-
1
-
-
0027595948
-
Tissue Engineering
-
[CrossRef][PubMed]
-
Langer, R. Vacanti, J.P. Tissue Engineering. Science 1993, 260, 920–926. [CrossRef][PubMed]
-
(1993)
Science
, vol.260
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
2
-
-
84940491425
-
Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology.
-
[CrossRef][PubMed]
-
Caplin, J.D. Granados, N.G. James, M.R. Montazami, R. Hashemi, N. Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Adv. Healthc. Mater. 2015, 4, 1426–1450. [CrossRef][PubMed]
-
(2015)
Adv. Healthc. Mater
, vol.4
, pp. 1426-1450
-
-
Caplin, J.D.1
Granados, N.G.2
James, M.R.3
Montazami, R.4
Hashemi, N.5
-
3
-
-
84926408953
-
Organs-on-chips at the frontiers of drug discovery. Nat
-
[CrossRef][PubMed]
-
Esch, E.W. Bahinski, A. Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 2015, 14, 248–260. [CrossRef][PubMed]
-
(2015)
Rev. Drug Discov
, vol.14
, pp. 248-260
-
-
Esch, E.W.1
Bahinski, A.2
Huh, D.3
-
4
-
-
84923364082
-
Successes and future outlook for microfluidics-based cardiovascular drug discovery. Exp
-
[CrossRef][PubMed]
-
Skommer, J. Wlodkowic, D. Successes and future outlook for microfluidics-based cardiovascular drug discovery. Exp. Opin. Drug Discov. 2015, 10, 231–244. [CrossRef][PubMed]
-
(2015)
Opin. Drug Discov
, vol.10
, pp. 231-244
-
-
Skommer, J.1
Wlodkowic, D.2
-
5
-
-
84899804570
-
A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker
-
[CrossRef][PubMed]
-
Esteves-Villanueva, J.O. Trzeciakiewicz, H. Martic, S. A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker. Analyst 2014, 139, 2823–2831. [CrossRef][PubMed]
-
(2014)
Analyst
, vol.139
, pp. 2823-2831
-
-
Esteves-Villanueva, J.O.1
Trzeciakiewicz, H.2
Martic, S.3
-
6
-
-
84903650148
-
An amorphous silicon photodiode microfluidic chip to detect nanomolar quantities of HIV-1 virion infectivity factor
-
[CrossRef][PubMed]
-
Vistas, C.R. Soares, S.S. Rodrigues, R.M.M. Chu, V. Conde, J.P. Ferreira, G.N.M. An amorphous silicon photodiode microfluidic chip to detect nanomolar quantities of HIV-1 virion infectivity factor. Analyst 2014, 139, 3709–3713. [CrossRef][PubMed]
-
(2014)
Analyst
, vol.139
, pp. 3709-3713
-
-
Vistas, C.R.1
Soares, S.S.2
Rodrigues, R.M.M.3
Chu, V.4
Conde, J.P.5
Ferreira, G.N.M.6
-
7
-
-
79751518967
-
Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity.
-
[CrossRef][PubMed]
-
Zhang, M. Yin, B.-C. Wang, X.-F. Ye, B.-C. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem. Commun. 2011, 47, 2399–2401. [CrossRef][PubMed]
-
(2011)
Chem. Commun
, vol.47
, pp. 2399-2401
-
-
Zhang, M.1
Yin, B.-C.2
Wang, X.-F.3
Ye, B.-C.4
-
8
-
-
84877731961
-
Plasmon based biosensor for distinguishing different peptides mutation states.
-
[CrossRef][PubMed]
-
Das, G. Chirumamilla, M. Toma, A. Gopalakrishnan, A. Zaccaria, R.P. Alabastri, A. Leoncini, M. Di Fabrizio, E. Plasmon based biosensor for distinguishing different peptides mutation states. Sci. Rep. 2013, 3, 1–6. [CrossRef][PubMed]
-
(2013)
Sci. Rep
, vol.3
, pp. 1-6
-
-
Das, G.1
Chirumamilla, M.2
Toma, A.3
Gopalakrishnan, A.4
Zaccaria, R.P.5
Alabastri, A.6
Leoncini, M.7
Di Fabrizio, E.8
-
9
-
-
0343729903
-
Amperometric glucose sensor based on coimmobilization of glucose oxidase and poly(P-phenylenediamine) at a platinum microdisk electrode.
