메뉴 건너뛰기




Volumn 29, Issue 10, 2008, Pages 1524-1536

RotBoost: A technique for combining Rotation Forest and AdaBoost

Author keywords

AdaBoost; Bagging; Base learning algorithm; Ensemble method; MultiBoost; Rotation Forest

Indexed keywords

DATA STRUCTURES; ERROR ANALYSIS; LEARNING ALGORITHMS; PARALLEL PROCESSING SYSTEMS;

EID: 44449124996     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2008.03.006     Document Type: Article
Times cited : (159)

References (36)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learn. 36 1-2 (1999) 105-139
    • (1999) Machine Learn. , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 44449178993 scopus 로고    scopus 로고
    • Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases. .
    • Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases. .
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learn. 24 2 (1996) 123-140
    • (1996) Machine Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L. Arcing classifiers. Ann. Statist. 26 3 (1998) 801-849
    • (1998) Ann. Statist. , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learn. 45 1 (2001) 5-32
    • (2001) Machine Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: Four current directions
    • Dietterich T.G. Machine-learning research: Four current directions. AI. Mag. 18 4 (1997) 97-136
    • (1997) AI. Mag. , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learn. 40 2 (2000) 139-157
    • (2000) Machine Learn. , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55 1 (1997) 119-139
    • (1997) J. Comput. System Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • Friedman J.H. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Min. Knowl. Disc. 1 1 (1997) 55-77
    • (1997) Data Min. Knowl. Disc. , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.H.1
  • 13
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: A statistical view of boosting. Ann. Statist. 28 2 (2000) 337-407
    • (2000) Ann. Statist. , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman S., Bienenstock E., and Doursat R. Neural networks and the bias/variance dilemma. Neural Comput. 4 1 (1992) 1-58
    • (1992) Neural Comput. , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 16
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Machine Intell. 20 8 (1998) 832-844
    • (1998) IEEE Trans. Pattern Anal. Machine Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 17
    • 0037403462 scopus 로고    scopus 로고
    • Variance and bias for general loss functions
    • James G.M. Variance and bias for general loss functions. Machine Learn. 51 2 (2003) 115-135
    • (2003) Machine Learn. , vol.51 , Issue.2 , pp. 115-135
    • James, G.M.1
  • 18
    • 34247205823 scopus 로고    scopus 로고
    • Multi-class learning by smoothed boosting
    • Jin R., and Zhang J. Multi-class learning by smoothed boosting. Machine Learn. 67 3 (2007) 207-227
    • (2007) Machine Learn. , vol.67 , Issue.3 , pp. 207-227
    • Jin, R.1    Zhang, J.2
  • 19
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • Morgan Kaufmann, Bari, Italy
    • Kohavi R., and Wolpert D. Bias plus variance decomposition for zero-one loss functions. Proc. 13th Internat. Conf. on Machine Learn. (1996), Morgan Kaufmann, Bari, Italy 275-283
    • (1996) Proc. 13th Internat. Conf. on Machine Learn. , pp. 275-283
    • Kohavi, R.1    Wolpert, D.2
  • 20
    • 84992322729 scopus 로고
    • Error-correcting output coding corrects bias and variance
    • Morgan Kaufmann, San Francisco
    • Kong E.B., and Dietterich T.G. Error-correcting output coding corrects bias and variance. Proc. 12th Internat. Conf. on Machine Learn. (1995), Morgan Kaufmann, San Francisco 313-321
    • (1995) Proc. 12th Internat. Conf. on Machine Learn. , pp. 313-321
    • Kong, E.B.1    Dietterich, T.G.2
  • 21
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Tesauro G., Touretzky D.S., and Leen T.K. (Eds), MIT Press, Cambridge MA
    • Krogh A., and Vedelsby J. Neural network ensembles, cross validation, and active learning. In: Tesauro G., Touretzky D.S., and Leen T.K. (Eds). Adv. Neural Inform. Proc. Sys vol. 7 (1995), MIT Press, Cambridge MA 231-238
    • (1995) Adv. Neural Inform. Proc. Sys , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 22
    • 0036080042 scopus 로고    scopus 로고
    • Combining different methods and number of weak decision trees
    • Latinne P., Debeir O., and Decaestecker C. Combining different methods and number of weak decision trees. Pattern Anal. Appl. 5 2 (2002) 201-209
