-
1
-
-
80053306318
-
A novel neural network ensemble architecture for time series forecasting
-
Gheyas I.A., Smith L.S. A novel neural network ensemble architecture for time series forecasting. Neurocomputing 2011, 74(18):3855-3864.
-
(2011)
Neurocomputing
, vol.74
, Issue.18
, pp. 3855-3864
-
-
Gheyas, I.A.1
Smith, L.S.2
-
2
-
-
0035248045
-
Neural networks for short-term load forecasting. a review and evaluation
-
Hippert H.S., Pedreira C.E., Souza R.C. Neural networks for short-term load forecasting. a review and evaluation. IEEE Trans. Power Syst. 2001, 16(1):44-55.
-
(2001)
IEEE Trans. Power Syst.
, vol.16
, Issue.1
, pp. 44-55
-
-
Hippert, H.S.1
Pedreira, C.E.2
Souza, R.C.3
-
3
-
-
84904809156
-
-
SIDC-team, The International Sunspot Number, Monthly Report on the International Sunspot Number, online catalogue, 〈〉.
-
SIDC-team, The International Sunspot Number, Monthly Report on the International Sunspot Number, online catalogue, 〈〉. http://www.sidc.be/sunspot-data/.
-
-
-
-
4
-
-
0031272838
-
Forecasting time series with genetic fuzzy predictor ensemble
-
Kim D., Kim C. Forecasting time series with genetic fuzzy predictor ensemble. IEEE Trans. Fuzzy Syst. 1997, 5(4):523-535.
-
(1997)
IEEE Trans. Fuzzy Syst.
, vol.5
, Issue.4
, pp. 523-535
-
-
Kim, D.1
Kim, C.2
-
5
-
-
84856323880
-
A hybrid of multiobjective evolutionary algorithm and HMM-fuzzy model for time series prediction
-
Hassan M.R., Nath B., Kirley M., Kamruzzaman J. A hybrid of multiobjective evolutionary algorithm and HMM-fuzzy model for time series prediction. Neurocomputing 2012, 81:1-11.
-
(2012)
Neurocomputing
, vol.81
, pp. 1-11
-
-
Hassan, M.R.1
Nath, B.2
Kirley, M.3
Kamruzzaman, J.4
-
7
-
-
85008014942
-
Evolving artificial neural network ensembles
-
Yao X., Islam M.M. Evolving artificial neural network ensembles. IEEE Comput. Intell. Mag. 2008, 3(1):31-42.
-
(2008)
IEEE Comput. Intell. Mag.
, vol.3
, Issue.1
, pp. 31-42
-
-
Yao, X.1
Islam, M.M.2
-
9
-
-
0032095527
-
Making use of population information in evolutionary artificial neural networks
-
Yao X., Liu Y. Making use of population information in evolutionary artificial neural networks. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 1998, 28(3):417-425.
-
(1998)
IEEE Trans. Syst. Man Cybern. Part B: Cybern.
, vol.28
, Issue.3
, pp. 417-425
-
-
Yao, X.1
Liu, Y.2
-
10
-
-
32144456690
-
DIVACE: Diverse and accurate ensemble learning algorithm
-
Springer, Berlin, Heidelberg
-
Chandra A., Yao X. DIVACE: Diverse and accurate ensemble learning algorithm. Intelligent Data Engineering and Automated Learning, IDEAL 2004, Lecture Notes in Computer Science 2004, vol. 3177:619-625. Springer, Berlin, Heidelberg.
-
(2004)
Intelligent Data Engineering and Automated Learning, IDEAL 2004, Lecture Notes in Computer Science
, vol.3177
, pp. 619-625
-
-
Chandra, A.1
Yao, X.2
-
11
-
-
4344623228
-
Neural network regularization and ensembling using multi-objective evolutionary algorithms
-
Y. Jin, T. Okabe, B. Sendhoff, Neural network regularization and ensembling using multi-objective evolutionary algorithms, in: IEEE Congress on Evolutionary Computation, vol. 1, 2004, pp. 1-8.
