메뉴 건너뛰기




Volumn 42, Issue 3, 2001, Pages 287-320

Soft margins for AdaBoost

Author keywords

[No Author keywords available]

Indexed keywords

ASYMPTOTIC STABILITY; COMPUTER SIMULATION; CONSTRAINT THEORY; ERROR ANALYSIS; LINEAR PROGRAMMING; PROBLEM SOLVING; QUADRATIC PROGRAMMING; SPURIOUS SIGNAL NOISE; VECTORS;

EID: 0342502195     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007618119488     Document Type: Article
Times cited : (1173)

References (48)
  • 1
    • 0002935122 scopus 로고    scopus 로고
    • Combining support vector and mathematical programming methods for induction
    • B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
    • Bennett, K. (1998). Combining support vector and mathematical programming methods for induction. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - SV learning. Cambridge, MA: MIT Press.
    • (1998) Advances in Kernel Methods - SV Learning
    • Bennett, K.1
  • 2
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • Bennett, K. & Mangasarian, O. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1, 23-34.
    • (1992) Optimization Methods and Software , vol.1 , pp. 23-34
    • Bennett, K.1    Mangasarian, O.2
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Mechine Learning, 26(2), 123-140.
    • (1996) Mechine Learning , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0004198448 scopus 로고    scopus 로고
    • Technical Report 486, Statistics Department, University of California
    • Breiman, L. (1997a). Arcing the edge. Technical Report 486, Statistics Department, University of California.
    • (1997) Arcing the Edge
    • Breiman, L.1
  • 8
    • 0003929807 scopus 로고    scopus 로고
    • Technical Report 504, Statistics Department, University of California
    • Breiman, L. (1997b). Prediction games and arcing algorithms. Technical Report 504, Statistics Department, University of California.
    • (1997) Prediction Games and Arcing Algorithms
    • Breiman, L.1
  • 9
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3), 801-849.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 10
    • 0003856278 scopus 로고    scopus 로고
    • Technical Report 547, Statistics Department, University of California
    • Breiman, L. (1999). Using adaptive bagging to debias regressions. Technical Report 547, Statistics Department, University of California.
    • (1999) Using Adaptive Bagging to Debias Regressions
    • Breiman, L.1
  • 11
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C. & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 0006444313 scopus 로고    scopus 로고
    • Technical Report, Department of Computer Science and Electrical Engineering, University of Queensland
    • Frean, M. & Downs, T. (1998). A simple cost function for boosting. Technical Report, Department of Computer Science and Electrical Engineering, University of Queensland.
    • (1998) A Simple Cost Function for Boosting
    • Frean, M.1    Downs, T.2
  • 15
    • 0003591748 scopus 로고    scopus 로고
    • Technical Report, Department of Statistics, Stanford University
    • Friedman, J. (1999). Greedy function approximation. Technical Report, Department of Statistics, Stanford University.
    • (1999) Greedy Function Approximation
    • Friedman, J.1
  • 17
    • 84883717522 scopus 로고    scopus 로고
    • Research Report RR-720, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
    • Frieß, T. & Harrison, R. (1998). Perceptrons in kernel feature space. Research Report RR-720, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK.
    • (1998) Perceptrons in Kernel Feature Space
    • Frieß, T.1    Harrison, R.2
  • 19
    • 0343136966 scopus 로고
    • Optimization by simulated annealing: Quantitative studies
    • Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. J. Statistical Physics, 34, 975-986.
    • (1984) J. Statistical Physics , vol.34 , pp. 975-986
    • Kirkpatrick, S.1
  • 21
    • 0000963583 scopus 로고
    • Linear and nonlinear separation of patterns by linear programming
    • Mangasarian, O. (1965). Linear and nonlinear separation of patterns by linear programming. Operations Research, 13, 444-452.
    • (1965) Operations Research , vol.13 , pp. 444-452
    • Mangasarian, O.1
  • 22
    • 0033870982 scopus 로고    scopus 로고
    • Improved generalization through explicit optimization of margins
    • Mason, L., Bartlett, P. L., & Baxter, J. (2000a). Improved generalization through explicit optimization of margins. Machine Learning 38(3), 243-255.
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 243-255
    • Mason, L.1    Bartlett, P.L.2    Baxter, J.3
  • 23
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • A. J. Smola, P. Bartlett, B. Schölkopf, & C. Schuurmans (Eds.), Cambridge, MA: MIT Press
    • Mason, L., Baxter, J., Bartlett, P. L., & Frean, M. (2000b). Functional gradient techniques for combining hypotheses. In A. J. Smola, P. Bartlett, B. Schölkopf, & C. Schuurmans (Eds.), Advances in Large Margin Classifiers. Cambridge, MA: MIT Press.
