메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages

Learning the kernel matrix with semidefinite programming

Author keywords

Convex optimization; Kernel methods; Learning kernels; Model selection; Semidefinite programming; Support vector machines; Transduction

Indexed keywords

DATA REDUCTION; EIGENVALUES AND EIGENFUNCTIONS; GEOMETRY; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATHEMATICAL PROGRAMMING; OPTIMIZATION; PARAMETER ESTIMATION; PROBLEM SOLVING; ALGORITHMS; ARTIFICIAL INTELLIGENCE; CONVEX OPTIMIZATION; SUPPORT VECTOR MACHINES;

EID: 8844278523     PISSN: 15337928     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1988)

References (31)
  • 1
    • 0001614864 scopus 로고    scopus 로고
    • The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm
    • Frenk, H., Roos, C., Terlaky, T., and Zhang, S., editors. Kluwer Academic Publishers
    • Andersen, E. D. and Andersen, A. D. (2000). The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In Frenk, H., Roos, C., Terlaky, T., and Zhang, S., editors, High Performance Optimization, pages 197-232. Kluwer Academic Publishers.
    • (2000) High Performance Optimization , pp. 197-232
    • Andersen, E.D.1    Andersen, A.D.2
  • 2
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2):525-536.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 3
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • Bartlett, P. L. and Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 5
    • 0004055894 scopus 로고    scopus 로고
    • Convex optimization
    • Stanford University
    • Boyd, S. and Vandenberghe, L. (2003). Convex optimization. Course notes for EE364, Stanford University. Available at http://www.stanford.edu/class/ ee364.
    • (2003) Course Notes for EE364
    • Boyd, S.1    Vandenberghe, L.2
  • 6
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman, L. (1998). Arcing classifiers. Annals of Statistics, 26(3):801-849.
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 11
    • 23844507742 scopus 로고    scopus 로고
    • Convex tuning of the soft margin parameter
    • University of California, Berkeley
    • De Bie, T., Lanckriet, G., and Cristianini, N. (2003). Convex tuning of the soft margin parameter. Technical Report CSD-03-1289, University of California, Berkeley.
    • (2003) Technical Report , vol.CSD-03-1289
    • De Bie, T.1    Lanckriet, G.2    Cristianini, N.3
  • 12
    • 0037701046 scopus 로고    scopus 로고
    • An integrated probabilistic model for functional prediction of proteins
    • Deng, M., Chen, T., and Sun, F. (2003). An integrated probabilistic model for functional prediction of proteins. In RECOMB, pages 95-103.
    • (2003) RECOMB , pp. 95-103
    • Deng, M.1    Chen, T.2    Sun, F.3
  • 13
    • 23844537417 scopus 로고    scopus 로고
    • Sparse bayesian classifiers for text categorization
    • Department of Statistics, Rutgers University
    • Eyheramendy, S., Genkin, A., Ju, W., Lewis, D. D., and Madigan, D. (2003). Sparse bayesian classifiers for text categorization. Technical report, Department of Statistics, Rutgers University.
    • (2003) Technical Report
    • Eyheramendy, S.1    Genkin, A.2    Ju, W.3    Lewis, D.D.4    Madigan, D.5
  • 14
    • 23844494695 scopus 로고    scopus 로고
    • Support vector machines for text categorization based on latent semantic indexing
    • Electrical and Computer Engineering Department, The Johns Hopkins University
    • Huang, Y. (2003). Support vector machines for text categorization based on latent semantic indexing. Technical report, Electrical and Computer Engineering Department, The Johns Hopkins University.
    • (2003) Technical Report
    • Huang, Y.1
  • 15
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • Koltchinskii, V. and Panchenko, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30.
    • (2002) Annals of Statistics , vol.30
    • Koltchinskii, V.1    Panchenko, D.2
  • 16
    • 0041775676 scopus 로고    scopus 로고
    • Diffusion kernels on graphs and other discrete input spaces
    • Sammut, C. and Hoffmann, A., editors, Morgan Kaufmann
    • Kondor, R. I. and Lafferty, J. (2002). Diffusion kernels on graphs and other discrete input spaces. In Sammut, C. and Hoffmann, A., editors, Proceedings of the International Conference on Machine Learning. Morgan Kaufmann.
    • (2002) Proceedings of the International Conference on Machine Learning
    • Kondor, R.I.1    Lafferty, J.2
  • 19
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • Cambridge University Press
    • McDiarmid, C. (1989). On the method of bounded differences. In Surveys in Combinatorics 1989, pages 148-188. Cambridge University Press.
    • (1989) Surveys in Combinatorics 1989 , pp. 148-188
    • McDiarmid, C.1
  • 21
    • 0001171722 scopus 로고    scopus 로고
    • Using sparseness and analytic QP to speed training of support vector machines
    • M. S. Kearns, S. A. Solla, D. A. C., editor. MIT Press
    • Platt, J. (1999). Using sparseness and analytic QP to speed training of support vector machines. In M. S. Kearns, S. A. Solla, D. A. C., editor, Advances in Neural Information Processing Systems 11. MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Platt, J.1
  • 24
    • 0041494205 scopus 로고    scopus 로고
    • PAC-Bayesian generalization error bounds for Gaussian process classification
    • University of Edinburgh, Division of Informatics
    • Seeger, M. (2002). PAC-Bayesian generalization error bounds for Gaussian process classification. Technical Report EDI-INF-RR-0094, University of Edinburgh, Division of Informatics.
    • (2002) Technical Report , vol.EDI-INF-RR-0094
    • Seeger, M.1
  • 25
    • 23844543999 scopus 로고    scopus 로고
    • Soft margin and margin distribution
    • Smola, A., Schölkopf, B., Bartlett, P., and Schuurmans, D., editors, MIT Press
    • Shawe-Taylor, J. and Cristianini, N. (1999). Soft margin and margin distribution. In Smola, A., Schölkopf, B., Bartlett, P., and Schuurmans, D., editors, Advances in Large Margin Classifiers. MIT Press.
    • (1999) Advances in Large Margin Classifiers
    • Shawe-Taylor, J.1    Cristianini, N.2
  • 27
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular subsequences. Journal of Molecular Biology, 147(1):195-197.
    • (1981) Journal of Molecular Biology , vol.147 , Issue.1 , pp. 195-197
    • Smith, T.F.1    Waterman, M.S.2
  • 28
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • Special issue on Interior Point Methods CD supplement with software
    • Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11-12:625-653. Special issue on Interior Point Methods (CD supplement with software).
    • (1999) Optimization Methods and Software , vol.11-12 , pp. 625-653
    • Sturm, J.F.1
  • 29
  • 30
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • Vandenberghe, L. and Boyd, S. (1996). Semidefinite programming. SIAM Review, 38(1):49-95.
    • (1996) SIAM Review , vol.38 , Issue.1 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.