    • (2002) Pattern Anal. Appl. , vol.5 , Issue.2 , pp. 201-209
    • Latinne, P.1    Debeir, O.2    Decaestecker, C.3
  • 23
    • 0030342815 scopus 로고    scopus 로고
    • Combining estimates in regression and classification
    • Leblanc M., and Tibshirani R. Combining estimates in regression and classification. J. Amer. Statist. Assoc. 91 436 (1996) 1641-1650
    • (1996) J. Amer. Statist. Assoc. , vol.91 , Issue.436 , pp. 1641-1650
    • Leblanc, M.1    Tibshirani, R.2
  • 24
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim T.S., Loh W.Y., and Shin Y.S. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learn. 40 3 (2000) 203-229
    • (2000) Machine Learn. , vol.40 , Issue.3 , pp. 203-229
    • Lim, T.S.1    Loh, W.Y.2    Shin, Y.S.3
  • 25
    • 35248862907 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • Advanced Lectures on Machine Learning, Springer-Verlag, Berlin
    • Meir R., and Rätsch G. An introduction to boosting and leveraging. Advanced Lectures on Machine Learning. Lect. Notes Comput. Sci. vol. 2600 (2003), Springer-Verlag, Berlin 118-183
    • (2003) Lect. Notes Comput. Sci. , vol.2600 , pp. 118-183
    • Meir, R.1    Rätsch, G.2
  • 26
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau C., and Bengio Y. Inference for the generalization error. Machine Learn. 52 3 (2003) 239-281
    • (2003) Machine Learn. , vol.52 , Issue.3 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 27
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Optiz D., and Maclin R. Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11 (1999) 169-198
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Optiz, D.1    Maclin, R.2
  • 28
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • Touretzky D.S., Mozer M.C., and Hasselmo M.M. (Eds), MIT Press, Cambridge MA
    • Optiz D.W., and Shavlik J.W. Generating accurate and diverse members of a neural-network ensemble. In: Touretzky D.S., Mozer M.C., and Hasselmo M.M. (Eds). Adv. Neural Inform. Proc. Sys vol. 8 (1996), MIT Press, Cambridge MA 535-541
    • (1996) Adv. Neural Inform. Proc. Sys , vol.8 , pp. 535-541
    • Optiz, D.W.1    Shavlik, J.W.2
  • 29
    • 25144515389 scopus 로고    scopus 로고
    • Bias and variance of rotation-based ensembles
    • IWANN. Cabestany J., Prieto A., and Sandoval D.F. (Eds), Springer-Verlag, Berlin
    • Rodríguez J.J., Alonso C.J., and Prieto O.J. Bias and variance of rotation-based ensembles. In: Cabestany J., Prieto A., and Sandoval D.F. (Eds). IWANN. Lect. Notes Comput. Sci. vol. 3512 (2005), Springer-Verlag, Berlin 779-786
    • (2005) Lect. Notes Comput. Sci. , vol.3512 , pp. 779-786
    • Rodríguez, J.J.1    Alonso, C.J.2    Prieto, O.J.3
  • 31
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting and the random subspace method for linear classifiers
    • Skurichina M., and Duin R.P.W. Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal. Appl. 5 2 (2002) 121-135
    • (2002) Pattern Anal. Appl. , vol.5 , Issue.2 , pp. 121-135
    • Skurichina, M.1    Duin, R.P.W.2
  • 32
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
    • Valentini G., and Dietterich T.G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J. Machine Learn. Res. 5 (2004) 725-775
    • (2004) J. Machine Learn. Res. , vol.5 , pp. 725-775
    • Valentini, G.1    Dietterich, T.G.2
  • 33
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining boosting and wagging
    • Webb G.I. MultiBoosting: A technique for combining boosting and wagging. Machine Learn. 40 2 (2000) 159-196
    • (2000) Machine Learn. , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 34
    • 44449101338 scopus 로고    scopus 로고
    • Webb, G.I., Conilione, P., 2006. Estimating bias and variance from data. .
    • Webb, G.I., Conilione, P., 2006. Estimating bias and variance from data. .
  • 35
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou Z.H., Wu J.X., and Tang W. Ensembling neural networks: Many could be better than all. Artif. Intell. 137 1-2 (2002) 239-263
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3
  • 36
    • 24644441048 scopus 로고    scopus 로고
    • Ensembling local learners through multimodal perturbation
    • Zhou Z.H., and Yu Y. Ensembling local learners through multimodal perturbation. IEEE Trans. Syst. Man Cybernet. B 35 4 (2005) 725-735
    • (2005) IEEE Trans. Syst. Man Cybernet. B , vol.35 , Issue.4 , pp. 725-735
    • Zhou, Z.H.1    Yu, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.