-
Xu, J.J. Chen, H.Y. Amperometric glucose sensor based on coimmobilization of glucose oxidase and poly(p-phenylenediamine) at a platinum microdisk electrode. Anal. Biochem. 2000, 280, 221–226.
-
(2000)
Anal. Biochem
, vol.280
, pp. 221-226
-
-
Xu, J.J.1
Chen, H.Y.2
-
10
-
-
84920258737
-
Flow injection analysis biosensor for urea analysis in urine using enzyme thermistor.
-
[CrossRef][PubMed]
-
Mishra, G.K. Sharma, A. Deshpande, K. Bhand, S. Flow injection analysis biosensor for urea analysis in urine using enzyme thermistor. Appl. Biochem. Biotechnol. 2014, 174, 998–1009. [CrossRef][PubMed]
-
(2014)
Appl. Biochem. Biotechnol
, vol.174
, pp. 998-1009
-
-
Mishra, G.K.1
Sharma, A.2
Deshpande, K.3
Bhand, S.4
-
11
-
-
79955660940
-
A microfluidic platform for electrical detection of DNA hybridization. Sens
-
[CrossRef][PubMed]
-
Javanmard, M. Davis, R.W. A microfluidic platform for electrical detection of DNA hybridization. Sens. Actuators B Chem. 2011, 154, 22–27. [CrossRef][PubMed]
-
(2011)
Actuators B Chem
, vol.154
, pp. 22-27
-
-
Javanmard, M.1
Davis, R.W.2
-
12
-
-
84898991499
-
Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model
-
[CrossRef][PubMed]
-
De-Carvalho, J. Rodrigues, R.M.M. Tomé, B. Henriques, S.F. Mira, N.P. Sá-Correia, I. Ferreira, G.N.M. Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model. Analyst 2014, 139, 1847–1855. [CrossRef][PubMed]
-
(2014)
Analyst
, vol.139
, pp. 1847-1855
-
-
De-Carvalho, J.1
Rodrigues, R.M.M.2
Tomé, B.3
Henriques, S.F.4
Mira, N.P.5
Sá-Correia, I.6
Ferreira, G.N.M.7
-
13
-
-
84888386147
-
Amicrofluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes.
-
[CrossRef][PubMed]
-
Nguyen, T.A. Yin, T.-I. Reyes, D. Urban, G.A. Amicrofluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal. Chem. 2013, 85, 11068–11076. [CrossRef][PubMed]
-
(2013)
Anal. Chem
, vol.85
, pp. 11068-11076
-
-
Nguyen, T.A.1
Yin, T.-I.2
Reyes, D.3
Urban, G.A.4
-
14
-
-
84889074182
-
Cell culture monitoring for drug screening and cancer research: A transparent, microfluidic, multi-sensor microsystem
-
[CrossRef][PubMed]
-
Weltin, A. Slotwinski, K. Kieninger, J. Moser, I. Jobst, G. Wego, M. Ehret, R. Urban, G.A. Cell culture monitoring for drug screening and cancer research: A transparent, microfluidic, multi-sensor microsystem. Lab Chip 2014, 14, 138–146. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 138-146
-
-
Weltin, A.1
Slotwinski, K.2
Kieninger, J.3
Moser, I.4
Jobst, G.5
Wego, M.6
Ehret, R.7
Urban, G.A.8
-
15
-
-
84867888184
-
Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat
-
[CrossRef][PubMed]
-
Tian, B. Liu, J. Dvir, T. Jin, L. Tsui, J.H. Qing, Q. Suo, Z. Langer, R. Kohane, D.S. Lieber, C.M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986–994. [CrossRef][PubMed]
-
(2012)
Mater
, vol.11
, pp. 986-994
-
-
Tian, B.1
Liu, J.2
Dvir, T.3
Jin, L.4
Tsui, J.H.5
Qing, Q.6
Suo, Z.7
Langer, R.8
Kohane, D.S.9
Lieber, C.M.10
-
16
-
-
0026584033
-
Planar chips technology for miniaturization and integration of separation techniques into monitoring systems—Capillary electrophoresis on a chip
-
[CrossRef]
-
Manz, A. Harrison, D.J. Verpoorte, E.M.J. Fettinger, J.C. Paulus, A. Lüdi, H. Widmer, H.M. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems—Capillary electrophoresis on a chip. J. Chromatogr. A 1992, 593, 253–258. [CrossRef]
-
(1992)
J. Chromatogr. A
, vol.593
, pp. 253-258
-
-
Manz, A.1
Harrison, D.J.2
Verpoorte, E.M.J.3
Fettinger, J.C.4
Paulus, A.5
Lüdi, H.6
Widmer, H.M.7
-
17
-
-
33747117373
-
The origins and the future of microfluidics
-
[CrossRef][PubMed]
-
Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [CrossRef][PubMed]
-
(2006)
Nature
, vol.442
, pp. 368-373
-
-
Whitesides, G.M.1
-
18
-
-
84947808312
-
Self-driven filter-based blood plasma separator microfluidic chip for point-of-care testing
-
[CrossRef][PubMed]
-
Madadi, H. Casals-Terré, J. Mohammadi, M. Self-driven filter-based blood plasma separator microfluidic chip for point-of-care testing. Biofabrication 2015, 7, 025007:1–025007:11. [CrossRef][PubMed]
-
(2015)
Biofabrication
, vol.7
-
-
Madadi, H.1
Casals-Terré, J.2
Mohammadi, M.3
-
19
-
-
84934979507
-
. The application of micropipette aspiration in molecular mechanics of single cells.
