메뉴 건너뛰기




Volumn , Issue , 2014, Pages

Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting

Author keywords

AdaBoost; Backpropagation Neural Network; Empirical Mode Decomposition; Ensemble Method; Wind Forecasting

Indexed keywords

ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; FORECASTING; FORESTRY; NEURAL NETWORKS; SIGNAL PROCESSING; WEATHER FORECASTING; WIND;

EID: 84946689999     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIEL.2014.7015741     Document Type: Conference Paper
Times cited : (11)

References (26)
  • 2
    • 78650045524 scopus 로고    scopus 로고
    • A review of wind power and wind speed forecasting methods with different time horizons
    • sept. 2010
    • S. Soman, H. Zareipour, O. Malik, and P. Mandal, "A review of wind power and wind speed forecasting methods with different time horizons," in North American Power Symposium (NAPS), 2010, sept. 2010, pp. 1-8.
    • (2010) North American Power Symposium (NAPS) , pp. 1-8
    • Soman, S.1    Zareipour, H.2    Malik, O.3    Mandal, P.4
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine Learning, vol. 24, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," Journal of Computer and System Sciences, vol. 55, pp. 119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 8
    • 84896735956 scopus 로고    scopus 로고
    • Using adaboost and rough set theory for predicting debris flow disaster
    • P.-F. Pai, L.-L. Li, W.-Z. Hung, and K.-P. Lin, "Using adaboost and rough set theory for predicting debris flow disaster," Water Resources Management, vol. 28, no. 4, pp. 1143-1155, 2014.
    • (2014) Water Resources Management , vol.28 , Issue.4 , pp. 1143-1155
    • Pai, P.-F.1    Li, L.-L.2    Hung, W.-Z.3    Lin, K.-P.4
  • 9
    • 84892790708 scopus 로고    scopus 로고
    • A prediction model of shortterm ionospheric foF2 based on adaboost
    • X. Zhao, B. Ning, L. Liu, and G. Song, "A prediction model of shortterm ionospheric foF2 based on adaboost," Advances in Space Research, vol. 53, no. 3, pp. 387-394, 2014.
    • (2014) Advances in Space Research , vol.53 , Issue.3 , pp. 387-394
    • Zhao, X.1    Ning, B.2    Liu, L.3    Song, G.4
  • 10
    • 35348913712 scopus 로고    scopus 로고
    • A new boosting algorithm for improved time-series forecasting with recurrent neural networks
    • M. Assaad, R. Boné, and H. Cardot, "A new boosting algorithm for improved time-series forecasting with recurrent neural networks," Information Fusion, vol. 9, no. 1, pp. 41-55, 2008.
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 41-55
    • Assaad, M.1    Boné, R.2    Cardot, H.3
  • 11
    • 84867623602 scopus 로고    scopus 로고
    • Application of adaboost-based bp neural network for short-term wind speed forecast
    • Sep
    • J. Wu, B. Zhang, and K. Wang, "Application of adaboost-based bp neural network for short-term wind speed forecast," Power System Technology, vol. 36, no. 9, pp. 221-225, Sep 2012.
    • (2012) Power System Technology , vol.36 , Issue.9 , pp. 221-225
    • Wu, J.1    Zhang, B.2    Wang, K.3
  • 14
    • 84859094795 scopus 로고    scopus 로고
    • Short-term wind power prediction using a Wavelet Support Vector Machine
    • Apr.
    • J. Zeng and W. Qiao, "Short-term wind power prediction using a Wavelet Support Vector Machine," IEEE Transactions on Sustainable Energy, vol. 3, no. 2, pp. 255-264, Apr. 2012.
    • (2012) IEEE Transactions on Sustainable Energy , vol.3 , Issue.2 , pp. 255-264
    • Zeng, J.1    Qiao, W.2
  • 15
    • 80155154044 scopus 로고    scopus 로고
    • Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
    • Y. Wei and M.-C. Chen, "Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks," Trans-portation Research Part C, vol. 21, pp. 148-162, 2012.
    • (2012) Trans-portation Research Part C , vol.21 , pp. 148-162
    • Wei, Y.1    Chen, M.-C.2
  • 17
    • 84919905211 scopus 로고    scopus 로고
    • Empirical mode decomposition-k nearest neighbor models for wind speed forecasting
    • Y. Ren and P. N. Suganthan, "Empirical mode decomposition-k nearest neighbor models for wind speed forecasting," Journal of Power and Energy Engineering, vol. 2, no. 4, pp. 176-185, 2014.
    • (2014) Journal of Power and Energy Engineering , vol.2 , Issue.4 , pp. 176-185
    • Ren, Y.1    Suganthan, P.N.2
  • 18
    • 48049095703 scopus 로고    scopus 로고
    • Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
    • L. Yu, S. Wang, and K. K. Lai, "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, vol. 30, pp. 2623-2635, 2008.
    • (2008) Energy Economics , vol.30 , pp. 2623-2635
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 19
    • 55749112476 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    • W. C. Hong, "Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model," Energy Conversion and Management, vol. 50, pp. 105-117, 2009.
    • (2009) Energy Conversion and Management , vol.50 , pp. 105-117
    • Hong, W.C.1
  • 21
    • 33745780111 scopus 로고    scopus 로고
    • Experiments with AdaBoost. RT, an improved boosting scheme for regression
    • D. L. Shrestha and D. P. Solomatine, "Experiments with AdaBoost. RT, an improved boosting scheme for regression," Neural Computation, vol. 18, no. 7, pp. 1678-1710, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1678-1710
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 22
  • 23
    • 0036146454 scopus 로고    scopus 로고
    • The problem of bias in training data in regression problems in medical decision support
    • B. Mac Namee, P. Cunningham, S. Byrne, and O. I. Corrigan, "The problem of bias in training data in regression problems in medical decision support," Artificial intelligence in medicine, vol. 24, no. 1, pp. 51-70, 2002.
    • (2002) Artificial Intelligence in Medicine , vol.24 , Issue.1 , pp. 51-70
    • Mac Namee, B.1    Cunningham, P.2    Byrne, S.3    Corrigan, O.I.4
  • 25
    • 48749112805 scopus 로고    scopus 로고
    • Automatic time series forecasting: The forecast package for r
    • R. J. Hyndman and Y. Kh, "Automatic time series forecasting: The forecast package for r," Journal of Statistical Software, 2008.
    • (2008) Journal of Statistical Software
    • Hyndman, R.J.1    Kh, Y.2
  • 26
    • 54949139628 scopus 로고    scopus 로고
    • Lawstat: An r package for law, public policy and biostatistics
    • 10
    • W. Hui, Y. R. Gel, and J. L. Gastwirth, "lawstat: An r package for law, public policy and biostatistics," Journal of Statistical Software, vol. 28, no. 3, pp. 1-26, 10 2008.
    • (2008) Journal of Statistical Software , vol.28 , Issue.3 , pp. 1-26
    • Hui, W.1    Gel, Y.R.2    Gastwirth, J.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.