메뉴 건너뛰기




Volumn , Issue , 2013, Pages 31-35

Instance based random forest with rotated feature space

Author keywords

[No Author keywords available]

Indexed keywords

ENSEMBLE METHODS; FEATURE SPACE; INSTANCE-BASED METHODS; RANDOM FORESTS; UCI REPOSITORY;

EID: 84886785068     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIEL.2013.6613137     Document Type: Conference Paper
Times cited : (8)

References (34)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine learning Journal, vol. 26(2), p. 123-140,1996.
    • (1996) Machine Learning Journal , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0034164230 scopus 로고    scopus 로고
    • Additive logisticregression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani, "Additive LogisticRegression: A Statistical View of Boosting," Annals of Statistics,vol. 28, no. 2, pp. 337-374, 2000.
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 7
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalizationof on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire, "A Decision-Theoretic Generalizationof On-Line Learning and an Application to Boosting," J. Computer and System Sciences, vol. 55, no. 1, pp. 119-139, 1997.
    • (1997) J. Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 8
    • 0032280519 scopus 로고    scopus 로고
    • Boosting themargin: A new explanation for the effectiveness of votingmethods
    • R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, "Boosting theMargin: A New Explanation for the Effectiveness of VotingMethods," Annals of Statistics, vol. 26, no. 5, pp. 1651-1686, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 9
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclassto binary: A unifying approach for margin classifiers
    • E. L. Allwein, R. E. Schapire, and Y. Singer, "Reducing Multiclassto Binary: A Unifying Approach for Margin Classifiers," J. Machine Learning Research, vol. 1, pp. 113-141, 2000.
    • (2000) J. Machine Learning Research , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 10
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman, "Arcing Classifiers," Annals of Statistics, vol. 26, no. 3,pp. 801-849, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 11
    • 0033870982 scopus 로고    scopus 로고
    • Improved generalizationthrough explicit optimization of margins
    • L. Mason, P. L. Bartlet, and J. Baxter, "Improved Generalizationthrough Explicit Optimization of Margins," Machine Learning,vol. 38, no. 3, pp. 243-255, 2000.
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 243-255
    • Mason, L.1    Bartlet, P.L.2    Baxter, J.3
  • 14
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of votingclassification algorithms: Bagging, boosting, and variants
    • E. Bauer and R. Kohavi, "An Empirical Comparison of VotingClassification Algorithms: Bagging, Boosting, and Variants," Machine Learning, vol. 36, nos. 1-2, pp. 105-139, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 16
    • 0036083445 scopus 로고    scopus 로고
    • A data complexity analysis of comparative advantagesof decision forest constructors
    • T. K. Ho, "A Data Complexity Analysis of Comparative Advantagesof Decision Forest Constructors," Pattern Analysis andApplications, vol. 5, pp. 102-112, 2002.
    • (2002) Pattern Analysis AndApplications , vol.5 , pp. 102-112
    • Ho, T.K.1
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests,"Machine Learning Journal, vol. 45,no. 1,pp. 5-32, 2001.
    • (2001) Machine Learning Journal , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 20
    • 78649326452 scopus 로고    scopus 로고
    • AFP-Pred: A randomforest approach for predicting antifreeze proteins from sequence-derived properties
    • K. K. Kandaswamya, K. Chouet al., "AFP-Pred: A randomforest approach for predicting antifreeze proteins from sequence-derived properties," Journal of Theoretical Biology. vol. 270,pp. 56-62, 2011.
    • (2011) Journal of Theoretical Biology , vol.270 , pp. 56-62
    • Kandaswamya, K.K.1    Chouet Al., K.2
  • 24
    • 0016484071 scopus 로고
    • An optimal set of discriminant vectors
    • Mar.
    • F. H. Foley and J. W. Sammon, "An Optimal Set of Discriminant Vectors," IEEE Trans. Computers, vol. 24, no. 3, pp. 281-289, Mar. 1975
    • (1975) IEEE Trans. Computers , vol.24 , Issue.3 , pp. 281-289
    • Foley, F.H.1    Sammon, J.W.2
  • 25
    • 84910828260 scopus 로고
    • Application of the karhunen-loeve expansion to feature selection and ordering
    • Apr.
    • K. Fukunaga and W. L. G. Koontz, "Application of the Karhunen-Loeve Expansion to Feature Selection and Ordering," IEEE Trans. Computers, vol. 19, no. 4, pp. 311-318, Apr. 1970.
    • (1970) IEEE Trans. Computers , vol.19 , Issue.4 , pp. 311-318
    • Fukunaga, K.1    Koontz, W.L.G.2
  • 26
    • 0015755579 scopus 로고
    • A new approach to feature selection based on the karhunen-loeve expansion
    • Dec.
    • J. Kittler and P. C. Young, "A New Approach to Feature Selection Based on the Karhunen-Loeve Expansion," Pattern Recognition,vol. 5, no. 4, pp. 335-352, Dec. 1973.
    • (1973) Pattern Recognition , vol.5 , Issue.4 , pp. 335-352
    • Kittler, J.1    Young, P.C.2
  • 29
    • 1942517297 scopus 로고    scopus 로고
    • Random projection for high dimensional data clustering: A cluster ensemble approach
    • X. Z. Fern and C. E. Brodley, "Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach," Proc. 20th Int. Conf. Machine Learning (ICML), pp. 186-193, 2003.
    • (2003) Proc. 20th Int. Conf. Machine Learning (ICML) , pp. 186-193
    • Fern, X.Z.1    Brodley, C.E.2
  • 31
    • 9444279208 scopus 로고    scopus 로고
    • UCI repository of machinelearning databases
    • Univ. Calfornia,Irvine,CA,1998. [ online]. Available:
    • C. L. Blake and C. J. Merz, "UCI Repository of MachineLearning Databases," Dep. Inf. Comput. Sci.,Univ. Calfornia,Irvine,CA,1998. [ online]. Available: http://archive. ics. uci. edu/ml/datasets. html.
    • Dep. Inf. Comput. Sci.
    • Blake, C.L.1    Merz, C.J.2
  • 32
    • 84886773350 scopus 로고    scopus 로고
    • The Use of Discrete data in PCA: Theory,Simulations,and Applications to Socioeconomic Indices
    • S. Kolenikovand G. Angeles, "The Use of Discrete data in PCA: Theory,Simulations,and Applications to Socioeconomic Indices," Proc. 2004 Joint Statistical Meeting, 2004.
    • (2004) Proc. 2004 Joint Statistical Meeting
    • Kolenikovand, S.1    Angeles, G.2
  • 33
    • 85032750950 scopus 로고    scopus 로고
    • Linear subspace learning-based dimensionality reduction
    • X. D. Jiang, "Linear Subspace Learning-Based Dimensionality Reduction," IEEE Signal Processing Mag., vol. 28, no. 2, pp. 16-26, 2011.
    • (2011) IEEE Signal Processing Mag. , vol.28 , Issue.2 , pp. 16-26
    • Jiang, X.D.1
  • 34
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept
    • Comon, P. Independent component analysis, a new concept. Signal Processing, 36(3), 287-314,1994.
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.