backpropagation. IEEE Trans. Neural Netw. 2003, 14(2):337-350.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.2 , pp. 337-350
    • Nikolaev, N.1    Iba, H.2
  • 14
    • 63549137283 scopus 로고    scopus 로고
    • A hybrid artificial neural networks and particle swarm optimization for function approximation
    • Su T., Jhang J., Hou C. A hybrid artificial neural networks and particle swarm optimization for function approximation. Int. J. Innov. Comput., Inf. Control 2008, 4(9):2363-2374.
    • (2008) Int. J. Innov. Comput., Inf. Control , vol.4 , Issue.9 , pp. 2363-2374
    • Su, T.1    Jhang, J.2    Hou, C.3
  • 15
    • 0037276988 scopus 로고    scopus 로고
    • Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    • Leung F., Lam H., Ling S., Tam P. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans. Neural Netw. 2003, 14(1):79-88.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.1 , pp. 79-88
    • Leung, F.1    Lam, H.2    Ling, S.3    Tam, P.4
  • 16
    • 38649118854 scopus 로고    scopus 로고
    • Evolving artificial neural networks using an improved PSO and DPSO
    • Yu J., Wang S., Xi L. Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 2008, 71(4-6):1054-1060.
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 1054-1060
    • Yu, J.1    Wang, S.2    Xi, L.3
  • 17
    • 70349873857 scopus 로고    scopus 로고
    • Group search optimizer: an optimization algorithm inspired by animal searching behavior
    • He S., Wu Q.H., Saunders J.R. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans. Evol. Comput. 2009, 13(5):973-990.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.5 , pp. 973-990
    • He, S.1    Wu, Q.H.2    Saunders, J.R.3
  • 19
    • 1842535329 scopus 로고    scopus 로고
    • A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
    • Juang C.-F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst., Man, Cybern., Part B: Cybern. 2004, 34(2):997-1006.
    • (2004) IEEE Trans. Syst., Man, Cybern., Part B: Cybern. , vol.34 , Issue.2 , pp. 997-1006
    • Juang, C.-F.1
  • 20
    • 4444296251 scopus 로고    scopus 로고
    • Hybrid Taguchi-genetic algorithm for global numerical optimization
    • Tsai J.-T., Liu T.-K., Chou J.-H. Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Trans. Evol. Comput. 2004, 8(4):365-377.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.4 , pp. 365-377
    • Tsai, J.-T.1    Liu, T.-K.2    Chou, J.-H.3
  • 21
    • 33144466864 scopus 로고    scopus 로고
    • Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm
    • Tsai J.-T., Chou J.-H., Liu T.-K. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans. Neural Netw. 2006, 17(1):69-80.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.1 , pp. 69-80
    • Tsai, J.-T.1    Chou, J.-H.2    Liu, T.-K.3
  • 23
    • 34848872651 scopus 로고    scopus 로고
    • An optimization methodology for neural network weights and architectures
    • Ludermir T.B., Yamazaki A., Zanchettin C. An optimization methodology for neural network weights and architectures. IEEE Trans. Neural Netw. 2006, 17(6):1452-1459.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.6 , pp. 1452-1459
    • Ludermir, T.B.1    Yamazaki, A.2    Zanchettin, C.3
  • 24
    • 34248656519 scopus 로고    scopus 로고
    • Neural network learning with global heuristic search
    • Jordanov I., Georgieva A. Neural network learning with global heuristic search. IEEE Trans. Neural Netw. 2007, 18(3):937-942.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.3 , pp. 937-942
    • Jordanov, I.1    Georgieva, A.2
  • 26
    • 79956078108 scopus 로고    scopus 로고
    • The systematic trajectory search algorithm for the generalized feedforward neural network training
    • Chen W.-C., Tseng L.-Y. The systematic trajectory search algorithm for the generalized feedforward neural network training. Int. J. Innov. Comput., Inf. Control 2011, 7(5A):2457-2471.
    • (2011) Int. J. Innov. Comput., Inf. Control , vol.7 , Issue.5 A , pp. 2457-2471
    • Chen, W.-C.1    Tseng, L.-Y.2
  • 29
    • 84894439375 scopus 로고    scopus 로고
    • Fast decorrelated neural network ensembles with random weights
    • Alhamdoosh M., Wang D. Fast decorrelated neural network ensembles with random weights. Inf. Sci. 2014, 264:104-117.
    • (2014) Inf. Sci. , vol.264 , pp. 104-117
    • Alhamdoosh, M.1    Wang, D.2
  • 30
    • 84870252407 scopus 로고    scopus 로고
    • Evolutionary extreme learning machine ensembles with size control
    • Wang D., Alhamdoosh M. Evolutionary extreme learning machine ensembles with size control. Neurocomputing 2013, 102(15):98-110.
    • (2013) Neurocomputing , vol.102 , Issue.15 , pp. 98-110
    • Wang, D.1    Alhamdoosh, M.2
  • 31
    • 84888074993 scopus 로고    scopus 로고
    • A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
    • Tan C.-J., Lim C.-P., Cheah Y.-N. A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models. Neurocomputing 2014, 125(11):217-228.
