-
1
-
-
85161148381
-
The elements of statistical learning data mining, inference and prediction
-
T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin The elements of statistical learning data mining, inference and prediction Math. Intell. 27 2 2005 83 85
-
(2005)
Math. Intell.
, vol.27
, Issue.2
, pp. 83-85
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
Franklin, J.4
-
2
-
-
80053403826
-
Ensemble methods in machine learning
-
Springer Berlin Heidelberg
-
T. Dietterich, Ensemble methods in machine learning, in: Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 1857, Springer Berlin Heidelberg, 2000, pp. 1-15.
-
(2000)
Multiple Classifier Systems, Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.1
-
3
-
-
84857459505
-
Combining pattern classifiers methods and algorithms
-
(L.I. Kuncheva, 2004) [Book Review]
-
L.I. Kuncheva Combining pattern classifiers methods and algorithms IEEE Trans. Neural Netw. 18 3 2007 964 (L.I. Kuncheva, 2004) [Book Review]
-
(2007)
IEEE Trans. Neural Netw.
, vol.18
, Issue.3
, pp. 964
-
-
Kuncheva, L.I.1
-
4
-
-
0032645080
-
An empirical comparison of voting classification algorithms bagging, boosting, and variants
-
E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms bagging, boosting, and variants Mach. Learn. 36 1-2 1999 105 139
-
(1999)
Mach. Learn.
, vol.36
, Issue.12
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
5
-
-
0030211964
-
Bagging predictors
-
L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 8 1998 832 844
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.1
-
7
-
-
80052213499
-
Multiple kernel learning algorithms
-
M. Gönen, and E. AlpaydIn Multiple kernel learning algorithms J. Mach. Learn. Res. 12 2011 2211 2268
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2211-2268
-
-
Gönen, M.1
Alpaydin, E.2
-
9
-
-
84877781106
-
The role of combining rules in bagging and boosting
-
M. Skurichina, and R. Duin The role of combining rules in bagging and boosting Adv. Pattern Recognit. 2000 631 640
-
(2000)
Adv. Pattern Recognit.
, pp. 631-640
-
-
Skurichina, M.1
Duin, R.2
-
10
-
-
79551523991
-
Greedy optimization classifiers ensemble based on diversity
-
S. Mao, L. Jiao, L. Xiong, and S. Gou Greedy optimization classifiers ensemble based on diversity Pattern Recognit. 44 6 2011 1245 1261
-
(2011)
Pattern Recognit.
, vol.44
, Issue.6
, pp. 1245-1261
-
-
Mao, S.1
Jiao, L.2
Xiong, L.3
Gou, S.4
-
12
-
-
0029728458
-
Face recognition using hybrid classifier systems
-
IEEE
-
S. Gutta, H. Wechsler, Face recognition using hybrid classifier systems, in: IEEE International Conference on Neural Networks, vol. 2, IEEE, 1996, pp. 1017-1022.
-
(1996)
IEEE International Conference on Neural Networks
, vol.2
, pp. 1017-1022
-
-
Gutta, S.1
Wechsler, H.2
-
13
-
-
19044398807
-
Bundling classifiers by bagging trees
-
T. Hothorn, and B. Lausen Bundling classifiers by bagging trees Comput. Stat. Data Anal. 49 4 2005 1068 1078
-
(2005)
Comput. Stat. Data Anal.
, vol.49
, Issue.4
, pp. 1068-1078
-
-
Hothorn, T.1
Lausen, B.2
-
15
-
-
13244289883
-
Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
-
H. Jiang, Y. Deng, H. Chen, L. Tao, Q. Sha, J. Chen, C. Tsai, and S. Zhang Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes BMC Bioinf. 5 1 2004 81
-
(2004)
BMC Bioinf.
, vol.5
, Issue.1
, pp. 81
-
-
Jiang, H.1
Deng, Y.2
Chen, H.3
Tao, L.4
Sha, Q.5
Chen, J.6
Tsai, C.7
Zhang, S.8
-
16
-
-
34250698845
-
A feature selection method for multilevel mental fatigue eeg classification
-
K.-Q. Shen, C.-J. Ong, X.-P. Li, Z. Hui, and E. Wilder-Smith A feature selection method for multilevel mental fatigue eeg classification IEEE Trans. Biomed. Eng. 54 7 2007 1231 1237
-
(2007)
IEEE Trans. Biomed. Eng.
, vol.54
, Issue.7
, pp. 1231-1237
-
-
Shen, K.-Q.1
Ong, C.-J.2
Li, X.-P.3
Hui, Z.4
Wilder-Smith, E.5
-
17
-
-
0345548657
-
Random forest a classification and regression tool for compound classification and qsar modeling
-
V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan, and B. Feuston Random forest a classification and regression tool for compound classification and qsar modeling J. Chem. Inf. Comput. Sci. 43 6 2003 1947 1958
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, Issue.6
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.4
Sheridan, R.5
Feuston, B.6
-
18
-
-
13344278660
-
Random forest classifier for remote sensing classification
-
M. Pal Random forest classifier for remote sensing classification Int. J. Remote Sens. 26 1 2005 217 222
-
(2005)
Int. J. Remote Sens.
