메뉴 건너뛰기




Volumn 143, Issue , 2014, Pages 302-311

Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction

Author keywords

Ensembles; Hybrid multi objective evolutionary algorithms; Recurrent neural networks; Selection; Time series prediction

Indexed keywords

EVOLUTIONARY ALGORITHMS; FORECASTING; RECURRENT NEURAL NETWORKS;

EID: 84904797921     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.05.062     Document Type: Article
Times cited : (112)

References (55)
  • 1
    • 80053306318 scopus 로고    scopus 로고
    • A novel neural network ensemble architecture for time series forecasting
    • Gheyas I.A., Smith L.S. A novel neural network ensemble architecture for time series forecasting. Neurocomputing 2011, 74(18):3855-3864.
    • (2011) Neurocomputing , vol.74 , Issue.18 , pp. 3855-3864
    • Gheyas, I.A.1    Smith, L.S.2
  • 2
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting. a review and evaluation
    • Hippert H.S., Pedreira C.E., Souza R.C. Neural networks for short-term load forecasting. a review and evaluation. IEEE Trans. Power Syst. 2001, 16(1):44-55.
    • (2001) IEEE Trans. Power Syst. , vol.16 , Issue.1 , pp. 44-55
    • Hippert, H.S.1    Pedreira, C.E.2    Souza, R.C.3
  • 3
    • 84904809156 scopus 로고    scopus 로고
    • SIDC-team, The International Sunspot Number, Monthly Report on the International Sunspot Number, online catalogue, 〈〉.
    • SIDC-team, The International Sunspot Number, Monthly Report on the International Sunspot Number, online catalogue, 〈〉. http://www.sidc.be/sunspot-data/.
  • 4
    • 0031272838 scopus 로고    scopus 로고
    • Forecasting time series with genetic fuzzy predictor ensemble
    • Kim D., Kim C. Forecasting time series with genetic fuzzy predictor ensemble. IEEE Trans. Fuzzy Syst. 1997, 5(4):523-535.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.4 , pp. 523-535
    • Kim, D.1    Kim, C.2
  • 5
    • 84856323880 scopus 로고    scopus 로고
    • A hybrid of multiobjective evolutionary algorithm and HMM-fuzzy model for time series prediction
    • Hassan M.R., Nath B., Kirley M., Kamruzzaman J. A hybrid of multiobjective evolutionary algorithm and HMM-fuzzy model for time series prediction. Neurocomputing 2012, 81:1-11.
    • (2012) Neurocomputing , vol.81 , pp. 1-11
    • Hassan, M.R.1    Nath, B.2    Kirley, M.3    Kamruzzaman, J.4
  • 7
    • 85008014942 scopus 로고    scopus 로고
    • Evolving artificial neural network ensembles
    • Yao X., Islam M.M. Evolving artificial neural network ensembles. IEEE Comput. Intell. Mag. 2008, 3(1):31-42.
    • (2008) IEEE Comput. Intell. Mag. , vol.3 , Issue.1 , pp. 31-42
    • Yao, X.1    Islam, M.M.2
  • 9
    • 0032095527 scopus 로고    scopus 로고
    • Making use of population information in evolutionary artificial neural networks
    • Yao X., Liu Y. Making use of population information in evolutionary artificial neural networks. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 1998, 28(3):417-425.
    • (1998) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.28 , Issue.3 , pp. 417-425
    • Yao, X.1    Liu, Y.2
  • 11
    • 4344623228 scopus 로고    scopus 로고
    • Neural network regularization and ensembling using multi-objective evolutionary algorithms
    • Y. Jin, T. Okabe, B. Sendhoff, Neural network regularization and ensembling using multi-objective evolutionary algorithms, in: IEEE Congress on Evolutionary Computation, vol. 1, 2004, pp. 1-8.
    • (2004) IEEE Congress on Evolutionary Computation , vol.1 , pp. 1-8
    • Jin, Y.1    Okabe, T.2    Sendhoff, B.3
  • 13
    • 84901459245 scopus 로고    scopus 로고
    • Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization
    • H. Abbass, Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization, in: IEEE Congress on Evolutionary Computation, vol. 3, 2003, pp. 2074-2080.
    • (2003) IEEE Congress on Evolutionary Computation , vol.3 , pp. 2074-2080
    • Abbass, H.1
  • 14
    • 43449135303 scopus 로고    scopus 로고
    • Pareto-based multiobjective machine learning. an overview and case studies
    • Jin Y., Sendhoff B. Pareto-based multiobjective machine learning. an overview and case studies. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 2008, 38:397-445.
