메뉴 건너뛰기




Volumn 8, Issue 2, 2015, Pages 845-858

Ensemble multiple kernel active learning for classification of multisource remote sensing data

Author keywords

Active learning (AL); ensemble classification; multiple kernel learning; multisource data

Indexed keywords

ALUMINUM; ARTIFICIAL INTELLIGENCE; OPTICAL RADAR; REMOTE SENSING; SPECTROSCOPY;

EID: 85027938691     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2359136     Document Type: Article
Times cited : (85)

References (40)
  • 1
    • 84870522605 scopus 로고    scopus 로고
    • Madison, WI, USA: University of Wisconsin
    • B. Settles, "Active learning literature survey." Madison, WI, USA: University of Wisconsin, 2010, vol. 52, pp. 55-66
    • (2010) Active Learning Literature Survey , vol.52 , pp. 55-66
    • Settles, B.1
  • 2
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011
    • (2011) IEEE J. Sel. Topics Signal Process , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 3
    • 84874518998 scopus 로고    scopus 로고
    • Active learning: Any value for classification of remotely sensed data?
    • Mar
    • M. Crawford, D. Tuia, and H. Yang, "Active learning: Any value for classification of remotely sensed data?" in Proc. IEEE, vol. 101, no. 3, pp. 593-608, Mar. 2013
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 593-608
    • Crawford, M.1    Tuia, D.2    Yang, H.3
  • 4
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines," in Proc. 7th Int. Conf. Mach. Learn. (ICML), 2000, pp. 839-846
    • (2000) Proc. 7th Int. Conf. Mach. Learn. (ICML , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 5
    • 2942558578 scopus 로고    scopus 로고
    • Segmentation of multispectral remote sensing images using active support vector machines
    • Jul
    • P. Mitra, B. Uma Shankar, and S. K. Pal, "Segmentation of multispectral remote sensing images using active support vector machines," Pattern Recog. Lett., vol. 25, no. 9, pp. 1067-1074, Jul. 2004
    • (2004) Pattern Recog. Lett , vol.25 , Issue.9 , pp. 1067-1074
    • Mitra, P.1    Uma Shankar, B.2    Pal, S.K.3
  • 6
    • 79955522957 scopus 로고    scopus 로고
    • Support vector machine active learning through significance space construction
    • May
    • E. Pasolli, F. Melgani, and Y. Bazi, "Support vector machine active learning through significance space construction," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 431-435, May 2011
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.3 , pp. 431-435
    • Pasolli, E.1    Melgani, F.2    Bazi, Y.3
  • 9
    • 84860318734 scopus 로고    scopus 로고
    • View generation for multiview maximum disagreement based active learning for hyperspectral image classification
    • May
    • W. Di and M. M. Crawford, "View generation for multiview maximum disagreement based active learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1942-1954, May 2012
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.5 , pp. 1942-1954
    • Di, W.1    Crawford, M.M.2
  • 10
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • Apr
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 11
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, Nov. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 12
    • 10044219654 scopus 로고    scopus 로고
    • Active learning to recognize multiple types of plankton
    • T. Luo et al., "Active learning to recognize multiple types of plankton," in Proc. IEEE Int. Conf. Pattern Recog. (ICPR), vol. 3, 2004, pp. 478-481
    • (2004) Proc. IEEE Int. Conf. Pattern Recog. (ICPR , vol.3 , pp. 478-481
    • Luo, T.1
  • 13
    • 84892437309 scopus 로고    scopus 로고
    • SVM active learning approach for image classification using spatial information
    • Apr
    • E. Pasolli, F. Melgani, D. Tuia, F. Pacifici, and W. J. Emery, "SVM active learning approach for image classification using spatial information," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2217-2233, Apr. 2014
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.4 , pp. 2217-2233
