-
1
-
-
0002935122
-
Combining support vector and mathematical programming methods for induction
-
B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
-
Bennett, K. (1998). Combining support vector and mathematical programming methods for induction. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods - SV learning. Cambridge, MA: MIT Press.
-
(1998)
Advances in Kernel Methods - SV Learning
-
-
Bennett, K.1
-
2
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
Bennett, K. & Mangasarian, O. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1, 23-34.
-
(1992)
Optimization Methods and Software
, vol.1
, pp. 23-34
-
-
Bennett, K.1
Mangasarian, O.2
-
3
-
-
84956662941
-
A boosting algorithm for regression
-
W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Eds.), Berlin: Springer
-
Bertoni, A., Campadelli, P., & Parodi, M. (1997). A boosting algorithm for regression. In W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Eds.), LNCS, Vol. V: Proceedings ICANN'97: Int. Conf. on Artificial Neural Networks (pp. 343-348). Berlin: Springer.
-
(1997)
LNCS, Vol. V: Proceedings ICANN'97: Int. Conf. on Artificial Neural Networks
, vol.5
, pp. 343-348
-
-
Bertoni, A.1
Campadelli, P.2
Parodi, M.3
-
5
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler (Ed.), New York, NY: ACM Press
-
Boser, B., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. In D. Haussler (Ed.), Proceedings COLT'92: Conference on Computational Learning Theory (pp. 144-152). New York, NY: ACM Press.
-
(1992)
Proceedings COLT'92: Conference on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
6
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Mechine Learning, 26(2), 123-140.
-
(1996)
Mechine Learning
, vol.26
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
0004198448
-
-
Technical Report 486, Statistics Department, University of California
-
Breiman, L. (1997a). Arcing the edge. Technical Report 486, Statistics Department, University of California.
-
(1997)
Arcing the Edge
-
-
Breiman, L.1
-
8
-
-
0003929807
-
-
Technical Report 504, Statistics Department, University of California
-
Breiman, L. (1997b). Prediction games and arcing algorithms. Technical Report 504, Statistics Department, University of California.
-
(1997)
Prediction Games and Arcing Algorithms
-
-
Breiman, L.1
-
9
-
-
0346786584
-
Arcing classifiers
-
Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3), 801-849.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
10
-
-
0003856278
-
-
Technical Report 547, Statistics Department, University of California
-
Breiman, L. (1999). Using adaptive bagging to debias regressions. Technical Report 547, Statistics Department, University of California.
-
(1999)
Using Adaptive Bagging to Debias Regressions
-
-
Breiman, L.1
-
11
-
-
34249753618
-
Support vector networks
-
Cortes, C. & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
0006444313
-
-
Technical Report, Department of Computer Science and Electrical Engineering, University of Queensland
-
Frean, M. & Downs, T. (1998). A simple cost function for boosting. Technical Report, Department of Computer Science and Electrical Engineering, University of Queensland.
-
(1998)
A Simple Cost Function for Boosting
-
-
Frean, M.1
Downs, T.2
-
15
-
-
0003591748
-
-
Technical Report, Department of Statistics, Stanford University
-
Friedman, J. (1999). Greedy function approximation. Technical Report, Department of Statistics, Stanford University.
-
(1999)
Greedy Function Approximation
-
-
Friedman, J.1
-
16
-
-
0003660631
-
-
Technical Report, Department of Statistics, Sequoia Hall, Stanford University
-
Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: A statistical view of boosting. Technical Report, Department of Statistics, Sequoia Hall, Stanford University.
-
(1998)
Additive Logistic Regression: A Statistical View of Boosting
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
17
-
-
84883717522
-
-
Research Report RR-720, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
-
Frieß, T. & Harrison, R. (1998). Perceptrons in kernel feature space. Research Report RR-720, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK.
-
(1998)
Perceptrons in Kernel Feature Space
-
-
Frieß, T.1
Harrison, R.2
-
19
-
-
0343136966
-
Optimization by simulated annealing: Quantitative studies
-
Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. J. Statistical Physics, 34, 975-986.
-
(1984)
J. Statistical Physics
, vol.34
, pp. 975-986
-
-
Kirkpatrick, S.1
-
20
-
-
0002859310
-
Learning algorithms for classification: A comparism on handwritten digit recognition
-
LeCun, Y., Jackel, L., Bottou, L., Cortes, C., Denker, J., Drucker, H., Guyon, I., Müller, U., Säckinger, E., Simard, P., & Vapnik, V. (1995). Learning algorithms for classification: A comparism on handwritten digit recognition. Neural Networks, 261-276.