-
(2004)
IEEE Congress on Evolutionary Computation
, vol.1
, pp. 1-8
-
-
Jin, Y.1
Okabe, T.2
Sendhoff, B.3
-
12
-
-
85156192015
-
Generating accurate and diverse members of a neural-network ensemble
-
D.W. Opitz, J.W. Shavlik, Generating accurate and diverse members of a neural-network ensemble, in: Advances in Neural Information Processing Systems, MIT Press, Massachusetts, 1996, pp. 535-541.
-
(1996)
Advances in Neural Information Processing Systems, MIT Press, Massachusetts
, pp. 535-541
-
-
Opitz, D.W.1
Shavlik, J.W.2
-
13
-
-
84901459245
-
Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization
-
H. Abbass, Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization, in: IEEE Congress on Evolutionary Computation, vol. 3, 2003, pp. 2074-2080.
-
(2003)
IEEE Congress on Evolutionary Computation
, vol.3
, pp. 2074-2080
-
-
Abbass, H.1
-
14
-
-
43449135303
-
Pareto-based multiobjective machine learning. an overview and case studies
-
Jin Y., Sendhoff B. Pareto-based multiobjective machine learning. an overview and case studies. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 2008, 38:397-445.
-
(2008)
IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
, vol.38
, pp. 397-445
-
-
Jin, Y.1
Sendhoff, B.2
-
15
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
A. Krogh, J. Vedelsby, Neural network ensembles, cross validation, and active learning, in: Advances in Neural Information Processing Systems, MIT Press, Massachusetts, 1995, pp. 231-238.
-
Advances in Neural Information Processing Systems, MIT Press, Massachusetts
, vol.1995
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
17
-
-
84862823570
-
Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction
-
Chandra R., Zhang M. Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 2012, 86:116-123.
-
(2012)
Neurocomputing
, vol.86
, pp. 116-123
-
-
Chandra, R.1
Zhang, M.2
-
18
-
-
84882827352
-
A hybrid optimization-based recurrent neural network for real-time data prediction
-
Wang X., Ma L., Wang B., Wang T. A hybrid optimization-based recurrent neural network for real-time data prediction. Neurocomputing 2013, 120:547-559.
-
(2013)
Neurocomputing
, vol.120
, pp. 547-559
-
-
Wang, X.1
Ma, L.2
Wang, B.3
Wang, T.4
-
19
-
-
77955311883
-
Chaotic time series prediction with residual analysis method using hybrid elman-narx neural networks
-
Ardalani-Farsa M., Zolfaghari S. Chaotic time series prediction with residual analysis method using hybrid elman-narx neural networks. Neurocomputing 2010, 73(13-15):2540-2553.
-
(2010)
Neurocomputing
, vol.73
, Issue.13-15
, pp. 2540-2553
-
-
Ardalani-Farsa, M.1
Zolfaghari, S.2
-
20
-
-
38049039845
-
Chaotic time series prediction based on evolving recurrent neural networks
-
Q. Ma, Q. Zheng, H. Peng, T. Zhong, L. Xu, Chaotic time series prediction based on evolving recurrent neural networks, in: International Conference on Machine Learning and Cybernetics, vol. 6, 2007, pp. 3496-3500.
-
(2007)
International Conference on Machine Learning and Cybernetics
, vol.6
, pp. 3496-3500
-
-
Ma, Q.1
Zheng, Q.2
Peng, H.3
Zhong, T.4
Xu, L.5
-
21
-
-
79952551732
-
Evolutionary neural networks for time series prediction
-
Y.-C. Lin, Y.-C. Lin, K.-L. Su, Evolutionary neural networks for time series prediction, in: International Conference on Genetic and Evolutionary Computing (ICGEC), 2010, pp. 219-223.
-
(2010)
International Conference on Genetic and Evolutionary Computing (ICGEC)
, pp. 219-223
-
-
Lin, Y.-C.1
Lin, Y.-C.2
Su, K.-L.3
-
22
-
-
0142154961
-
Recurrent radial basis function network for time-series prediction
-
Zemouri R., Racoceanu D., Zerhouni N. Recurrent radial basis function network for time-series prediction. Eng. Appl. Artif. Intell. 2003, 16:453-463.