    • (2000) Advances in Large Margin Classifiers
    • Mason, L.1    Baxter, J.2    Bartlett, P.L.3    Frean, M.4
  • 24
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody, J. & Darken, C. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, 1(2), 281-294.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 26
    • 0342749314 scopus 로고    scopus 로고
    • An asymptotic analysis of ADABOOST in the binary classification case
    • L. Niklasson, M. Bodén, & T. Ziemke (Eds.)
    • Onoda, T., Rätsch, G., & Müller, K.-R. (1998). An asymptotic analysis of ADABOOST in the binary classification case. In L. Niklasson, M. Bodén, & T. Ziemke (Eds.), Proceedings ICANN'98: Int. Conf. on Artificial Neural Networks (pp. 195-200).
    • (1998) Proceedings ICANN'98: Int. Conf. on Artificial Neural Networks , pp. 195-200
    • Onoda, T.1    Rätsch, G.2    Müller, K.-R.3
  • 27
    • 0343183970 scopus 로고    scopus 로고
    • An asymptotical analysis and improvement of ADABOOST in the binary classification case
    • in Japanese
    • Onoda, T., Rätsch, G., & Müller, K.-R. (2000). An asymptotical analysis and improvement of ADABOOST in the binary classification case. Journal of Japanese Society for AI, 15(2), 287-296 (in Japanese).
    • (2000) Journal of Japanese Society for AI , vol.15 , Issue.2 , pp. 287-296
    • Onoda, T.1    Rätsch, G.2    Müller, K.-R.3
  • 31
    • 4243791869 scopus 로고    scopus 로고
    • Master's Thesis, Department of Computer Science, University of Potsdam, Germany (in German)
    • Rätsch, G. (1998). Ensemble learning methods for classification. Master's Thesis, Department of Computer Science, University of Potsdam, Germany (in German).
    • (1998) Ensemble Learning Methods for Classification
    • Rätsch, G.1
  • 32
    • 0003851811 scopus 로고    scopus 로고
    • Technical Report NC-TR-1998-021, Department of Computer Science, Royal Holloway, University of London, Egham, UK
    • Rätsch, G., Onoda, T., & Müller, K.-R. (1998). Soft margins for ADABOOST. Technical Report NC-TR-1998-021, Department of Computer Science, Royal Holloway, University of London, Egham, UK.
    • (1998) Soft Margins for ADABOOST
    • Rätsch, G.1    Onoda, T.2    Müller, K.-R.3
  • 33
    • 0001102148 scopus 로고    scopus 로고
    • Regularizing ADABOOST
    • M. Kearns, S. Solla, & D. Cohn (Eds.), Cambridge, MA: MIT Press
    • Rätsch, G., Onoda, T., & Müller, K.-R. (1999). Regularizing ADABOOST. In M. Kearns, S. Solla, & D. Cohn (Eds.), Advances in Neural Information Processing Systems 11 (pp. 564-570). Cambridge, MA: MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 564-570
    • Rätsch, G.1    Onoda, T.2    Müller, K.-R.3
  • 34
    • 0002829165 scopus 로고    scopus 로고
    • Robust ensemble learning
    • A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Cambridge, MA: MIT Press
    • Rätsch, G., Schölkopf, B., Smola, A., Mika, S., Onoda, T., & Müller, K.-R. (2000). Robust ensemble learning. In A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in Large Margin Classifiers (pp. 207-219). Cambridge, MA: MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 207-219
    • Rätsch, G.1    Schölkopf, B.2    Smola, A.3    Mika, S.4    Onoda, T.5    Müller, K.-R.6
  • 36
    • 0342314490 scopus 로고    scopus 로고
    • Improving the generalization performance of the minimum classification error learning and its application to neural networks
    • Japan, Kitakyushu
    • Rokui, J. & Shimodaira, H. (1998). Improving the generalization performance of the minimum classification error learning and its application to neural networks. In Proc. of the Int. Conf. on Neural Information Processing (ICONIP) (pp. 63-66). Japan, Kitakyushu.
    • (1998) Proc. of the Int. Conf. on Neural Information Processing (ICONIP) , pp. 63-66
    • Rokui, J.1    Shimodaira, H.2
  • 41
    • 17444438778 scopus 로고    scopus 로고
    • New support vector algorithms
    • NeuroCOLT TR-31-89
    • Schölkopf, B., Smola, A., & Williamson, R. (2000). New support vector algorithms. Neural Computation. also NeuroCOLT TR-31-89, 12:1083-1121.
    • (2000) Neural Computation , vol.12 , pp. 1083-1121
    • Schölkopf, B.1    Smola, A.2    Williamson, R.3
  • 43
    • 0004094721 scopus 로고    scopus 로고
    • Ph.D. Thesis, Technische Universität Berlin
    • Smola, A. J. (1998). Learning with kernels. Ph.D. Thesis, Technische Universität Berlin.
    • (1998) Learning with Kernels
    • Smola, A.J.1
  • 44
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola, A., Schölkopf, B., & Müller, K.-R. (1998). The connection between regularization operators and support vector kernels. Neural Networks, 11, 637-649.
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.1    Schölkopf, B.2    Müller, K.-R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.