, vol.26
, Issue.1
, pp. 217-222
-
-
Pal, M.1
-
20
-
-
33847236254
-
Multivariate feature selection and hierarchical classification for infrared spectroscopy serum-based detection of bovine spongiform encephalopathy
-
B. Menze, W. Petrich, and F. Hamprecht Multivariate feature selection and hierarchical classification for infrared spectroscopy serum-based detection of bovine spongiform encephalopathy Anal. Bioanal. Chem. 387 5 2007 1801 1807
-
(2007)
Anal. Bioanal. Chem.
, vol.387
, Issue.5
, pp. 1801-1807
-
-
Menze, B.1
Petrich, W.2
Hamprecht, F.3
-
22
-
-
68949140728
-
A comparison of random forest and its gini importance with standard chemometric methods for the feature selection and classification of spectral data
-
B. Menze, B. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich, and F. Hamprecht A comparison of random forest and its gini importance with standard chemometric methods for the feature selection and classification of spectral data BMC Bioinf. 10 1 2009 213
-
(2009)
BMC Bioinf.
, vol.10
, Issue.1
, pp. 213
-
-
Menze, B.1
Kelm, B.2
Masuch, R.3
Himmelreich, U.4
Bachert, P.5
Petrich, W.6
Hamprecht, F.7
-
23
-
-
68949154557
-
Feature selection with ensembles, artificial variables, and redundancy elimination
-
E. Tuv, A. Borisov, G. Runger, and K. Torkkola Feature selection with ensembles, artificial variables, and redundancy elimination J. Mach. Learn. Res. 10 2009 1341 1366
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1341-1366
-
-
Tuv, E.1
Borisov, A.2
Runger, G.3
Torkkola, K.4
-
24
-
-
61749086397
-
Subgroup analysis via recursive partitioning
-
X. Su, C. Tsai, H. Wang, D. Nickerson, and B. Li Subgroup analysis via recursive partitioning J. Mach. Learn. Res. 10 2009 141 158
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 141-158
-
-
Su, X.1
Tsai, C.2
Wang, H.3
Nickerson, D.4
Li, B.5
-
25
-
-
78649326452
-
Afp-pred a random forest approach for predicting antifreeze proteins from sequence-derived properties
-
K. Kandaswamy, K. Chou, T. Martinetz, S. Möller, P. Suganthan, S. Sridharan, and G. Pugalenthi Afp-pred a random forest approach for predicting antifreeze proteins from sequence-derived properties J. Theor. Biol. 270 1 2011 56 62
-
(2011)
J. Theor. Biol.
, vol.270
, Issue.1
, pp. 56-62
-
-
Kandaswamy, K.1
Chou, K.2
Martinetz, T.3
Möller, S.4
Suganthan, P.5
Sridharan, S.6
Pugalenthi, G.7
-
26
-
-
33750357665
-
Improving random forests
-
M. Robnik-Šikonja Improving random forests Mach. Learn.: ECML 2004 2004 359 370
-
(2004)
Mach. Learn.: ECML
, vol.2004
, pp. 359-370
-
-
Robnik-Šikonja, M.1
-
27
-
-
80052423308
-
On oblique random forests
-
B. Menze, B. Kelm, D. Splitthoff, U. Koethe, and F. Hamprecht On oblique random forests Mach. Learn. Knowl. Discov. Databases 2011 453 469
-
(2011)
Mach. Learn. Knowl. Discov. Databases
, pp. 453-469
-
-
Menze, B.1
Kelm, B.2
Splitthoff, D.3
Koethe, U.4
Hamprecht, F.5
-
28
-
-
84870244637
-
Stratified sampling for feature subspace selection in random forests for high dimensional data
-
Ye Yunming et al. Stratified sampling for feature subspace selection in random forests for high dimensional data Pattern Recogn. 46 3 2013 769 787
-
(2013)
Pattern Recogn.
, vol.46
, Issue.3
, pp. 769-787
-
-
Yunming, Y.1
-
30
-
-
33847666463
-
Linear discriminant analysis
-
D. Zhang, X. Jing, J. Yang, Linear discriminant analysis, in: Biometric Image Discrimination Technologies: Computational Intelligence and Its Applications Series, IgI Global, Hershey, Pennsylvania, USA, 2006, pp. 41-64.
-
(2006)
Biometric Image Discrimination Technologies: Computational Intelligence and Its Applications Series, IgI Global, Hershey, Pennsylvania, USA
, pp. 41-64
-
-
Zhang, D.1
Jing, X.2
Yang, J.3
-
31
-
-
62649144639
-
Discriminant random forests
-
T.D. Lemmond, A.O. Hatch, B.Y. Chen, D.A. Knapp, L.J. Hiller, M.J. Mugge, W.G. Hanley, Discriminant random forests, in: Proceedings of the 2008 International Conference on Data Mining, 2008.