    • (2008) IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. , vol.38 , pp. 397-445
    • Jin, Y.1    Sendhoff, B.2
  • 17
    • 84862823570 scopus 로고    scopus 로고
    • Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction
    • Chandra R., Zhang M. Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 2012, 86:116-123.
    • (2012) Neurocomputing , vol.86 , pp. 116-123
    • Chandra, R.1    Zhang, M.2
  • 18
    • 84882827352 scopus 로고    scopus 로고
    • A hybrid optimization-based recurrent neural network for real-time data prediction
    • Wang X., Ma L., Wang B., Wang T. A hybrid optimization-based recurrent neural network for real-time data prediction. Neurocomputing 2013, 120:547-559.
    • (2013) Neurocomputing , vol.120 , pp. 547-559
    • Wang, X.1    Ma, L.2    Wang, B.3    Wang, T.4
  • 19
    • 77955311883 scopus 로고    scopus 로고
    • Chaotic time series prediction with residual analysis method using hybrid elman-narx neural networks
    • Ardalani-Farsa M., Zolfaghari S. Chaotic time series prediction with residual analysis method using hybrid elman-narx neural networks. Neurocomputing 2010, 73(13-15):2540-2553.
    • (2010) Neurocomputing , vol.73 , Issue.13-15 , pp. 2540-2553
    • Ardalani-Farsa, M.1    Zolfaghari, S.2
  • 22
    • 0142154961 scopus 로고    scopus 로고
    • Recurrent radial basis function network for time-series prediction
    • Zemouri R., Racoceanu D., Zerhouni N. Recurrent radial basis function network for time-series prediction. Eng. Appl. Artif. Intell. 2003, 16:453-463.
    • (2003) Eng. Appl. Artif. Intell. , vol.16 , pp. 453-463
    • Zemouri, R.1    Racoceanu, D.2    Zerhouni, N.3
  • 23
    • 77952549111 scopus 로고    scopus 로고
    • Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems
    • Lukoseviciute K., Ragulskis M. Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems. Neurocomputing 2010, 73(10-12):2077-2088.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 2077-2088
    • Lukoseviciute, K.1    Ragulskis, M.2
  • 26
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks. a survey
    • Pearlmutter B.A. Gradient calculations for dynamic recurrent neural networks. a survey. IEEE Trans. Neural Netw. 1995, 6(5):1212-1228.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 27
    • 9744257846 scopus 로고    scopus 로고
    • Prediction of chaotic time series based on the recurrent predictor neural network
    • Han M., Xi J., Xu S., Yin F.-L. Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process. 2004, 52(12):3409-3416.
    • (2004) IEEE Trans. Signal Process. , vol.52 , Issue.12 , pp. 3409-3416
    • Han, M.1    Xi, J.2    Xu, S.3    Yin, F.-L.4
  • 28
    • 0035186217 scopus 로고    scopus 로고
    • A real-coded genetic algorithm for training recurrent neural networks
    • Blanco A., Delgado M.A., Pegalajar M.C. A real-coded genetic algorithm for training recurrent neural networks. Neural Netw. 2001, 14(1):93-105.
    • (2001) Neural Netw. , vol.14 , Issue.1 , pp. 93-105
    • Blanco, A.1    Delgado, M.A.2    Pegalajar, M.C.3
  • 29
    • 38049153334 scopus 로고    scopus 로고
    • Topology optimization and training of recurrent neural networks with Pareto-based multi-objective algorithms: a experimental study
    • Springer
    • M.P. Cuellar, M.A. Delgado, M.C. Pegalajar, Topology optimization and training of recurrent neural networks with Pareto-based multi-objective algorithms: a experimental study, in: Computational and Ambient Intelligence, Lecture Notes in Computer Science, vol. 4507, Springer, 2007, pp. 359-366.
    • (2007) Computational and Ambient Intelligence, Lecture Notes in Computer Science , vol.4507 , pp. 359-366
    • Cuellar, M.P.1    Delgado, M.A.2    Pegalajar, M.C.3
  • 30
    • 84904795963 scopus 로고    scopus 로고
    • Recurrent neural networks design by means of multi-objective genetic algorithm
    • Chihi H., Arous N. Recurrent neural networks design by means of multi-objective genetic algorithm. Int. J. Comput. Sci. 2011, 8(1):296-302.
    • (2011) Int. J. Comput. Sci. , vol.8 , Issue.1 , pp. 296-302