-
(1995)
Neural Networks
, pp. 261-276
-
-
LeCun, Y.1
Jackel, L.2
Bottou, L.3
Cortes, C.4
Denker, J.5
Drucker, H.6
Guyon, I.7
Müller, U.8
Säckinger, E.9
Simard, P.10
Vapnik, V.11
-
21
-
-
0000963583
-
Linear and nonlinear separation of patterns by linear programming
-
Mangasarian, O. (1965). Linear and nonlinear separation of patterns by linear programming. Operations Research, 13, 444-452.
-
(1965)
Operations Research
, vol.13
, pp. 444-452
-
-
Mangasarian, O.1
-
22
-
-
0033870982
-
Improved generalization through explicit optimization of margins
-
Mason, L., Bartlett, P. L., & Baxter, J. (2000a). Improved generalization through explicit optimization of margins. Machine Learning 38(3), 243-255.
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 243-255
-
-
Mason, L.1
Bartlett, P.L.2
Baxter, J.3
-
23
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
A. J. Smola, P. Bartlett, B. Schölkopf, & C. Schuurmans (Eds.), Cambridge, MA: MIT Press
-
Mason, L., Baxter, J., Bartlett, P. L., & Frean, M. (2000b). Functional gradient techniques for combining hypotheses. In A. J. Smola, P. Bartlett, B. Schölkopf, & C. Schuurmans (Eds.), Advances in Large Margin Classifiers. Cambridge, MA: MIT Press.
-
(2000)
Advances in Large Margin Classifiers
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.4
-
24
-
-
0000672424
-
Fast learning in networks of locally-tuned processing units
-
Moody, J. & Darken, C. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, 1(2), 281-294.
-
(1989)
Neural Computation
, vol.1
, Issue.2
, pp. 281-294
-
-
Moody, J.1
Darken, C.2
-
25
-
-
0003219590
-
Using support vector machines for time series prediction
-
B. Schölkopf, C. Burges, & A. Smola (Eds.), Cambridge, MA: MIT Press
-
Müller, K.-R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., & Vapnik, V. (1998). Using support vector machines for time series prediction. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Müller, K.-R.1
Smola, A.2
Rätsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
26
-
-
0342749314
-
An asymptotic analysis of ADABOOST in the binary classification case
-
L. Niklasson, M. Bodén, & T. Ziemke (Eds.)
-
Onoda, T., Rätsch, G., & Müller, K.-R. (1998). An asymptotic analysis of ADABOOST in the binary classification case. In L. Niklasson, M. Bodén, & T. Ziemke (Eds.), Proceedings ICANN'98: Int. Conf. on Artificial Neural Networks (pp. 195-200).
-
(1998)
Proceedings ICANN'98: Int. Conf. on Artificial Neural Networks
, pp. 195-200
-
-
Onoda, T.1
Rätsch, G.2
Müller, K.-R.3
-
27
-
-
0343183970
-
An asymptotical analysis and improvement of ADABOOST in the binary classification case
-
in Japanese
-
Onoda, T., Rätsch, G., & Müller, K.-R. (2000). An asymptotical analysis and improvement of ADABOOST in the binary classification case. Journal of Japanese Society for AI, 15(2), 287-296 (in Japanese).
-
(2000)
Journal of Japanese Society for AI
, vol.15
, Issue.2
, pp. 287-296
-
-
Onoda, T.1
Rätsch, G.2
Müller, K.-R.3
-
28
-
-
0004161838
-
-
Cambridge: Cambridge University Press
-
Press, W., Flannery, B., Teukolsky, S., & Vetterling, W. (1992). Numerical Recipes in C (2nd ed.). Cambridge: Cambridge University Press.
-
(1992)
Numerical Recipes in C (2nd Ed.)
-
-
Press, W.1
Flannery, B.2
Teukolsky, S.3
Vetterling, W.4
-
31
-
-
4243791869
-
-
Master's Thesis, Department of Computer Science, University of Potsdam, Germany (in German)
-
Rätsch, G. (1998). Ensemble learning methods for classification. Master's Thesis, Department of Computer Science, University of Potsdam, Germany (in German).
-
(1998)
Ensemble Learning Methods for Classification
-
-
Rätsch, G.1
-
32
-
-
0003851811
-
-
Technical Report NC-TR-1998-021, Department of Computer Science, Royal Holloway, University of London, Egham, UK
-
Rätsch, G., Onoda, T., & Müller, K.-R. (1998). Soft margins for ADABOOST. Technical Report NC-TR-1998-021, Department of Computer Science, Royal Holloway, University of London, Egham, UK.