-
[CrossRef][PubMed]
-
Lee, L.M. Liu, A.P. The application of micropipette aspiration in molecular mechanics of single cells. J. Nanotechnol. Eng. Med. 2014, 5, 040801:1–040801:6. [CrossRef][PubMed]
-
(2014)
J. Nanotechnol. Eng. Med
, vol.5
-
-
Lee, L.M.1
Liu, A.P.2
-
20
-
-
84934439455
-
Functional differentiation of human pluripotent stem cells on a chip. Nat
-
[CrossRef][PubMed]
-
Giobbe, G.G. Michielin, F. Luni, C. Giulitti, S. Martewicz, S. Dupont, S. Floreani, A. Elvassore, N. Functional differentiation of human pluripotent stem cells on a chip. Nat. Methods 2015, 12, 637–640. [CrossRef][PubMed]
-
(2015)
Methods
, vol.12
, pp. 637-640
-
-
Giobbe, G.G.1
Michielin, F.2
Luni, C.3
Giulitti, S.4
Martewicz, S.5
Dupont, S.6
Floreani, A.7
Elvassore, N.8
-
21
-
-
84937046503
-
Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery. ACS Appl. Mater
-
[CrossRef][PubMed]
-
Vasiliauskas, R. Liu, D. Cito, S. Zhang, H. Shahbazi, M.-A. Sikanen, T. Mazutis, L. Santos, H.A. Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery. ACS Appl. Mater. Interfaces 2015, 7, 14822–14832. [CrossRef][PubMed]
-
(2015)
Interfaces
, vol.7
, pp. 14822-14832
-
-
Vasiliauskas, R.1
Liu, D.2
Cito, S.3
Zhang, H.4
Shahbazi, M.-A.5
Sikanen, T.6
Mazutis, L.7
Santos, H.A.8
-
22
-
-
84898893477
-
Parallel affinity-based isolation of leukocyte subsets using microfluidics
-
[CrossRef][PubMed]
-
Pullagurla, S.R. Witek, M.A. Jackson, J.M. Lindell, M.A.M. Hupert, M.L. Nesterova, I.V. Baird, A.E. Soper, S.A. Parallel affinity-based isolation of leukocyte subsets using microfluidics: Application for stroke diagnosis. Anal. Chem. 2014, 86, 4058–4065. [CrossRef][PubMed]
-
(2014)
Application for Stroke Diagnosis. Anal. Chem
, vol.86
, pp. 4058-4065
-
-
Pullagurla, S.R.1
Witek, M.A.2
Jackson, J.M.3
Lindell, M.A.M.4
Hupert, M.L.5
Nesterova, I.V.6
Baird, A.E.7
Soper, S.A.8
-
23
-
-
84859147529
-
Same-day prenatal diagnosis of common chromosomal aneuploidies using microfluidics-fluorescence in situ hybridization. Prenat
-
[CrossRef][PubMed]
-
Ho, S.S.Y. Chua, C. Gole, L. Biswas, A. Koay, E. Choolani, M. Same-day prenatal diagnosis of common chromosomal aneuploidies using microfluidics-fluorescence in situ hybridization. Prenat. Diagn. 2012, 32, 321–328. [CrossRef][PubMed]
-
(2012)
Diagn
, vol.32
, pp. 321-328
-
-
Ho, S.S.Y.1
Chua, C.2
Gole, L.3
Biswas, A.4
Koay, E.5
Choolani, M.6
-
24
-
-
84883427366
-
For the detection of analytes at ultralow concentrations with the naked eye.