-
(2003)
Eng. Appl. Artif. Intell.
, vol.16
, pp. 453-463
-
-
Zemouri, R.1
Racoceanu, D.2
Zerhouni, N.3
-
23
-
-
77952549111
-
Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems
-
Lukoseviciute K., Ragulskis M. Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems. Neurocomputing 2010, 73(10-12):2077-2088.
-
(2010)
Neurocomputing
, vol.73
, Issue.10-12
, pp. 2077-2088
-
-
Lukoseviciute, K.1
Ragulskis, M.2
-
24
-
-
84869794829
-
A comparison of feed-forward and recurrent neural networks in time series forecasting
-
(CIFEr), 2012
-
D. Brezak, T. Bacek, D. Majetic, J. Kasac, B. Novakovic, A comparison of feed-forward and recurrent neural networks in time series forecasting, in: 2012 IEEE Conference on Computational Intelligence for Financial Engineering Economics (CIFEr), 2012, pp. 1-6.
-
(2012)
IEEE Conference on Computational Intelligence for Financial Engineering Economics
, pp. 1-6
-
-
Brezak, D.1
Bacek, T.2
Majetic, D.3
Kasac, J.4
Novakovic, B.5
-
25
-
-
84865101773
-
Comparing recurrent networks for time-series forecasting
-
A.A. Ferreira, T.B. Ludermir, R.R. de Aquino, Comparing recurrent networks for time-series forecasting, in: The 2012 International Joint Conference on Neural Networks (IJCNN), 2012, pp. 1-8.
-
(2012)
The 2012 International Joint Conference on Neural Networks (IJCNN)
, pp. 1-8
-
-
Ferreira, A.A.1
Ludermir, T.B.2
de Aquino, R.R.3
-
26
-
-
0029375851
-
Gradient calculations for dynamic recurrent neural networks. a survey
-
Pearlmutter B.A. Gradient calculations for dynamic recurrent neural networks. a survey. IEEE Trans. Neural Netw. 1995, 6(5):1212-1228.
-
(1995)
IEEE Trans. Neural Netw.
, vol.6
, Issue.5
, pp. 1212-1228
-
-
Pearlmutter, B.A.1
-
27
-
-
9744257846
-
Prediction of chaotic time series based on the recurrent predictor neural network
-
Han M., Xi J., Xu S., Yin F.-L. Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process. 2004, 52(12):3409-3416.
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, Issue.12
, pp. 3409-3416
-
-
Han, M.1
Xi, J.2
Xu, S.3
Yin, F.-L.4
-
28
-
-
0035186217
-
A real-coded genetic algorithm for training recurrent neural networks
-
Blanco A., Delgado M.A., Pegalajar M.C. A real-coded genetic algorithm for training recurrent neural networks. Neural Netw. 2001, 14(1):93-105.
-
(2001)
Neural Netw.
, vol.14
, Issue.1
, pp. 93-105
-
-
Blanco, A.1
Delgado, M.A.2
Pegalajar, M.C.3
-
29
-
-
38049153334
-
Topology optimization and training of recurrent neural networks with Pareto-based multi-objective algorithms: a experimental study
-
Springer
-
M.P. Cuellar, M.A. Delgado, M.C. Pegalajar, Topology optimization and training of recurrent neural networks with Pareto-based multi-objective algorithms: a experimental study, in: Computational and Ambient Intelligence, Lecture Notes in Computer Science, vol. 4507, Springer, 2007, pp. 359-366.
-
(2007)
Computational and Ambient Intelligence, Lecture Notes in Computer Science
, vol.4507
, pp. 359-366
-
-
Cuellar, M.P.1
Delgado, M.A.2
Pegalajar, M.C.3
-
30
-
-
84904795963
-
Recurrent neural networks design by means of multi-objective genetic algorithm
-
Chihi H., Arous N. Recurrent neural networks design by means of multi-objective genetic algorithm. Int. J. Comput. Sci. 2011, 8(1):296-302.
