메뉴 건너뛰기




Volumn , Issue , 2012, Pages 867-871

Application of hybrid RBF neural network ensemble model based onwavelet support vector machine regression in rainfall time series forecasting

Author keywords

Ensemble; Radial Basis Function Neural Network; Rainfall forecasting; Wavelet Support Vector Machine Regression

Indexed keywords

DATA SETS; ENSEMBLE; ENSEMBLE MODELS; ENSEMBLE TECHNIQUES; GUANGXI; NEURAL NETWORK ENSEMBLES; PARTIAL LEAST SQUARE (PLS); RADIAL BASIS FUNCTION NEURAL NETWORKS; RAINFALL FORECASTING; RAINFALL PREDICTION; RBF NEURAL NETWORK; SUPPORT VECTOR MACHINE REGRESSIONS; TIME SERIES FORECASTING; TRAINING SETS; WAVELET SUPPORT VECTOR MACHINES;

EID: 84867907421     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CSO.2012.195     Document Type: Conference Paper
Times cited : (11)

References (17)
  • 1
    • 84863377968 scopus 로고    scopus 로고
    • An effective hybrid semi-parametric regression strategy for rainfall forecasting combining linear and nonlinear regression
    • Jiansheng Wu, "An effective hybrid semi-parametric regression strategy for rainfall forecasting combining linear and nonlinear regression," International Journal of Applied Evolutionary Computation, vol. 2, no. 4, pp. 50-65, 2011.
    • (2011) International Journal of Applied Evolutionary Computation , vol.2 , Issue.4 , pp. 50-65
    • Wu, J.1
  • 2
    • 77956447069 scopus 로고    scopus 로고
    • Study on the meteorological prediction model using the learning algorithm of neural network based on pso algorithms
    • Jiansheng Wu, Long Jin, "Study on the meteorological prediction model using the learning algorithm of neural network based on pso algorithms," Journal of Tropical Meteorology, vol. 16, No. 1, pp. 83-88, 2009.
    • (2009) Journal of Tropical Meteorology , vol.16 , Issue.1 , pp. 83-88
    • Wu, J.1    Jin, L.2
  • 3
    • 43049181654 scopus 로고    scopus 로고
    • Rainfall forecasting by technological machine learning models
    • W. C. Hong, "Rainfall forecasting by technological machine learning models," Appliaion Matchemaics and Computation, vol. 200, pp. 41-57, 2008.
    • (2008) Appliaion Matchemaics and Computation , vol.200 , pp. 41-57
    • Hong, W.C.1
  • 4
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • G. F. Lin, L. H. Chen, "A non-linear rainfall-runoff model using radial basis function network," Journal of Hydrology, vol. 289, No. 4, pp. 1-8, 2004.
    • (2004) Journal of Hydrology , vol.289 , Issue.4 , pp. 1-8
    • Lin, G.F.1    Chen, L.H.2
  • 5
    • 70449378365 scopus 로고    scopus 로고
    • A novel artificial neural network ensemble model based on K-nn nonparametric estimation of regression function and its application for rainfall forecasting
    • eds. Lean Yu, K. K. Lai and S. K. Mishra, IEEE Computer Society Press
    • Jiansheng Wu, "A novel artificial neural network ensemble model based on K-nn nonparametric estimation of regression function and its application for rainfall forecasting," Proeedings of the 2nd Internatioal Joint Conference on Computational Sciences and Optimization, eds. Lean Yu, K. K. Lai and S. K. Mishra, IEEE Computer Society Press, vol. 2, pp. 44-48, 2009.
    • (2009) Proeedings of the 2nd Internatioal Joint Conference on Computational Sciences and Optimization , vol.2 , pp. 44-48
    • Wu, J.1
  • 6
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • V. Vapnik, Ensembling neural networks: Many could be better than all. Artificial Intelligence, vol. 137, pp. 239-263, 2002.
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Vapnik, V.1
  • 7
    • 0030367578 scopus 로고    scopus 로고
    • Ensemble learning using decorrelated neural networks
    • B. E. Rosen, "Ensemble learning using decorrelated neural networks," Connection Science, vol. 8, pp. 373-384, 1996.