-
[CrossRef][PubMed]
-
De la Rica, R. Stevens, M.M. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat. Protoc. 2013, 8, 1759–1764. [CrossRef][PubMed]
-
(2013)
Nat. Protoc
, vol.8
, pp. 1759-1764
-
-
De La Rica, R.1
Stevens, M.M.2
Plasmonic, E.3
-
25
-
-
76649136462
-
Label-free biomarker detection from whole blood. Nat
-
[CrossRef][PubMed]
-
Stern, E. Vacic, A. Rajan, N.K. Criscione, J.M. Park, J. Ilic, B.R. Mooney, D.J. Reed, M.A. Fahmy, T.M. Label-free biomarker detection from whole blood. Nat. Nanotechnol. 2010, 5, 138–142. [CrossRef][PubMed]
-
(2010)
Nanotechnol
, vol.5
, pp. 138-142
-
-
Stern, E.1
Vacic, A.2
Rajan, N.K.3
Criscione, J.M.4
Park, J.5
Ilic, B.R.6
Mooney, D.J.7
Reed, M.A.8
Fahmy, T.M.9
-
26
-
-
84883212942
-
Rapid detection of drugs of abuse in saliva using surface enhanced raman spectroscopy and microfluidics
-
[CrossRef][PubMed]
-
Andreou, C. Hoonejani, M.R. Barmi, M.R. Moskovits, M. Meinhart, C.D. Rapid detection of drugs of abuse in saliva using surface enhanced raman spectroscopy and microfluidics. ACS Nano 2013, 7, 7157–7164. [CrossRef][PubMed]
-
(2013)
ACS Nano
, vol.7
, pp. 7157-7164
-
-
Andreou, C.1
Hoonejani, M.R.2
Barmi, M.R.3
Moskovits, M.4
Meinhart, C.D.5
-
27
-
-
84862814744
-
Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair. Anal. Bioanal
-
[CrossRef][PubMed]
-
Zhu, K.Y. Leung, K.W. Ting, A.K.L. Wong, Z.C.F. Ng, W.Y.Y. Choi, R.C.Y. Dong, T.T.X. Wang, T. Lau, D.T.W. Tsim, K.W.K. Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair. Anal. Bioanal. Chem. 2012, 402, 2805–2815. [CrossRef][PubMed]
-
(2012)
Chem
, vol.402
, pp. 2805-2815
-
-
Zhu, K.Y.1
Leung, K.W.2
Ting, A.3
Wong, Z.4
Ng, W.5
Choi, R.6
Dong, T.7
Wang, T.8
Lau, D.9
Tsim, K.10
-
28
-
-
67749086547
-
Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor
-
[CrossRef][PubMed]
-
Swensen, J.S. Xiao, Y. Ferguson, B.S. Lubin, A.A. Lai, R.Y. Heeger, A.J. Plaxco, K.W. Soh, H.T. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J. Am. Chem. Soc. 2009, 131, 4262–4266. [CrossRef][PubMed]
-
(2009)
J. Am. Chem. Soc
, vol.131
, pp. 4262-4266
-
-
Swensen, J.S.1
Xiao, Y.2
Ferguson, B.S.3
Lubin, A.A.4
Lai, R.Y.5
Heeger, A.J.6
Plaxco, K.W.7
Soh, H.T.8
-
29
-
-
34250351427
-
Microfluidic device for presumptive testing of controlled substances
-
[CrossRef][PubMed]
-
Bell, S.C. Hanes, R.D. A microfluidic device for presumptive testing of controlled substances. J. Forensic Sci. 2007, 52, 884–888. [CrossRef][PubMed]
-
(2007)
J. Forensic Sci
, vol.52
, pp. 884-888
-
-
Bell, S.C.1
Hanes, R.2
-
30
-
-
84888372800
-
A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence
-
[CrossRef][PubMed]
-
Wang, J. Sun, J. Song, Y. Xu, Y. Pan, X. Sun, Y. Li, D. A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence. Sensors 2013, 13, 16075–16089. [CrossRef][PubMed]
-
(2013)
Sensors
, vol.13
, pp. 16075-16089
-
-
Wang, J.1
Sun, J.2
Song, Y.3
Xu, Y.4
Pan, X.5
Sun, Y.6
Li, D.7
-
31
-
-
80054896055
-
Miniaturized bacterial biosensor system for arsenic detection holds great promise for making integrated measurement device. Bioeng
-
[CrossRef][PubMed]
-