-
(2011)
Int. J. Comput. Sci.
, vol.8
, Issue.1
, pp. 296-302
-
-
Chihi, H.1
Arous, N.2
-
32
-
-
75449114516
-
Multi-objective evolutionary recurrent neural networks for system identification
-
J.H. Ang, C.K. Goh, E.J. Teoh, A.A. Mamun, Multi-objective evolutionary recurrent neural networks for system identification, in: IEEE Congress on Evolutionary Computation, 2007, pp. 1586-1592.
-
(2007)
IEEE Congress on Evolutionary Computation
, pp. 1586-1592
-
-
Ang, J.H.1
Goh, C.K.2
Teoh, E.J.3
Mamun, A.A.4
-
33
-
-
77955314142
-
Constructive training of recurrent neural networks using hybrid optimization
-
Subrahmanya N., Shin Y.C. Constructive training of recurrent neural networks using hybrid optimization. Neurocomputing 2010, 73(13-15):2624-2631.
-
(2010)
Neurocomputing
, vol.73
, Issue.13-15
, pp. 2624-2631
-
-
Subrahmanya, N.1
Shin, Y.C.2
-
34
-
-
0033730795
-
A study of the lamarckian evolution of recurrent neural networks
-
Ku K.W., Mak M.-W., Siu W.-C. A study of the lamarckian evolution of recurrent neural networks. IEEE Trans. Evolut. 2000, 4(1):31-42.
-
(2000)
IEEE Trans. Evolut.
, vol.4
, Issue.1
, pp. 31-42
-
-
Ku, K.W.1
Mak, M.-W.2
Siu, W.-C.3
-
35
-
-
0033362601
-
Evolving artificial neural networks
-
Yao X. Evolving artificial neural networks. Proc. IEEE 1999, 87(9):1423-1447.
-
(1999)
Proc. IEEE
, vol.87
, Issue.9
, pp. 1423-1447
-
-
Yao, X.1
-
37
-
-
10444221886
-
Diversity creation methods. a survey and categorisation
-
Brown G., Wyatt J., Harris R., Yao X. Diversity creation methods. a survey and categorisation. J. Inf. Fusion 2005, 6(1):1-28.
-
(2005)
J. Inf. Fusion
, vol.6
, Issue.1
, pp. 1-28
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
39
-
-
0036567392
-
Ensembling neural networks. many could be better than all
-
Zhou Z.-H., Wu J., Tang W. Ensembling neural networks. many could be better than all. Artif. Intell. 2002, 137:239-263.
-
(2002)
Artif. Intell.
, vol.137
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
-
41
-
-
79959488195
-
An evaluation of neural network ensembles and model selection for time series prediction
-
D.K. Barrow, S.F. Crone, N. Kourentzes, An evaluation of neural network ensembles and model selection for time series prediction, in: International Joint Conference on Neural Networks, 2010, pp. 1-8.
-
(2010)
International Joint Conference on Neural Networks
, pp. 1-8
-
-
Barrow, D.K.1
Crone, S.F.2
Kourentzes, N.3
-
42
-
-
77953041860
-
A three-stage SVM ensemble algorithm for chaotic time series prediction
-
(ETCS), 2010
-
H. Yang, J. Shi, A three-stage SVM ensemble algorithm for chaotic time series prediction, in: 2010 Second International Workshop on Education Technology and Computer Science (ETCS), vol. 3, 2010, pp. 345-347.
-
(2010)
Second International Workshop on Education Technology and Computer Science
, vol.3
, pp. 345-347
-
-
Yang, H.1
Shi, J.2
-
43
-
-
0032108106
-
Evolutionary algorithms and gradient search. similarities and differences
-
Salomon R. Evolutionary algorithms and gradient search. similarities and differences. IEEE Trans. Evolut. Comput. 1998, 2(2):45-55.
-
(1998)
IEEE Trans. Evolut. Comput.
