메뉴 건너뛰기




Volumn 2, Issue , 2009, Pages 44-48

A novel artificial neural network ensemble model based on K-nearest neighbor nonparametric estimation of regression function and its application for rainfall forecasting

Author keywords

[No Author keywords available]

Indexed keywords

ANN ALGORITHM; ARTIFICIAL NEURAL NETWORK ENSEMBLES; BAGGING TECHNOLOGY; DATA SETS; EMPIRICAL RESULTS; ENSEMBLE MEMBERS; ENSEMBLE MODELS; FORECASTING ACCURACY; FORECASTING TOOLS; K-NEAREST NEIGHBORS; NEURAL NETWORK ENSEMBLES; NON-PARAMETRIC; NON-PARAMETRIC ESTIMATIONS; NON-PARAMETRIC REGRESSION; PARTIAL LEAST SQUARE REGRESSION; PREDICTION QUALITY; RAINFALL FORECASTING; REGRESSION FUNCTION; TRAINING SUBSETS;

EID: 70449378365     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CSO.2009.307     Document Type: Conference Paper
Times cited : (30)

References (19)
  • 1
    • 1642387025 scopus 로고    scopus 로고
    • A nonlinear rainfall-runoff model using radial function network
    • G.F.Lin, L.H.Chen. A nonlinear rainfall-runoff model using radial function network. Journal of Hydrology, 289:1-8, 2004.
    • (2004) Journal of Hydrology , vol.289 , pp. 1-8
    • Lin, G.F.1    Chen, L.H.2
  • 2
    • 0035104376 scopus 로고    scopus 로고
    • An Application of Artificial Neural Networks for Rainfall Forecasting
    • Kin. C. L, J. E. Ball and A. Sharma. An Application of Artificial Neural Networks for Rainfall Forecasting. Mathematical and Computer Modelling, 33: 683-693, 2001.
    • (2001) Mathematical and Computer Modelling , vol.33 , pp. 683-693
    • Kin, C.L.1    Ball, J.E.2    Sharma, A.3
  • 3
    • 43049181654 scopus 로고    scopus 로고
    • Rainfall forecasting by technological machine learning models
    • Wei-Chiang. Hong. Rainfall forecasting by technological machine learning models. Applied Mathematics and Computation, 200: 41-57, 2008.
    • (2008) Applied Mathematics and Computation , vol.200 , pp. 41-57
    • Wei-Chiang1    Hong2
  • 4
    • 70449358089 scopus 로고    scopus 로고
    • Forecast research and applying of bp neural network based on genetic algorithms
    • J. S.Wu. Forecast research and applying of bp neural network based on genetic algorithms. Mathematics in Practice and Theory, 65(24): 665-680, 2004.
    • (2004) Mathematics in Practice and Theory , vol.65 , Issue.24 , pp. 665-680
    • Wu, J.S.1
  • 5
    • 44949191403 scopus 로고    scopus 로고
    • Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial network
    • M. Nasseri, K. Asghari and M. J. Abedini. Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial network. Expert Systems with Applications, 35: 1415-1421, 2008.
    • (2008) Expert Systems with Applications , vol.35 , pp. 1415-1421
    • Nasseri, M.1    Asghari, K.2    Abedini, M.J.3
  • 6
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural network in hydrology, I: Preliminary concepts
    • Govindaraju. R. S. Artificial neural network in hydrology, I: Preliminary concepts. Journal of Hydrologic Engineering, 5(2): 115-123, 2000.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 115-123
    • Govindaraju, R.S.1
  • 7
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • 1-31
    • M.N. French, W.F. Krajewski, R.R. Cuykendall. Rainfall forecasting in space and time using a neural network. Journal of Hydrology, 137(1-):1-31, 1992.
    • (1992) Journal of Hydrology , vol.137 , Issue.1 -
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 8
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • K.C. Luk, J.E. Ball and A. Sharma. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology, 227(1-4): 56-65, 2000.