Buffi, N. Merulla, D. Beutier, J. Barbaud, F. Beggah, S. van Linte, H. Renaud, P. van der Meer, J.R. Miniaturized bacterial biosensor system for arsenic detection holds great promise for making integrated measurement device. Bioeng. Bugs 2011, 2, 296–298. [CrossRef][PubMed]
-
(2011)
Bugs
, vol.2
, pp. 296-298
-
-
Buffi, N.1
Merulla, D.2
Beutier, J.3
Barbaud, F.4
Beggah, S.5
Van Linte, H.6
Renaud, P.7
Van Der Meer, J.R.8
-
32
-
-
84882580925
-
Enzyme inhibition-based determination of pesticide residues in vegetable and soil in centrifugal microfluidic devices. Anal
-
[CrossRef][PubMed]
-
Duford, D.A. Xi, Y. Salin, E.D. Enzyme inhibition-based determination of pesticide residues in vegetable and soil in centrifugal microfluidic devices. Anal. Chem. 2013, 85, 7834–7841. [CrossRef][PubMed]
-
(2013)
Chem
, vol.85
, pp. 7834-7841
-
-
Duford, D.A.1
Xi, Y.2
Salin, E.D.3
-
33
-
-
84924232193
-
Rapid and multiplex detection of Legionella’s RNA using digital microfluidics
-
[CrossRef][PubMed]
-
Foudeh, A.M. Brassard, D. Tabrizian, M. Veres, T. Rapid and multiplex detection of Legionella’s RNA using digital microfluidics. Lab Chip 2015, 15, 1609–1618. [CrossRef][PubMed]
-
(2015)
Lab Chip
, vol.15
, pp. 1609-1618
-
-
Foudeh, A.M.1
Brassard, D.2
Tabrizian, M.3
Veres, T.4
-
34
-
-
84896878738
-
Detection of explosives in a dynamic marine environment using a moored TNT immunosensor
-
[CrossRef][PubMed]
-
Charles, P.T. Adams, A.A. Deschamps, J.R. Veitch, S. Hanson, A. Kusterbeck, A.W. Detection of explosives in a dynamic marine environment using a moored TNT immunosensor. Sensors 2014, 14, 4074–4085. [CrossRef][PubMed]
-
(2014)
Sensors
, vol.14
, pp. 4074-4085
-
-
Charles, P.T.1
Adams, A.A.2
Deschamps, J.R.3
Veitch, S.4
Hanson, A.5
Kusterbeck, A.W.6
-
35
-
-
44349176846
-
A lab-on-a-chip for detection of nerve agent sarin in blood
-
[CrossRef][PubMed]
-
Tan, H.Y. Loke, W.K. Tan, Y.T. Nguyen, N.-T. A lab-on-a-chip for detection of nerve agent sarin in blood. Lab Chip 2008, 8, 885–891. [CrossRef][PubMed]
-
(2008)
Lab Chip
, vol.8
, pp. 885-891
-
-
Tan, H.Y.1
Loke, W.K.2
Tan, Y.T.3
Nguyen, N.-T.4
-
36
-
-
79953080232
-
High throughput MLVA-16 typing for Brucella based on the microfluidics technology
-
[CrossRef][PubMed]
-
De Santis, R. Ciammaruconi, A. Faggioni, G. Fillo, S. Gentile, B. Di Giannatale, E. Ancora, M. Lista, F. High throughput MLVA-16 typing for Brucella based on the microfluidics technology. BMC Microbiol. 2011, 11, 1–9. [CrossRef][PubMed]
-
(2011)
BMC Microbiol
, vol.11
, pp. 1-9
-
-
De Santis, R.1
Ciammaruconi, A.2
Faggioni, G.3
Fillo, S.4
Gentile, B.5
Di Giannatale, E.6
Ancora, M.7
Lista, F.8
-
37
-
-
84898778562
-
Automated microfluidically controlled electrochemical biosensor for the rapid and highly sensitive detection of Francisella tularensis. Biosens
-
[CrossRef][PubMed]
-
Dulay, S.B. Gransee, R. Julich, S. Tomaso, H. O’Sullivan, C.K. Automated microfluidically controlled electrochemical biosensor for the rapid and highly sensitive detection of Francisella tularensis. Biosens. Bioelectron. 2014, 59, 342–349. [CrossRef][PubMed]
-
(2014)
Bioelectron
, vol.59
, pp. 342-349
-
-
Dulay, S.B.1
Gransee, R.2
Julich, S.3
Tomaso, H.4
O’Sullivan, C.K.5
-
38
-
-
84904438544
-
Love-wave sensors combined with microfluidics for fast detection of biological warfare agents
-
[CrossRef][PubMed]