, vol.2
, Issue.2
, pp. 45-55
-
-
Salomon, R.1
-
45
-
-
0037239496
-
Recurrent neural networks for time series classification
-
Husken M., Stagge P. Recurrent neural networks for time series classification. Neurocomputing 2003, 50:223-235.
-
(2003)
Neurocomputing
, vol.50
, pp. 223-235
-
-
Husken, M.1
Stagge, P.2
-
47
-
-
0033208104
-
On characterizing the "knee" of the Pareto curve based on normal-boundary intersection
-
Das I. On characterizing the "knee" of the Pareto curve based on normal-boundary intersection. Struct. Optim. 1999, 18(2-3):107-115.
-
(1999)
Struct. Optim.
, vol.18
, Issue.2-3
, pp. 107-115
-
-
Das, I.1
-
48
-
-
33750239012
-
A multi-objective evolutionary algorithm with weighted-sum niching for convergence on knee regions
-
L. Rachmawati, D. Srinivasan, A multi-objective evolutionary algorithm with weighted-sum niching for convergence on knee regions, in: Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA, 2006, pp. 749-750.
-
(2006)
Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA
, pp. 749-750
-
-
Rachmawati, L.1
Srinivasan, D.2
-
49
-
-
62349092355
-
Pareto analysis of evolutionary and learning systems
-
Jin Y., Gruna R., Sendhoff B. Pareto analysis of evolutionary and learning systems. Front. Comput. Sci. China 2009, 3(1):4-17.
-
(2009)
Front. Comput. Sci. China
, vol.3
, Issue.1
, pp. 4-17
-
-
Jin, Y.1
Gruna, R.2
Sendhoff, B.3
-
50
-
-
40649093107
-
Toward an optimal ensemble of kernel-based approximations with engineering applications
-
E. Sanchez, S. Pintos, N.V. Queipo, Toward an optimal ensemble of kernel-based approximations with engineering applications, in: International Joint Conference on Neural Networks, 2006, pp. 2152-2158.
-
(2006)
International Joint Conference on Neural Networks
, pp. 2152-2158
-
-
Sanchez, E.1
Pintos, S.2
Queipo, N.V.3
-
51
-
-
35048830447
-
Reducing fitness evaluations using clustering techniques and neural networks ensembles
-
Y. Jin, B. Sendhoff, Reducing fitness evaluations using clustering techniques and neural networks ensembles, in: Proceedings of the Genetic and Evolutionary Computation Conference, Springer, 2004, pp. 688-699.
-
(2004)
Proceedings of the Genetic and Evolutionary Computation Conference, Springer
, pp. 688-699
-
-
Jin, Y.1
Sendhoff, B.2
-
52
-
-
0017714604
-
Oscillation and chaos in physiological control systems
-
Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. Science 1977, 1977(4300):287-289.
-
(1977)
Science
, vol.1977
, Issue.4300
, pp. 287-289
-
-
Mackey, M.C.1
Glass, L.2
-
53
-
-
0036530772
-
A fast and elitist multiobjective genetic algorithm. NSGA-II
-
APRIL
-
Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective genetic algorithm. NSGA-II. IEEE Trans. Evolut. Comput. 2002, 6(April (2)):182-197.
-
(2002)
IEEE Trans. Evolut. Comput.
, vol.6
, Issue.2
, pp. 182-197
-
-
Deb, K.1
Pratap, A.2
Agarwal, S.3
Meyarivan, T.4
-
54
-
-
0037238922
-
Empirical evaluation of the improved Rprop learning algorithms
-
Igel C., Husken M. Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing 2003, 50:105-123.
-
(2003)
Neurocomputing
, vol.50
, pp. 105-123
-
-
Igel, C.1
Husken, M.2
-
55
-
-
84863906586
-
Surrogate-assisted evolutionary computation. recent advances and future challenges
-
Jin Y. Surrogate-assisted evolutionary computation. recent advances and future challenges. Swarm Evolut. Comput. 2011, 1(2):61-70.
-
(2011)
Swarm Evolut. Comput.
, vol.1
, Issue.2
, pp. 61-70
-
-
Jin, Y.1
|