메뉴 건너뛰기




Volumn 47, Issue 10, 2014, Pages 3429-3437

Random Forests with ensemble of feature spaces

Author keywords

Classification; Diversity; Ensemble; Rotation; Transformation

Indexed keywords

BENCHMARKING; CLASSIFICATION (OF INFORMATION); FORESTRY; RESEARCH; ROTATION;

EID: 84902362182     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.04.001     Document Type: Article
Times cited : (125)

References (47)
  • 1
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning data mining, inference and prediction
    • T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin The elements of statistical learning data mining, inference and prediction Math. Intell. 27 2 2005 83 85
    • (2005) Math. Intell. , vol.27 , Issue.2 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3    Franklin, J.4
  • 3
    • 84857459505 scopus 로고    scopus 로고
    • Combining pattern classifiers methods and algorithms
    • (L.I. Kuncheva, 2004) [Book Review]
    • L.I. Kuncheva Combining pattern classifiers methods and algorithms IEEE Trans. Neural Netw. 18 3 2007 964 (L.I. Kuncheva, 2004) [Book Review]
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.3 , pp. 964
    • Kuncheva, L.I.1
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms bagging, boosting, and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms bagging, boosting, and variants Mach. Learn. 36 1-2 1999 105 139
    • (1999) Mach. Learn. , vol.36 , Issue.12 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 8 1998 832 844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.1
  • 7
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • M. Gönen, and E. AlpaydIn Multiple kernel learning algorithms J. Mach. Learn. Res. 12 2011 2211 2268
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydin, E.2
  • 9
    • 84877781106 scopus 로고    scopus 로고
    • The role of combining rules in bagging and boosting
    • M. Skurichina, and R. Duin The role of combining rules in bagging and boosting Adv. Pattern Recognit. 2000 631 640
    • (2000) Adv. Pattern Recognit. , pp. 631-640
    • Skurichina, M.1    Duin, R.2
  • 10
    • 79551523991 scopus 로고    scopus 로고
    • Greedy optimization classifiers ensemble based on diversity
    • S. Mao, L. Jiao, L. Xiong, and S. Gou Greedy optimization classifiers ensemble based on diversity Pattern Recognit. 44 6 2011 1245 1261
    • (2011) Pattern Recognit. , vol.44 , Issue.6 , pp. 1245-1261
    • Mao, S.1    Jiao, L.2    Xiong, L.3    Gou, S.4
  • 13
    • 19044398807 scopus 로고    scopus 로고
    • Bundling classifiers by bagging trees
    • T. Hothorn, and B. Lausen Bundling classifiers by bagging trees Comput. Stat. Data Anal. 49 4 2005 1068 1078
    • (2005) Comput. Stat. Data Anal. , vol.49 , Issue.4 , pp. 1068-1078
    • Hothorn, T.1    Lausen, B.2
  • 15
    • 13244289883 scopus 로고    scopus 로고
    • Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
    • H. Jiang, Y. Deng, H. Chen, L. Tao, Q. Sha, J. Chen, C. Tsai, and S. Zhang Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes BMC Bioinf. 5 1 2004 81
    • (2004) BMC Bioinf. , vol.5 , Issue.1 , pp. 81
    • Jiang, H.1    Deng, Y.2    Chen, H.3    Tao, L.4    Sha, Q.5    Chen, J.6    Tsai, C.7    Zhang, S.8
  • 16
    • 34250698845 scopus 로고    scopus 로고
    • A feature selection method for multilevel mental fatigue eeg classification
    • K.-Q. Shen, C.-J. Ong, X.-P. Li, Z. Hui, and E. Wilder-Smith A feature selection method for multilevel mental fatigue eeg classification IEEE Trans. Biomed. Eng. 54 7 2007 1231 1237
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , Issue.7 , pp. 1231-1237
    • Shen, K.-Q.1    Ong, C.-J.2    Li, X.-P.3    Hui, Z.4    Wilder-Smith, E.5
  • 17
    • 0345548657 scopus 로고    scopus 로고
    • Random forest a classification and regression tool for compound classification and qsar modeling
    • V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan, and B. Feuston Random forest a classification and regression tool for compound classification and qsar modeling J. Chem. Inf. Comput. Sci. 43 6 2003 1947 1958
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , Issue.6 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.4    Sheridan, R.5    Feuston, B.6
  • 18
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • M. Pal Random forest classifier for remote sensing classification Int. J. Remote Sens. 26 1 2005 217 222
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 20
    • 33847236254 scopus 로고    scopus 로고
    • Multivariate feature selection and hierarchical classification for infrared spectroscopy serum-based detection of bovine spongiform encephalopathy
    • B. Menze, W. Petrich, and F. Hamprecht Multivariate feature selection and hierarchical classification for infrared spectroscopy serum-based detection of bovine spongiform encephalopathy Anal. Bioanal. Chem. 387 5 2007 1801 1807
    • (2007) Anal. Bioanal. Chem. , vol.387 , Issue.5 , pp. 1801-1807
    • Menze, B.1    Petrich, W.2    Hamprecht, F.3
