-
1
-
-
33947231519
-
A comparison of decision tree ensemble creation techniques
-
Banfield R.E., Hall L.O., Bowyer K.W., and Kegelmeyer W.P. A comparison of decision tree ensemble creation techniques. IEEE Trans. Pattern Anal. Machine Intell. 29 1 (2007) 173-180
-
(2007)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.29
, Issue.1
, pp. 173-180
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learn. 36 1-2 (1999) 105-139
-
(1999)
Machine Learn.
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
44449178993
-
-
Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases. .
-
Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases. .
-
-
-
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learn. 24 2 (1996) 123-140
-
(1996)
Machine Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0346786584
-
Arcing classifiers
-
Breiman L. Arcing classifiers. Ann. Statist. 26 3 (1998) 801-849
-
(1998)
Ann. Statist.
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
6
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learn. 45 1 (2001) 5-32
-
(2001)
Machine Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
7
-
-
0003802343
-
-
Chapman & Hall, New Work
-
Breiman L., Friedman J., Olshen R., and Stone C. Classification and Regression Trees (1984), Chapman & Hall, New Work
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
8
-
-
0031361611
-
Machine-learning research: Four current directions
-
Dietterich T.G. Machine-learning research: Four current directions. AI. Mag. 18 4 (1997) 97-136
-
(1997)
AI. Mag.
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.G.1
-
9
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learn. 40 2 (2000) 139-157
-
(2000)
Machine Learn.
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
11
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55 1 (1997) 119-139
-
(1997)
J. Comput. System Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
12
-
-
21744462998
-
On bias, variance, 0/1-loss, and the curse-of-dimensionality
-
Friedman J.H. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Min. Knowl. Disc. 1 1 (1997) 55-77
-
(1997)
Data Min. Knowl. Disc.
, vol.1
, Issue.1
, pp. 55-77
-
-
Friedman, J.H.1
-
13
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: A statistical view of boosting. Ann. Statist. 28 2 (2000) 337-407
-
(2000)
Ann. Statist.
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
14
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman S., Bienenstock E., and Doursat R. Neural networks and the bias/variance dilemma. Neural Comput. 4 1 (1992) 1-58
-
(1992)
Neural Comput.
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
16
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Machine Intell. 20 8 (1998) 832-844
-
(1998)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
17
-
-
0037403462
-
Variance and bias for general loss functions
-
James G.M. Variance and bias for general loss functions. Machine Learn. 51 2 (2003) 115-135
-
(2003)
Machine Learn.
, vol.51
, Issue.2
, pp. 115-135
-
-
James, G.M.1
-
18
-
-
34247205823
-
Multi-class learning by smoothed boosting
-
Jin R., and Zhang J. Multi-class learning by smoothed boosting. Machine Learn. 67 3 (2007) 207-227
-
(2007)
Machine Learn.
, vol.67
, Issue.3
, pp. 207-227
-
-
Jin, R.1
Zhang, J.2
-
19
-
-
0002872346
-
Bias plus variance decomposition for zero-one loss functions
-
Morgan Kaufmann, Bari, Italy
-
Kohavi R., and Wolpert D. Bias plus variance decomposition for zero-one loss functions. Proc. 13th Internat. Conf. on Machine Learn. (1996), Morgan Kaufmann, Bari, Italy 275-283
-
(1996)
Proc. 13th Internat. Conf. on Machine Learn.
, pp. 275-283
-
-
Kohavi, R.1
Wolpert, D.2
-
20
-
-
84992322729
-
Error-correcting output coding corrects bias and variance
-
Morgan Kaufmann, San Francisco
-
Kong E.B., and Dietterich T.G. Error-correcting output coding corrects bias and variance. Proc. 12th Internat. Conf. on Machine Learn. (1995), Morgan Kaufmann, San Francisco 313-321
-
(1995)
Proc. 12th Internat. Conf. on Machine Learn.
, pp. 313-321
-
-
Kong, E.B.1
Dietterich, T.G.2
-
21
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
Tesauro G., Touretzky D.S., and Leen T.K. (Eds), MIT Press, Cambridge MA
-
Krogh A., and Vedelsby J. Neural network ensembles, cross validation, and active learning. In: Tesauro G., Touretzky D.S., and Leen T.K. (Eds). Adv. Neural Inform. Proc. Sys vol. 7 (1995), MIT Press, Cambridge MA 231-238
-
(1995)
Adv. Neural Inform. Proc. Sys
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
22
-
-
0036080042
-
Combining different methods and number of weak decision trees
-
Latinne P., Debeir O., and Decaestecker C. Combining different methods and number of weak decision trees. Pattern Anal. Appl. 5 2 (2002) 201-209
-
(2002)
Pattern Anal. Appl.