    • (2000) Journal of Hydrology , vol.227 , Issue.1-4 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 9
    • 0028397218 scopus 로고
    • Using recurrent neural network for adaptive communication channel equalization
    • G. Kechriotis, E.Zeras and E. S. Manolakos. Using recurrent neural network for adaptive communication channel equalization IEEE Transaction on Neural Networks, 5(2):267-278, 1994.
    • (1994) IEEE Transaction on Neural Networks , vol.5 , Issue.2 , pp. 267-278
    • Kechriotis, G.1    Zeras, E.2    Manolakos, E.S.3
  • 10
    • 0346044616 scopus 로고    scopus 로고
    • Study on Ann-based multi-step prediction model of short-term climatic variation
    • L.Jin, W. Ju and Q. Miao. Study on Ann-based multi-step prediction model of short-term climatic variation. Advances Atmosphere Sciences, 17(1):157-164,2000.
    • (2000) Advances Atmosphere Sciences , vol.17 , Issue.1 , pp. 157-164
    • Jin, L.1    Ju, W.2    Miao, Q.3
  • 11
    • 57649135658 scopus 로고    scopus 로고
    • Mingzhe Liu. A New Neural Network Ensemble Approach and its Application on Meteorological Prediction
    • Chengdou
    • Jiansheng. Wu, Mingzhe Liu. A New Neural Network Ensemble Approach and its Application on Meteorological Prediction. Proceedings of the International Conference on Sensing, Computing and Automation, Chengdou, 1: 2882-2885, 2006.
    • (2006) Proceedings of the International Conference on Sensing, Computing and Automation , vol.1 , pp. 2882-2885
    • Jiansheng1    Wu2
  • 12
    • 33745929617 scopus 로고    scopus 로고
    • Long. Jin and Mingzhe Liu. Modeling Meteorological Prediction using Particle Swarm Optimization and Neural Network Ensemble
    • the Springer Press
    • Jiansheng.Wu, Long. Jin and Mingzhe Liu. Modeling Meteorological Prediction using Particle Swarm Optimization and Neural Network Ensemble. Lecture Notes in Computer Science, the Springer Press, 3973(3): 1202-1209, 2006.
    • (2006) Lecture Notes in Computer Science , vol.3973 , Issue.3 , pp. 1202-1209
    • Wu, J.1
  • 15
    • 21344496605 scopus 로고
    • Nonparametric regression with errors in variables
    • Fan. J, Truong. Y. Nonparametric regression with errors in variables Annals of Statistics, 21: 1900-1925, 1993.
    • (1993) Annals of Statistics , vol.21 , pp. 1900-1925
    • Fan, J.1    Truong, Y.2
  • 16
    • 36448950848 scopus 로고    scopus 로고
    • Hall.P, Q. Li and J. Racine. Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Variables forthcoming in Review of Economics and Statistics, 89: 784-789, 2007.
    • Hall.P, Q. Li and J. Racine. Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Variables forthcoming in Review of Economics and Statistics, 89: 784-789, 2007.
  • 17
    • 0001603217 scopus 로고
    • Adaptive density flatting: A metric distortion principle for combating bias in nearest neighbor methods
    • Abramson. I. S. Adaptive density flatting: A metric distortion principle for combating bias in nearest neighbor methods. Annals of Statistics, 12: 880-886, 1984.
    • (1984) Annals of Statistics , vol.12 , pp. 880-886
    • Abramson, I.S.1
  • 19
    • 70449345304 scopus 로고    scopus 로고
    • Neural Network with Partial Least Square Prediction Model Based on SSA-MGF
    • Jiansheng Wu, Long Jin. Neural Network with Partial Least Square Prediction Model Based on SSA-MGF. Journal of Catastrophology, 21(2): 17-23, 2006.
    • (2006) Journal of Catastrophology , vol.21 , Issue.2 , pp. 17-23
    • Wu, J.1    Jin, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.