    • (2014) Neurocomputing , vol.125 , Issue.11 , pp. 217-228
    • Tan, C.-J.1    Lim, C.-P.2    Cheah, Y.-N.3
  • 32
    • 83655163794 scopus 로고    scopus 로고
    • Coevolutionary learning of neural network ensemble for complex classification tasks
    • Tian J., Li M., Chen F., Kou J. Coevolutionary learning of neural network ensemble for complex classification tasks. Pattern Recognit. 2012, 45(4):1373-1385.
    • (2012) Pattern Recognit. , vol.45 , Issue.4 , pp. 1373-1385
    • Tian, J.1    Li, M.2    Chen, F.3    Kou, J.4
  • 33
    • 84873621434 scopus 로고    scopus 로고
    • A fuzzy evolutionary framework for combining ensembles
    • Tsakonas A., Gabrys B. A fuzzy evolutionary framework for combining ensembles. Appl. Soft Comput. 2013, 13(4):1800-1812.
    • (2013) Appl. Soft Comput. , vol.13 , Issue.4 , pp. 1800-1812
    • Tsakonas, A.1    Gabrys, B.2
  • 34
    • 84872155077 scopus 로고    scopus 로고
    • Detection of distributed denial of service attacks using an ensemble of adaptive and hybrid neuro-fuzzy systems
    • Kumar P.A.R., Selvakumar S. Detection of distributed denial of service attacks using an ensemble of adaptive and hybrid neuro-fuzzy systems. Comput. Commun. 2013, 36(3):303-319.
    • (2013) Comput. Commun. , vol.36 , Issue.3 , pp. 303-319
    • Kumar, P.A.R.1    Selvakumar, S.2
  • 35
    • 33745759451 scopus 로고    scopus 로고
    • Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization
    • Chou K.C., Shen H.B. Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochem. Biophys. Res. Commun. 2006, 347:150-157.
    • (2006) Biochem. Biophys. Res. Commun. , vol.347 , pp. 150-157
    • Chou, K.C.1    Shen, H.B.2
  • 36
    • 34249074523 scopus 로고    scopus 로고
    • Using ensemble classifier to identify membrane protein types
    • Shen H.B., Chou K.C. Using ensemble classifier to identify membrane protein types. Amino Acids 2007, 32:483-488.
    • (2007) Amino Acids , vol.32 , pp. 483-488
    • Shen, H.B.1    Chou, K.C.2
  • 37
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural nets
    • Sharkey A.J.C. On combining artificial neural nets. Connect. Sci. 1996, 8(3-4):299-313.
    • (1996) Connect. Sci. , vol.8 , Issue.3-4 , pp. 299-313
    • Sharkey, A.J.C.1
  • 38
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24(2):123-140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 40
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: an empirical study
    • Opitz D., Maclin R. Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 1999, 11:169-198.
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 41
    • 85008014942 scopus 로고    scopus 로고
    • Evolving artificial neural network ensembles
    • Yao X., Islam M.M. Evolving artificial neural network ensembles. IEEE Comput. Intell. Mag. 2008, 3(1):31-42.
    • (2008) IEEE Comput. Intell. Mag. , vol.3 , Issue.1 , pp. 31-42
    • Yao, X.1    Islam, M.M.2
  • 42
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.-H., Wu J., Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 2002, 137(1-2):239-253.
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 239-253
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 43
    • 84885377748 scopus 로고    scopus 로고
    • ModEnPBT: a modified backtracking ensemble pruning algorithm
    • Dai Q., Liu Z. ModEnPBT: a modified backtracking ensemble pruning algorithm. Appl. Soft Comput. 2013, 13:4292-4302.
    • (2013) Appl. Soft Comput. , vol.13 , pp. 4292-4302
    • Dai, Q.1    Liu, Z.2
  • 44
    • 84884210298 scopus 로고    scopus 로고
    • A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot
    • Dai Q. A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot. Neurocomputing 2013, 122:258-265.
    • (2013) Neurocomputing , vol.122 , pp. 258-265
    • Dai, Q.1
  • 45
    • 84885838906 scopus 로고    scopus 로고
    • LibD3C: ensemble classifiers with a clustering and dynamic selection strategy
    • Lin C., Chen W., Qiu C., Wu Y., Krishnan S., Zou Q. LibD3C: ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing 2014, 123:424-435.
    • (2014) Neurocomputing , vol.123 , pp. 424-435
    • Lin, C.1    Chen, W.2    Qiu, C.3    Wu, Y.4    Krishnan, S.5    Zou, Q.6
  • 47
    • 54449087782 scopus 로고    scopus 로고
    • Clustering and co-evolution to construct neural network ensembles: an experimental study
    • Minku F.L., Ludermir T.B. Clustering and co-evolution to construct neural network ensembles: an experimental study. Neural Netw. 2008, 21:1363-1379.
    • (2008) Neural Netw. , vol.21 , pp. 1363-1379
    • Minku, F.L.1    Ludermir, T.B.2
  • 48
    • 40649122254 scopus 로고    scopus 로고
    • Evolutionary ensemble of diverse artificial neural networks using speciation
    • Kim K.J., Cho S.B. Evolutionary ensemble of diverse artificial neural networks using speciation. Neurocomputing 2008, 71:1604-1618.