    • Chihi, H.1    Arous, N.2
  • 33
    • 77955314142 scopus 로고    scopus 로고
    • Constructive training of recurrent neural networks using hybrid optimization
    • Subrahmanya N., Shin Y.C. Constructive training of recurrent neural networks using hybrid optimization. Neurocomputing 2010, 73(13-15):2624-2631.
    • (2010) Neurocomputing , vol.73 , Issue.13-15 , pp. 2624-2631
    • Subrahmanya, N.1    Shin, Y.C.2
  • 34
    • 0033730795 scopus 로고    scopus 로고
    • A study of the lamarckian evolution of recurrent neural networks
    • Ku K.W., Mak M.-W., Siu W.-C. A study of the lamarckian evolution of recurrent neural networks. IEEE Trans. Evolut. 2000, 4(1):31-42.
    • (2000) IEEE Trans. Evolut. , vol.4 , Issue.1 , pp. 31-42
    • Ku, K.W.1    Mak, M.-W.2    Siu, W.-C.3
  • 35
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X. Evolving artificial neural networks. Proc. IEEE 1999, 87(9):1423-1447.
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 37
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods. a survey and categorisation
    • Brown G., Wyatt J., Harris R., Yao X. Diversity creation methods. a survey and categorisation. J. Inf. Fusion 2005, 6(1):1-28.
    • (2005) J. Inf. Fusion , vol.6 , Issue.1 , pp. 1-28
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 39
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks. many could be better than all
    • Zhou Z.-H., Wu J., Tang W. Ensembling neural networks. many could be better than all. Artif. Intell. 2002, 137:239-263.
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 43
    • 0032108106 scopus 로고    scopus 로고
    • Evolutionary algorithms and gradient search. similarities and differences
    • Salomon R. Evolutionary algorithms and gradient search. similarities and differences. IEEE Trans. Evolut. Comput. 1998, 2(2):45-55.
    • (1998) IEEE Trans. Evolut. Comput. , vol.2 , Issue.2 , pp. 45-55
    • Salomon, R.1
  • 45
    • 0037239496 scopus 로고    scopus 로고
    • Recurrent neural networks for time series classification
    • Husken M., Stagge P. Recurrent neural networks for time series classification. Neurocomputing 2003, 50:223-235.
    • (2003) Neurocomputing , vol.50 , pp. 223-235
    • Husken, M.1    Stagge, P.2
  • 47
    • 0033208104 scopus 로고    scopus 로고
    • On characterizing the "knee" of the Pareto curve based on normal-boundary intersection
    • Das I. On characterizing the "knee" of the Pareto curve based on normal-boundary intersection. Struct. Optim. 1999, 18(2-3):107-115.
    • (1999) Struct. Optim. , vol.18 , Issue.2-3 , pp. 107-115
    • Das, I.1
  • 49
    • 62349092355 scopus 로고    scopus 로고
    • Pareto analysis of evolutionary and learning systems
    • Jin Y., Gruna R., Sendhoff B. Pareto analysis of evolutionary and learning systems. Front. Comput. Sci. China 2009, 3(1):4-17.
    • (2009) Front. Comput. Sci. China , vol.3 , Issue.1 , pp. 4-17
    • Jin, Y.1    Gruna, R.2    Sendhoff, B.3
  • 52
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. Science 1977, 1977(4300):287-289.
    • (1977) Science , vol.1977 , Issue.4300 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 53
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm. NSGA-II
    • APRIL
    • Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective genetic algorithm. NSGA-II. IEEE Trans. Evolut. Comput. 2002, 6(April (2)):182-197.
    • (2002) IEEE Trans. Evolut. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 54
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved Rprop learning algorithms
    • Igel C., Husken M. Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing 2003, 50:105-123.
    • (2003) Neurocomputing , vol.50 , pp. 105-123
    • Igel, C.1    Husken, M.2
  • 55
    • 84863906586 scopus 로고    scopus 로고
    • Surrogate-assisted evolutionary computation. recent advances and future challenges
    • Jin Y. Surrogate-assisted evolutionary computation. recent advances and future challenges. Swarm Evolut. Comput. 2011, 1(2):61-70.
    • (2011) Swarm Evolut. Comput. , vol.1 , Issue.2 , pp. 61-70
    • Jin, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.