    • Pasolli, E.1    Melgani, F.2    Tuia, D.3    Pacifici, F.4    Emery, W.J.5
  • 14
    • 84898598578 scopus 로고    scopus 로고
    • Active learning in the spatial domain for remote sensing image classification
    • May
    • A. Stumpf, N. Lachiche, J.-P. Malet, N. Kerle, and A. Puissant, "Active learning in the spatial domain for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2492-2507, May 2014
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.5 , pp. 2492-2507
    • Stumpf, A.1    Lachiche, N.2    Malet, J.-P.3    Kerle, N.4    Puissant, A.5
  • 15
    • 84872937450 scopus 로고    scopus 로고
    • Learning user's confidence for active learning
    • Feb
    • D. Tuia and J. Munoz-Mari, "Learning user's confidence for active learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 872-880, Feb. 2013
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.2 , pp. 872-880
    • Tuia, D.1    Munoz-Mari, J.2
  • 16
    • 84878129327 scopus 로고    scopus 로고
    • Optical image classification: A ground-Truth design framework
    • Jun
    • E. Pasolli, F. Melgani, N. Alajlan, and N. Conci, "Optical image classification: A ground-Truth design framework," IEEE Trans. Geoscie. Remote Sens., vol. 51, no. 6, pp. 3580-3597, Jun. 2013
    • (2013) IEEE Trans. Geoscie. Remote Sens , vol.51 , Issue.6 , pp. 3580-3597
    • Pasolli, E.1    Melgani, F.2    Alajlan, N.3    Conci, N.4
  • 17
    • 77958571214 scopus 로고    scopus 로고
    • Spatially cost-sensitive active learning
    • A. Liu, G. Jun, and J. Ghosh, "Spatially cost-sensitive active learning." in SDM. SIAM, 2009, pp. 814-825
    • (2009) Sdm. Siam , pp. 814-825
    • Liu, A.1    Jun, G.2    Ghosh, J.3
  • 22
    • 77957001686 scopus 로고    scopus 로고
    • Learning relevant image features with multiple-kernel classification
    • Oct
    • D. Tuia, G. Camps-Valls, G. Matasci, and M. Kanevski, "Learning relevant image features with multiple-kernel classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3780-3791, Oct. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.10 , pp. 3780-3791
    • Tuia, D.1    Camps-Valls, G.2    Matasci, G.3    Kanevski, M.4
  • 23
    • 84862993024 scopus 로고    scopus 로고
    • Representative multiple kernel learning for classification in hyperspectral imagery
    • Jul
    • Y. Gu et al., "Representative multiple kernel learning for classification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, pp. 2852-2865, Jul. 2012
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.7 , pp. 2852-2865
    • Gu, Y.1
  • 24
    • 84861728903 scopus 로고    scopus 로고
    • Multisource classification of color and hyperspectral images using color attribute profiles and composite decision fusion
    • Apr
    • G. Thoonen, Z. Mahmood, S. Peeters, and P. Scheunders, "Multisource classification of color and hyperspectral images using color attribute profiles and composite decision fusion," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 510-521, Apr. 2012
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.5 , Issue.2 , pp. 510-521
    • Thoonen, G.1    Mahmood, Z.2    Peeters, S.3    Scheunders, P.4
  • 25
    • 57249084590 scopus 로고    scopus 로고
    • Simplemkl
    • Nov
    • A. Rakotomamonjy et al., "Simplemkl," J. Mach. Learn. Res., vol. 9, pp. 2491-2521, Nov. 2008
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 2491-2521
    • Rakotomamonjy, A.1
  • 26
    • 53349127642 scopus 로고    scopus 로고
    • Decision fusion with confidence-based weight assignment for hyperspectral target recognition
    • May
    • S. Prasad and L. M. Bruce, "Decision fusion with confidence-based weight assignment for hyperspectral target recognition," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1448-1456, May 2008
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.5 , pp. 1448-1456
    • Prasad, S.1    Bruce, L.M.2
  • 28
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 29
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Mar
    • J. Platt et al., "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," Adv. Large Margin Classifiers, vol. 10, no. 3, pp. 61-74, Mar. 1999