-
(2008)
Proceedings of the 2008 International Conference on Data Mining
-
-
Lemmond, T.D.1
Hatch, A.O.2
Chen, B.Y.3
Knapp, D.A.4
Hiller, L.J.5
Mugge, M.J.6
Hanley, W.G.7
-
32
-
-
85032750950
-
Linear subspace learning-based dimensionality reduction
-
X. Jiang Linear subspace learning-based dimensionality reduction IEEE Signal Process. Mag. 28 2 2011 16 26
-
(2011)
IEEE Signal Process. Mag.
, vol.28
, Issue.2
, pp. 16-26
-
-
Jiang, X.1
-
33
-
-
79958004813
-
An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction
-
K.W. De Bock, and D.V.D. Poel An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction Exp. Syst. Appl. 38 10 2011 12293 12301
-
(2011)
Exp. Syst. Appl.
, vol.38
, Issue.10
, pp. 12293-12301
-
-
De Bock, K.W.1
Poel, D.V.D.2
-
34
-
-
37249046891
-
An experimental study on rotation forest ensembles
-
Springer
-
L.I. Kuncheva, and J.J. Rodríguez An experimental study on rotation forest ensembles Multiple Classifier Systems 2007 Springer pp. 459-468
-
(2007)
Multiple Classifier Systems
, pp. 459-468
-
-
Kuncheva, L.I.1
Rodríguez, J.J.2
-
35
-
-
0016484071
-
An optimal set of discriminant vectors
-
D. Foley, and J. Sammon Jr. An optimal set of discriminant vectors IEEE Trans. Comput. 100 3 1975 281 289
-
(1975)
IEEE Trans. Comput.
, vol.100
, Issue.3
, pp. 281-289
-
-
Foley, D.1
Sammon, Jr.J.2
-
36
-
-
0015755579
-
A new approach to feature selection based on the Karhunen-Loeve expansion
-
J. Kittler, and P. Young A new approach to feature selection based on the Karhunen-Loeve expansion Pattern Recognit. 5 4 1973 335 352
-
(1973)
Pattern Recognit.
, vol.5
, Issue.4
, pp. 335-352
-
-
Kittler, J.1
Young, P.2
-
38
-
-
10044280127
-
An in-silico method for prediction of polyadenylation signals in human sequences
-
H. Liu, H. Han, J. Li, and L. Wong An in-silico method for prediction of polyadenylation signals in human sequences Genome Inf. Ser. 2003 84 93
-
(2003)
Genome Inf. Ser.
, pp. 84-93
-
-
Liu, H.1
Han, H.2
Li, J.3
Wong, L.4
-
40
-
-
78649857193
-
Smpred a support vector machine approach to identify structural motifs in protein structure without using evolutionary information
-
G. Pugalenthi, K.K. Kandaswamy, P. Suganthan, R. Sowdhamini, T. Martinetz, and P.R. Kolatkar Smpred a support vector machine approach to identify structural motifs in protein structure without using evolutionary information J. Biomol. Struct. Dyn. 28 3 2010 405 414
-
(2010)
J. Biomol. Struct. Dyn.
, vol.28
, Issue.3
, pp. 405-414
-
-
Pugalenthi, G.1
Kandaswamy, K.K.2
Suganthan, P.3
Sowdhamini, R.4
Martinetz, T.5
Kolatkar, P.R.6
-
41
-
-
0028734063
-
Parameterisation of a stochastic model for human face identification
-
F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, 1994, IEEE, pp. 138-142.
-
Proceedings of the Second IEEE Workshop on Applications of Computer Vision, 1994, IEEE
, pp. 138-142
-
-
Samaria, F.S.1
Harter, A.C.2
-
42
-
-
4544292940
-
The cmu pose, illumination, and expression (pie) database
-
T. Sim, S. Baker, M. Bsat, The cmu pose, illumination, and expression (pie) database, in: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 2002, IEEE, pp. 46-51.
-
Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 2002, IEEE
, pp. 46-51
-
-
Sim, T.1
Baker, S.2
Bsat, M.3
-
44
-
-
0035363672
-
From few to many illumination cone models for face recognition under variable lighting and pose
-
A. Georghiades, P. Belhumeur, and D. Kriegman From few to many illumination cone models for face recognition under variable lighting and pose IEEE Trans. Pattern Anal. Mach. Intell. 23 6 2001 643 660
-
(2001)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.23
, Issue.6
, pp. 643-660
-
-
Georghiades, A.1
Belhumeur, P.2
Kriegman, D.3
-
46
-
-
0242292336
-
Sequence determinants in human polyadenylation site selection
-
M. Legendre, and D. Gautheret Sequence determinants in human polyadenylation site selection BMC Genomics 4 1 2003 7
-
(2003)
BMC Genomics
, vol.4
, Issue.1
, pp. 7
-
-
Legendre, M.1
Gautheret, D.2
-
47
-
-
0002289220
-
Pruning adaptive boosting
-
D. Margineantu, T. Dietterich, Pruning adaptive boosting, in: International Workshop Conference on Machine Learning, Citeseer, 1997, pp. 211-218.
-
(1997)
International Workshop Conference on Machine Learning, Citeseer
, pp. 211-218
-
-
Margineantu, D.1
Dietterich, T.2
|