    • (2008) Neurocomputing , vol.71 , pp. 1604-1618
    • Kim, K.J.1    Cho, S.B.2
  • 49
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: a survey and categorisation
    • Brown G., Wyatt J., Harris R., Yao X. Diversity creation methods: a survey and categorisation. J. Inf. Fusion 2005, 6:5-20.
    • (2005) J. Inf. Fusion , vol.6 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 50
    • 84896778790 scopus 로고    scopus 로고
    • Exploring the diversity in cluster ensemble generation: random sampling and random projection
    • Yang F., Li X., Li Q., Li T. Exploring the diversity in cluster ensemble generation: random sampling and random projection. Expert Syst. Appl. 2014, 41(10):4844-4866.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.10 , pp. 4844-4866
    • Yang, F.1    Li, X.2    Li, Q.3    Li, T.4
  • 51
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu Y., Yao X. Ensemble learning via negative correlation. Neural Netw. 1999, 12:1399-1404.
    • (1999) Neural Netw. , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 52
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • Liu Y., Yao X., Higuchi T. Evolutionary ensembles with negative correlation learning. IEEE Trans. Evol. Comput. 2000, 4(4):380-387.
    • (2000) IEEE Trans. Evol. Comput. , vol.4 , Issue.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 53
    • 28244489252 scopus 로고    scopus 로고
    • Fast neural network ensemble learning via negative-correlation data correction
    • Chan Z.S.H., Kasabov N. Fast neural network ensemble learning via negative-correlation data correction. IEEE Trans. Neural Netw. 2005, 16(6):1707-1710.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.6 , pp. 1707-1710
    • Chan, Z.S.H.1    Kasabov, N.2
  • 54
    • 17444369339 scopus 로고    scopus 로고
    • A preliminary study on negative correlation learning via correlation-corrected data (NCCD)
    • Chan Z.S.H., Kasabov N. A preliminary study on negative correlation learning via correlation-corrected data (NCCD). Neural Process. Lett. 2005, 21(3):207-214.
    • (2005) Neural Process. Lett. , vol.21 , Issue.3 , pp. 207-214
    • Chan, Z.S.H.1    Kasabov, N.2
  • 56
    • 78149249078 scopus 로고    scopus 로고
    • Multiobjective neural network ensembles based on regularized negative correlation learning
    • Chen H., Yao X. Multiobjective neural network ensembles based on regularized negative correlation learning. IEEE Trans. Knowl. Data Eng. 2010, 22(12):1738-1751.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.12 , pp. 1738-1751
    • Chen, H.1    Yao, X.2
  • 59
    • 0033280266 scopus 로고    scopus 로고
    • Simultaneous training of negatively correlated neural networks in an ensemble
    • Liu Y., Yao X. Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Trans. Syst., Man, Cybern., Part B: Cybern. 1999, 29(6):716-725.
    • (1999) IEEE Trans. Syst., Man, Cybern., Part B: Cybern. , vol.29 , Issue.6 , pp. 716-725
    • Liu, Y.1    Yao, X.2
  • 64
    • 0035247566 scopus 로고    scopus 로고
    • An orthogonal genetic algorithm with quantization for global numerical optimization
    • Leung Y.-W., Wang Y. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. Evol. Comput. 2001, 5(1):41-53.
    • (2001) IEEE Trans. Evol. Comput. , vol.5 , Issue.1 , pp. 41-53
    • Leung, Y.-W.1    Wang, Y.2
  • 65
    • 39549123727 scopus 로고    scopus 로고
    • UCI Repository of Machine Learning Database, Department of Information and Computer Science
    • Available at: .
    • C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Database, Department of Information and Computer Science, University of California, Irvine, Irvine, CA, 1998. Available at: http://www.ics.uci.edu/~mlearn.
    • (1998) University of California, Irvine, Irvine, CA
    • Blake, C.L.1    Merz, C.J.2
  • 66
    • 0029185114 scopus 로고
    • Use of a quasi-Newton method in a feedforward neural-network construction algorithm
    • Setiono R., Hui L.C.K. Use of a quasi-Newton method in a feedforward neural-network construction algorithm. IEEE Trans. Neural Netw. 1995, 6(1):273-277.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.1 , pp. 273-277
    • Setiono, R.1    Hui, L.C.K.2
  • 68
    • 0029157083 scopus 로고
    • Review: prediction of protein structural classes
    • Chou K.C., Zhang C.T. Review: prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol. 1995, 30:275-349.
    • (1995) Crit. Rev. Biochem. Mol. Biol. , vol.30 , pp. 275-349
    • Chou, K.C.1    Zhang, C.T.2
  • 69
    • 39449105071 scopus 로고    scopus 로고
    • Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms
    • Chou K.C., Shen H.B. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc. 2008, 3:153-162.
    • (2008) Nat. Protoc. , vol.3 , pp. 153-162
    • Chou, K.C.1    Shen, H.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.