  • 22
    • 68949140728 scopus 로고    scopus 로고
    • A comparison of random forest and its gini importance with standard chemometric methods for the feature selection and classification of spectral data
    • B. Menze, B. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich, and F. Hamprecht A comparison of random forest and its gini importance with standard chemometric methods for the feature selection and classification of spectral data BMC Bioinf. 10 1 2009 213
    • (2009) BMC Bioinf. , vol.10 , Issue.1 , pp. 213
    • Menze, B.1    Kelm, B.2    Masuch, R.3    Himmelreich, U.4    Bachert, P.5    Petrich, W.6    Hamprecht, F.7
  • 23
    • 68949154557 scopus 로고    scopus 로고
    • Feature selection with ensembles, artificial variables, and redundancy elimination
    • E. Tuv, A. Borisov, G. Runger, and K. Torkkola Feature selection with ensembles, artificial variables, and redundancy elimination J. Mach. Learn. Res. 10 2009 1341 1366
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1341-1366
    • Tuv, E.1    Borisov, A.2    Runger, G.3    Torkkola, K.4
  • 26
  • 28
    • 84870244637 scopus 로고    scopus 로고
    • Stratified sampling for feature subspace selection in random forests for high dimensional data
    • Ye Yunming et al. Stratified sampling for feature subspace selection in random forests for high dimensional data Pattern Recogn. 46 3 2013 769 787
    • (2013) Pattern Recogn. , vol.46 , Issue.3 , pp. 769-787
    • Yunming, Y.1
  • 32
    • 85032750950 scopus 로고    scopus 로고
    • Linear subspace learning-based dimensionality reduction
    • X. Jiang Linear subspace learning-based dimensionality reduction IEEE Signal Process. Mag. 28 2 2011 16 26
    • (2011) IEEE Signal Process. Mag. , vol.28 , Issue.2 , pp. 16-26
    • Jiang, X.1
  • 33
    • 79958004813 scopus 로고    scopus 로고
    • An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction
    • K.W. De Bock, and D.V.D. Poel An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction Exp. Syst. Appl. 38 10 2011 12293 12301
    • (2011) Exp. Syst. Appl. , vol.38 , Issue.10 , pp. 12293-12301
    • De Bock, K.W.1    Poel, D.V.D.2
  • 34
    • 37249046891 scopus 로고    scopus 로고
    • An experimental study on rotation forest ensembles
    • Springer
    • L.I. Kuncheva, and J.J. Rodríguez An experimental study on rotation forest ensembles Multiple Classifier Systems 2007 Springer pp. 459-468
    • (2007) Multiple Classifier Systems , pp. 459-468
    • Kuncheva, L.I.1    Rodríguez, J.J.2
  • 35
    • 0016484071 scopus 로고
    • An optimal set of discriminant vectors
    • D. Foley, and J. Sammon Jr. An optimal set of discriminant vectors IEEE Trans. Comput. 100 3 1975 281 289
    • (1975) IEEE Trans. Comput. , vol.100 , Issue.3 , pp. 281-289
    • Foley, D.1    Sammon, Jr.J.2
  • 36
    • 0015755579 scopus 로고
    • A new approach to feature selection based on the Karhunen-Loeve expansion
    • J. Kittler, and P. Young A new approach to feature selection based on the Karhunen-Loeve expansion Pattern Recognit. 5 4 1973 335 352
    • (1973) Pattern Recognit. , vol.5 , Issue.4 , pp. 335-352
    • Kittler, J.1    Young, P.2
  • 38
    • 10044280127 scopus 로고    scopus 로고
    • An in-silico method for prediction of polyadenylation signals in human sequences
    • H. Liu, H. Han, J. Li, and L. Wong An in-silico method for prediction of polyadenylation signals in human sequences Genome Inf. Ser. 2003 84 93
    • (2003) Genome Inf. Ser. , pp. 84-93
    • Liu, H.1    Han, H.2    Li, J.3    Wong, L.4
  • 40
    • 78649857193 scopus 로고    scopus 로고
    • Smpred a support vector machine approach to identify structural motifs in protein structure without using evolutionary information
    • G. Pugalenthi, K.K. Kandaswamy, P. Suganthan, R. Sowdhamini, T. Martinetz, and P.R. Kolatkar Smpred a support vector machine approach to identify structural motifs in protein structure without using evolutionary information J. Biomol. Struct. Dyn. 28 3 2010 405 414
    • (2010) J. Biomol. Struct. Dyn. , vol.28 , Issue.3 , pp. 405-414
    • Pugalenthi, G.1    Kandaswamy, K.K.2    Suganthan, P.3    Sowdhamini, R.4    Martinetz, T.5    Kolatkar, P.R.6
  • 44
    • 0035363672 scopus 로고    scopus 로고
    • From few to many illumination cone models for face recognition under variable lighting and pose
    • A. Georghiades, P. Belhumeur, and D. Kriegman From few to many illumination cone models for face recognition under variable lighting and pose IEEE Trans. Pattern Anal. Mach. Intell. 23 6 2001 643 660
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 46
    • 0242292336 scopus 로고    scopus 로고
    • Sequence determinants in human polyadenylation site selection
    • M. Legendre, and D. Gautheret Sequence determinants in human polyadenylation site selection BMC Genomics 4 1 2003 7
    • (2003) BMC Genomics , vol.4 , Issue.1 , pp. 7
    • Legendre, M.1    Gautheret, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.