, vol.5
, Issue.2
, pp. 201-209
-
-
Latinne, P.1
Debeir, O.2
Decaestecker, C.3
-
23
-
-
0030342815
-
Combining estimates in regression and classification
-
Leblanc M., and Tibshirani R. Combining estimates in regression and classification. J. Amer. Statist. Assoc. 91 436 (1996) 1641-1650
-
(1996)
J. Amer. Statist. Assoc.
, vol.91
, Issue.436
, pp. 1641-1650
-
-
Leblanc, M.1
Tibshirani, R.2
-
24
-
-
0034274591
-
A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
-
Lim T.S., Loh W.Y., and Shin Y.S. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learn. 40 3 (2000) 203-229
-
(2000)
Machine Learn.
, vol.40
, Issue.3
, pp. 203-229
-
-
Lim, T.S.1
Loh, W.Y.2
Shin, Y.S.3
-
25
-
-
35248862907
-
An introduction to boosting and leveraging
-
Advanced Lectures on Machine Learning, Springer-Verlag, Berlin
-
Meir R., and Rätsch G. An introduction to boosting and leveraging. Advanced Lectures on Machine Learning. Lect. Notes Comput. Sci. vol. 2600 (2003), Springer-Verlag, Berlin 118-183
-
(2003)
Lect. Notes Comput. Sci.
, vol.2600
, pp. 118-183
-
-
Meir, R.1
Rätsch, G.2
-
26
-
-
0042847140
-
Inference for the generalization error
-
Nadeau C., and Bengio Y. Inference for the generalization error. Machine Learn. 52 3 (2003) 239-281
-
(2003)
Machine Learn.
, vol.52
, Issue.3
, pp. 239-281
-
-
Nadeau, C.1
Bengio, Y.2
-
27
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
Optiz D., and Maclin R. Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11 (1999) 169-198
-
(1999)
J. Artif. Intell. Res.
, vol.11
, pp. 169-198
-
-
Optiz, D.1
Maclin, R.2
-
28
-
-
85156192015
-
Generating accurate and diverse members of a neural-network ensemble
-
Touretzky D.S., Mozer M.C., and Hasselmo M.M. (Eds), MIT Press, Cambridge MA
-
Optiz D.W., and Shavlik J.W. Generating accurate and diverse members of a neural-network ensemble. In: Touretzky D.S., Mozer M.C., and Hasselmo M.M. (Eds). Adv. Neural Inform. Proc. Sys vol. 8 (1996), MIT Press, Cambridge MA 535-541
-
(1996)
Adv. Neural Inform. Proc. Sys
, vol.8
, pp. 535-541
-
-
Optiz, D.W.1
Shavlik, J.W.2
-
29
-
-
25144515389
-
Bias and variance of rotation-based ensembles
-
IWANN. Cabestany J., Prieto A., and Sandoval D.F. (Eds), Springer-Verlag, Berlin
-
Rodríguez J.J., Alonso C.J., and Prieto O.J. Bias and variance of rotation-based ensembles. In: Cabestany J., Prieto A., and Sandoval D.F. (Eds). IWANN. Lect. Notes Comput. Sci. vol. 3512 (2005), Springer-Verlag, Berlin 779-786
-
(2005)
Lect. Notes Comput. Sci.
, vol.3512
, pp. 779-786
-
-
Rodríguez, J.J.1
Alonso, C.J.2
Prieto, O.J.3
-
31
-
-
0036080160
-
Bagging, boosting and the random subspace method for linear classifiers
-
Skurichina M., and Duin R.P.W. Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal. Appl. 5 2 (2002) 121-135
-
(2002)
Pattern Anal. Appl.
, vol.5
, Issue.2
, pp. 121-135
-
-
Skurichina, M.1
Duin, R.P.W.2
-
32
-
-
26944501740
-
Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
-
Valentini G., and Dietterich T.G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J. Machine Learn. Res. 5 (2004) 725-775
-
(2004)
J. Machine Learn. Res.
, vol.5
, pp. 725-775
-
-
Valentini, G.1
Dietterich, T.G.2
-
33
-
-
0034247206
-
MultiBoosting: A technique for combining boosting and wagging
-
Webb G.I. MultiBoosting: A technique for combining boosting and wagging. Machine Learn. 40 2 (2000) 159-196
-
(2000)
Machine Learn.
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
34
-
-
44449101338
-
-
Webb, G.I., Conilione, P., 2006. Estimating bias and variance from data. .
-
Webb, G.I., Conilione, P., 2006. Estimating bias and variance from data. .
-
-
-
-
35
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Zhou Z.H., Wu J.X., and Tang W. Ensembling neural networks: Many could be better than all. Artif. Intell. 137 1-2 (2002) 239-263
-
(2002)
Artif. Intell.
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.X.2
Tang, W.3
-
36
-
-
24644441048
-
Ensembling local learners through multimodal perturbation
-
Zhou Z.H., and Yu Y. Ensembling local learners through multimodal perturbation. IEEE Trans. Syst. Man Cybernet. B 35 4 (2005) 725-735
-
(2005)
IEEE Trans. Syst. Man Cybernet. B
, vol.35
, Issue.4
, pp. 725-735
-
-
Zhou, Z.H.1
Yu, Y.2
|