    • (1996) Connection Science , vol.8 , pp. 373-384
    • Rosen, B.E.1
  • 8
    • 78149406829 scopus 로고    scopus 로고
    • Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation
    • K. Jung-Woo, A. Yakov, " Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation," Journal of Hydrology, vol. 394, 305-314, 2010.
    • (2010) Journal of Hydrology , vol.394 , pp. 305-314
    • Jung-Woo, K.1    Yakov, A.2
  • 9
    • 77953513773 scopus 로고    scopus 로고
    • A hybrid support vector regression approach for rainfall forecasting using particle swarm optimization and projection pursuit technology
    • Jiansheng Wu, Mingzhe Liu, Long Jin, "A hybrid support vector regression approach for rainfall forecasting using particle swarm optimization and projection pursuit technology," International Journal of Computational Intelligence and Applications, vol. 9, no. 2, pp. 87-104, 2010.
    • (2010) International Journal of Computational Intelligence and Applications , vol.9 , Issue.2 , pp. 87-104
    • Wu, J.1    Liu, M.2    Jin, L.3
  • 10
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and adaptive networks," Complex Systems, vol. 26, pp. 321-355, 1988.
    • (1988) Complex Systems , vol.26 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 11
    • 0035095026 scopus 로고    scopus 로고
    • Application of minimal radial basis function neural network to distance protection
    • P. K. Dash, A. K. Pradhan and G. Panda, "Application of minimal radial basis function neural network to distance protection," IEEE Transactions on Power Delivery, vol. 16, No. 1, pp. 68-74, 2001.
    • (2001) IEEE Transactions on Power Delivery , vol.16 , Issue.1 , pp. 68-74
    • Dash, P.K.1    Pradhan, A.K.2    Panda, G.3
  • 12
    • 0037400485 scopus 로고    scopus 로고
    • Application of radial basis function neural network for differential relaying of a power transformer
    • Z. Moravej, D. N. Vishwakarma and S. P. Singh, "Application of radial basis function neural network for differential relaying of a power transformer," Computers and Electrical Engineering, vol. 29, pp. 421-434, 2003.
    • (2003) Computers and Electrical Engineering , vol.29 , pp. 421-434
    • Moravej, Z.1    Vishwakarma, D.N.2    Singh, S.P.3
  • 13
    • 0001681052 scopus 로고
    • The Collinearity problem in linear regression: The partial least squares approach to generalized inverses
    • S. Wold, A. Ruhe, H. Wold, and W. J. III Dunn, "The Collinearity problem in linear regression: the partial least squares approach to generalized inverses," Journal on Scientific and Statistical Computing, vol. 5, no. 3, pp. 735-43, 1984.
    • (1984) Journal on Scientific and Statistical Computing , vol.5 , Issue.3 , pp. 735-743
    • Wold, S.1    Ruhe, A.2    Wold, H.3    Dunn III, W.J.4
  • 14
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire, "The strength of weak learnability," Machine Learning, vol. 5, pp. 197-227,1990.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 16
    • 13544270843 scopus 로고    scopus 로고
    • A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates
    • L. Yu, S. Y. Wang, and K. K. Lai, "A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates," Computers & Operations Research, vol. 32, pp. 2523-2541, 2005.
    • (2005) Computers & Operations Research , vol.32 , pp. 2523-2541
    • Yu, L.1    Wang, S.Y.2    Lai, K.K.3
  • 17
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • G. Tesauro, D. Touretzky and T. Leen (Eds.), the MIT Press, Cambridge, MA
    • A. Krogh and J. Vedelsby, "Neural network ensembles, cross validation, and active learning," G. Tesauro, D. Touretzky and T. Leen (Eds.), Advances in Neural Information Processing Systems, vol. 7, pp. 231-238, the MIT Press, Cambridge, MA, 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.