-
1
-
-
2342565172
-
The effects of adding noise during backpropagation training on generalization performance
-
An, G. (1996). The effects of adding noise during backpropagation training on generalization performance. Neural Computation, 6, 643-674.
-
(1996)
Neural Computation
, vol.6
, pp. 643-674
-
-
An, G.1
-
2
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996a). Bagging predictors. Machine Learning, 26(2), 123-140.
-
(1996)
Machine Learning
, vol.26
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
3
-
-
0030344230
-
The heuristics of instability in model selection
-
Breiman, L. (1996b). The heuristics of instability in model selection. Annals of Statistics, 24, 2350-2383.
-
(1996)
Annals of Statistics
, vol.24
, pp. 2350-2383
-
-
Breiman, L.1
-
4
-
-
0003929807
-
Prediction games and arcing algorithms
-
Statistics Department, University of California at Berkeley
-
Breiman, L. (1997). Prediction games and arcing algorithms. Technical Report 504, Statistics Department, University of California at Berkeley. Available at www.stat.berkeley.edu
-
(1997)
Technical Report 504
-
-
Breiman, L.1
-
5
-
-
0346786584
-
Arcing classifiers
-
Breiman, L. (1998a). Arcing classifiers (with discussion). Annals of Statistics, 26, 801-849.
-
(1998)
Annals of Statistics
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
6
-
-
0003479038
-
Half and half bagging and hard boundary points
-
Statistics Dept. Univ. of Calif. at Berkeley
-
Breiman, L. (1998b). Half and half bagging and hard boundary points. Technical Report 534, Statistics Dept. Univ. of Calif. at Berkeley.
-
(1998)
Technical Report 534
-
-
Breiman, L.1
-
7
-
-
0003802343
-
-
Chapman and Hall
-
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees. Chapman and Hall.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
8
-
-
0001823341
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
Dietterich, T. (1998). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 1-22.
-
(1998)
Machine Learning
, pp. 1-22
-
-
Dietterich, T.1
-
9
-
-
0031211090
-
A decision-theoretic generalization of online learning and an application to boosting
-
Freund, Y. & Schapire, R. (1997). A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
11
-
-
0343942236
-
Discussion of "Arcing Classifiers" by L. Breiman
-
in press.
-
Freund, Y. & Schapire, R. (in press). Discussion of "Arcing Classifiers" by L. Breiman. Annals of Statistics.
-
Annals of Statistics
-
-
Freund, Y.1
Schapire, R.2
-
12
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman, J. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics, 19, 1-141.
-
(1991)
Annals of Statistics
, vol.19
, pp. 1-141
-
-
Friedman, J.1
-
13
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4, 1-58.
-
(1992)
Neural Computation
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
14
-
-
0041714561
-
Use of bad training data for better predictions
-
Grossamn, T. & Lapedes, A. (1993). Use of bad training data for better predictions. NIPS, 6, 343-350.
-
(1993)
NIPS
, vol.6
, pp. 343-350
-
-
Grossamn, T.1
Lapedes, A.2
|