-
(1998)
Soft Margins for ADABOOST
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
33
-
-
0001102148
-
Regularizing ADABOOST
-
M. Kearns, S. Solla, & D. Cohn (Eds.), Cambridge, MA: MIT Press
-
Rätsch, G., Onoda, T., & Müller, K.-R. (1999). Regularizing ADABOOST. In M. Kearns, S. Solla, & D. Cohn (Eds.), Advances in Neural Information Processing Systems 11 (pp. 564-570). Cambridge, MA: MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 564-570
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
34
-
-
0002829165
-
Robust ensemble learning
-
A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Cambridge, MA: MIT Press
-
Rätsch, G., Schölkopf, B., Smola, A., Mika, S., Onoda, T., & Müller, K.-R. (2000). Robust ensemble learning. In A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in Large Margin Classifiers (pp. 207-219). Cambridge, MA: MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 207-219
-
-
Rätsch, G.1
Schölkopf, B.2
Smola, A.3
Mika, S.4
Onoda, T.5
Müller, K.-R.6
-
35
-
-
0000897188
-
Barrier boosting
-
Los Altos, CA: Morgan Kaufmann
-
Rätsch, G., Warmuth, M., Mika, S., Onoda, T., Lemm, S., & Müller, K.-R. (2000). Barrier boosting. In Proceedings COLT'00: Conference on Computational Learning Theory (pp. 170-179). Los Altos, CA: Morgan Kaufmann.
-
(2000)
Proceedings COLT'00: Conference on Computational Learning Theory
, pp. 170-179
-
-
Rätsch, G.1
Warmuth, M.2
Mika, S.3
Onoda, T.4
Lemm, S.5
Müller, K.-R.6
-
36
-
-
0342314490
-
Improving the generalization performance of the minimum classification error learning and its application to neural networks
-
Japan, Kitakyushu
-
Rokui, J. & Shimodaira, H. (1998). Improving the generalization performance of the minimum classification error learning and its application to neural networks. In Proc. of the Int. Conf. on Neural Information Processing (ICONIP) (pp. 63-66). Japan, Kitakyushu.
-
(1998)
Proc. of the Int. Conf. on Neural Information Processing (ICONIP)
, pp. 63-66
-
-
Rokui, J.1
Shimodaira, H.2
-
38
-
-
0002595663
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Los Altos, CA: Morgan Kaufmann
-
Schapire, R., Freund, Y., Bartlett, P., & Lee, W. (1997). Boosting the margin: A new explanation for the effectiveness of voting methods. In Proceedings ICML'97: International Conference on Machine Learning (pp. 322-330). Los Altos, CA: Morgan Kaufmann.
-
(1997)
Proceedings ICML'97: International Conference on Machine Learning
, pp. 322-330
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
41
-
-
17444438778
-
New support vector algorithms
-
NeuroCOLT TR-31-89
-
Schölkopf, B., Smola, A., & Williamson, R. (2000). New support vector algorithms. Neural Computation. also NeuroCOLT TR-31-89, 12:1083-1121.
-
(2000)
Neural Computation
, vol.12
, pp. 1083-1121
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.3
-
42
-
-
84956609453
-
AdaBoosting neural networks
-
W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Eds.), Berlin: Springer
-
Schwenk, H. & Bengio, Y. (1997). AdaBoosting neural networks. In W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Eds.), Proceedings ICANN'97: Int. Conf. on Artificial Neural Networks, Vol. 1327 of LNCS (pp. 967-972). Berlin: Springer.
-
(1997)
Proceedings ICANN'97: Int. Conf. on Artificial Neural Networks, Vol. 1327 of LNCS
, vol.1327
, pp. 967-972
-
-
Schwenk, H.1
Bengio, Y.2
-
43
-
-
0004094721
-
-
Ph.D. Thesis, Technische Universität Berlin
-
Smola, A. J. (1998). Learning with kernels. Ph.D. Thesis, Technische Universität Berlin.
-
(1998)
Learning with Kernels
-
-
Smola, A.J.1
-
44
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Smola, A., Schölkopf, B., & Müller, K.-R. (1998). The connection between regularization operators and support vector kernels. Neural Networks, 11, 637-649.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.1
Schölkopf, B.2
Müller, K.-R.3
-
48
-
-
0012307221
-
-
Technical Report CSD-TR-97-23, Royal Holloway, University of London, Egham, UK
-
Weston, J., Gammerman, A., Stitson, M. O., Vapnik, V., Vovk, V., & Watkins, C. (1997). Density estimation using SV machines. Technical Report CSD-TR-97-23, Royal Holloway, University of London, Egham, UK.
-
(1997)
Density Estimation Using SV Machines
-
-
Weston, J.1
Gammerman, A.2
Stitson, M.O.3
Vapnik, V.4
Vovk, V.5
Watkins, C.6
|