    • (1999) Adv. Large Margin Classifiers , vol.10 , Issue.3 , pp. 61-74
    • Platt, J.1
  • 30
    • 34548160247 scopus 로고    scopus 로고
    • A note on platts probabilistic outputs for support vector machines
    • Oct
    • H.-T. Lin, C.-J. Lin, and R. C. Weng, "A note on platts probabilistic outputs for support vector machines," Mach. Learn., vol. 68, no. 3, pp. 267-276, Oct. 2007
    • (2007) Mach. Learn , vol.68 , Issue.3 , pp. 267-276
    • Lin, H.-T.1    Lin, C.-J.2    Weng, R.C.3
  • 31
  • 32
    • 78650907095 scopus 로고    scopus 로고
    • Multi-view adaptive disagreement based active learning for hyperspectral image classification
    • W. Di and M. M. Crawford, "Multi-view adaptive disagreement based active learning for hyperspectral image classification," in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), 2010, pp. 1374-1377
    • (2010) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS , pp. 1374-1377
    • Di, W.1    Crawford, M.M.2
  • 33
    • 84894488857 scopus 로고    scopus 로고
    • A framework for land cover classification using discrete return lidar data: Adopting pseudo-waveform and hierarchical segmentation
    • Feb
    • J. Jung, E. Pasolli, S. Prasad, J. C. Tilton, and M. M. Crawford, "A framework for land cover classification using discrete return lidar data: Adopting pseudo-waveform and hierarchical segmentation," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 2, pp. 491-502, Feb. 2014
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.2 , pp. 491-502
    • Jung, J.1    Pasolli, E.2    Prasad, S.3    Tilton, J.C.4    Crawford, M.M.5
  • 34
    • 84858070455 scopus 로고    scopus 로고
    • Extraction of features from lidar waveform data for characterizing forest structure
    • May
    • J. Jung and M.M. Crawford, "Extraction of features from lidar waveform data for characterizing forest structure," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 492-496, May 2012
    • (2012) IEEE Geosci. Remote Sens. Lett , vol.9 , Issue.3 , pp. 492-496
    • Jung, J.1    Crawford, M.M.2
  • 35
    • 84869505872 scopus 로고    scopus 로고
    • Best merge region-growing segmentation with integrated nonadjacent region object aggregation
    • Nov
    • J. Tilton, Y. Tarabalka, P. Montesano, and E. Gofman, "Best merge region-growing segmentation with integrated nonadjacent region object aggregation," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4454-4467, Nov. 2012
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.11 , pp. 4454-4467
    • Tilton, J.1    Tarabalka, Y.2    Montesano, P.3    Gofman, E.4
  • 36
    • 77957007028 scopus 로고    scopus 로고
    • Morphological attribute profiles for the analysis of very high resolution images
    • Oct
    • M. Dalla Mura, J. Atli Benediktsson, L. Bruzzone, and B. Waske, "Morphological attribute profiles for the analysis of very high resolution images," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3747-3762, Oct. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.10 , pp. 3747-3762
    • Dalla Mura, M.1    Atli Benediktsson, J.2    Bruzzone, L.3    Waske, B.4
  • 37
    • 79955521136 scopus 로고    scopus 로고
    • Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis
    • May
    • M. Dalla Mura, A. Villa, J. Benediktsson, J. Chanussot, and L. Bruzzone, "Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 542-546, May 2011
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.3 , pp. 542-546
    • Dalla Mura, M.1    Villa, A.2    Benediktsson, J.3    Chanussot, J.4    Bruzzone, L.5
  • 38
    • 84923235691 scopus 로고    scopus 로고
    • Online Available
    • UH Dataset. [Online] Available: http://hyperspectral.ee.uh.edu/?page-id =459
    • UH Dataset
  • 40
    • 85028153687 scopus 로고    scopus 로고
    • Online Available
    • SimpleMKL Toolbox. [Online] Available: http://asi.insa-rouen.fr/.enseignants/arakoto/code/mklindex.html
    • Simple MKL Toolbox


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.