메뉴 건너뛰기




Volumn , Issue , 2008, Pages 11-16

A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHLORINE COMPOUNDS; CLASSIFIERS; DIESEL ENGINES; FUZZY LOGIC; FUZZY NEURAL NETWORKS; FUZZY RULES; FUZZY SETS; FUZZY SYSTEMS; GENETIC ALGORITHMS; HEURISTIC METHODS; HEURISTIC PROGRAMMING; LAWS AND LEGISLATION; LEARNING SYSTEMS; MACHINE DESIGN;

EID: 50149111947     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/GEFS.2008.4484560     Document Type: Conference Paper
Times cited : (11)

References (29)
  • 3
    • 0035426683 scopus 로고    scopus 로고
    • Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
    • J. Casillas, O. Cordón, M.J. del Jesus, F. Herrera, Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems, Information Sciences, vol. 136:1-4, 2001, pp. 135-157.
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 135-157
    • Casillas, J.1    Cordón, O.2    del Jesus, M.J.3    Herrera, F.4
  • 5
    • 33751160152 scopus 로고    scopus 로고
    • Special Issue on Genetic Fuzzy Systems and the Interpretability-accuracy Trade-off
    • J. Casillas, F. Herrera, R. Pérez, M.J. del Jesus, P. Villar Eds, January
    • J. Casillas, F. Herrera, R. Pérez, M.J. del Jesus, P. Villar (Eds.), Special Issue on Genetic Fuzzy Systems and the Interpretability-accuracy Trade-off, International Journal of Approximate Reasoning, vol. 44:1, January 2007.
    • (2007) International Journal of Approximate Reasoning , vol.44 , pp. 1
  • 8
    • 0025448521 scopus 로고
    • The Strength of Weak Learnability
    • R. Schapire, The Strength of Weak Learnability, Machine Learning, vol. 5:2, 1990, pp. 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • L. Breiman, Bagging Predictors, Machine Learning, vol. 24:2, 1996, pp. 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 10
  • 12
    • 24644441048 scopus 로고    scopus 로고
    • Z.H. Zhou, Ensembling local learners through multimodal perturbation. IEEE Transactions of Systems, Man, and Cybernetics, Part B: Cybernetics, 35:4, 2005, pp. 725-735.
    • Z.H. Zhou, Ensembling local learners through multimodal perturbation. IEEE Transactions of Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 35:4, 2005, pp. 725-735.
  • 14
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule-based systems for pattern classification problems
    • H. Ishibuchi, T. Nakashima, and T. Morisawa, Voting in fuzzy rule-based systems for pattern classification problems, Fuzzy Sets and Systems, vol. 103:2, 1999, pp. 223-238.
    • (1999) Fuzzy Sets and Systems , vol.103 , Issue.2 , pp. 223-238
    • Ishibuchi, H.1    Nakashima, T.2    Morisawa, T.3
  • 15
    • 33645514604 scopus 로고    scopus 로고
    • Fuzzy Adaptive Logic Networks as Hybrid Models of Quantitative Software Engineering
    • W. Pedrycz, A. Breuer, N.J. Pizzi, Fuzzy Adaptive Logic Networks as Hybrid Models of Quantitative Software Engineering, Intelligent Automation and Soft Computing, vol. 12:2, 2006, pp 189-209.
    • (2006) Intelligent Automation and Soft Computing , vol.12 , Issue.2 , pp. 189-209
    • Pedrycz, W.1    Breuer, A.2    Pizzi, N.J.3
  • 16
    • 33749521633 scopus 로고    scopus 로고
    • Boosting of granular models
    • W. Pedrycz and K.C. Kwak, Boosting of granular models, Fuzzy Sets and Systems, vol. 157:22, 2006, pp. 2934-2953.
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.22 , pp. 2934-2953
    • Pedrycz, W.1    Kwak, K.C.2
  • 18
    • 33646036159 scopus 로고    scopus 로고
    • Induction of descriptive fuzzy classifiers with the Logitboost algorithm
    • J. Otero, L. Sanchez, Induction of descriptive fuzzy classifiers with the Logitboost algorithm. Soft Computing, vol. 10:9, 2006, pp. 825-835.
    • (2006) Soft Computing , vol.10 , Issue.9 , pp. 825-835
    • Otero, J.1    Sanchez, L.2
  • 19
    • 33746365419 scopus 로고    scopus 로고
    • Lymphoma prognostication from expression profiling using a combination method of boosting and projective adaptive resonance theory
    • H. Takahashi and H. Honda, Lymphoma prognostication from expression profiling using a combination method of boosting and projective adaptive resonance theory, Journal of Chemical Engineering of Japan, vol. 39:7, 2006, pp. 767-771.
    • (2006) Journal of Chemical Engineering of Japan , vol.39 , Issue.7 , pp. 767-771
    • Takahashi, H.1    Honda, H.2
  • 21
    • 50249175159 scopus 로고    scopus 로고
    • Niching Genetic Feature Selection Algorithms Applied to the Design of Fuzzy Rule Based Classification Systems
    • London, UK
    • J.J. Aguilera, M. Chica, M.J. del Jesus, F. Herrera, Niching Genetic Feature Selection Algorithms Applied to the Design of Fuzzy Rule Based Classification Systems, in 2007 IEEE Intl. Conference on Fuzzy Systems (FUZZ-IEEE 2007), London, UK, 2007, pp. 1794-1799.
    • (2007) 2007 IEEE Intl. Conference on Fuzzy Systems (FUZZ-IEEE , pp. 1794-1799
    • Aguilera, J.J.1    Chica, M.2    del Jesus, M.J.3    Herrera, F.4
  • 24
    • 50149088662 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers
    • H. Ishibuchi and Y. Nojima, Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers, International Journal of Hybrid Intelligent Systems, vol. 3:3, 2006, pp. 129-145.
    • (2006) International Journal of Hybrid Intelligent Systems , vol.3 , Issue.3 , pp. 129-145
    • Ishibuchi, H.1    Nojima, Y.2
  • 26
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • D. Ruta and B. Gabrys, Classifier selection for majority voting, Information Fusion, vol. 6:1, 2005, pp. 63-81.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 28
    • 0000259511 scopus 로고    scopus 로고
    • Approximate Statistical Test for Comparing Supervised Classification Learning Algorithms
    • T.G. Dietterich, Approximate Statistical Test for Comparing Supervised Classification Learning Algorithms, Neural Computation, vol. 10:7, 1998, pp. 1895-1923.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 29
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti, Using mutual information for selecting features in supervised neural net learning, IEEE Transactions on Neural Networks, vol. 5:4, 1994, pp. 537-550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.