-
Matatagui, D. Fontecha, J.L. Fernández, M.J. Gràcia, I. Cané, C. Santos, J.P. Horrillo, M.C. Love-wave sensors combined with microfluidics for fast detection of biological warfare agents. Sensors 2014, 14, 12658–12669. [CrossRef][PubMed]
-
(2014)
Sensors
, vol.14
, pp. 12658-12669
-
-
Matatagui, D.1
Fontecha, J.L.2
Fernández, M.J.3
Gràcia, I.4
Cané, C.5
Santos, J.P.6
Horrillo, M.C.7
-
39
-
-
78751638354
-
Microfluidic chromatography for early stage evaluation of biopharmaceutical binding and separation conditions. Sep. Sci
-
[CrossRef]
-
Shapiro, M.S. Haswell, S.J. Lye, G.J. Bracewell, D.G. Microfluidic chromatography for early stage evaluation of biopharmaceutical binding and separation conditions. Sep. Sci. Technol. 2011, 46, 185–194. [CrossRef]
-
(2011)
Technol
, vol.46
, pp. 185-194
-
-
Shapiro, M.S.1
Haswell, S.J.2
Lye, G.J.3
Bracewell, D.G.4
-
40
-
-
33744537288
-
Microfluidic cartridges preloaded with nanoliter plugs of reagents: An alternative to 96-well plates for screening
-
[CrossRef][PubMed]
-
Chen, D.L. Ismagilov, R.F. Microfluidic cartridges preloaded with nanoliter plugs of reagents: An alternative to 96-well plates for screening. Curr. Opin. Chem. Biol. 2006, 10, 226–231. [CrossRef][PubMed]
-
(2006)
Curr. Opin. Chem. Biol
, vol.10
, pp. 226-231
-
-
Chen, D.L.1
Ismagilov, R.F.2
-
41
-
-
34547839765
-
Miniaturized PCR chips for nucleic acid amplification and analysis: Latest advances and future trends
-
[CrossRef][PubMed]
-
Zhang, C. Xing, D. Miniaturized PCR chips for nucleic acid amplification and analysis: Latest advances and future trends. Nucleic Acids Res. 2007, 35, 4223–4237. [CrossRef][PubMed]
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 4223-4237
-
-
Zhang, C.1
Xing, D.2
-
42
-
-
84858722916
-
Microfluidic chip for molecular amplification of influenza a RNA in human respiratory specimens
-
[CrossRef][PubMed]
-
Cao, Q. Mahalanabis, M. Chang, J. Carey, B. Hsieh, C. Stanley, A. Odell, C.A. Mitchell, P. Feldman, J. Pollock, N.R. et al. Microfluidic chip for molecular amplification of influenza a RNA in human respiratory specimens. PLoS ONE 2012, 7, e33176. [CrossRef][PubMed]
-
(2012)
Plos ONE
, vol.7
-
-
Cao, Q.1
Mahalanabis, M.2
Chang, J.3
Carey, B.4
Hsieh, C.5
Stanley, A.6
Odell, C.A.7
Mitchell, P.8
Feldman, J.9
Pollock, N.R.10
-
43
-
-
84866356215
-
Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood
-
[CrossRef][PubMed]
-
Schell, W.A. Benton, J.L. Smith, P.B. Poore, M. Rouse, J.L. Boles, D.J. Johnson, M.D. Alexander, B.D. Pamula, V.K. Eckhardt, A.E. et al. Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2237–2245. [CrossRef][PubMed]
-
(2012)
Eur. J. Clin. Microbiol. Infect. Dis
, vol.31
, pp. 2237-2245
-
-
Schell, W.A.1
Benton, J.L.2
Smith, P.B.3
Poore, M.4
Rouse, J.L.5
Boles, D.J.6
Johnson, M.D.7
Alexander, B.D.8
Pamula, V.K.9
Eckhardt, A.E.10
-
44
-
-
84876329785
-
Simultaneous quantification of multiple food- and waterborne pathogens by use of microfluidic quantitative PCR.
-
[CrossRef][PubMed]
-
Ishii, S. Segawa, T. Okabe, S. Simultaneous quantification of multiple food- and waterborne pathogens by use of microfluidic quantitative PCR. Appl. Environ. Microbiol. 2013, 79, 2891–2898. [CrossRef][PubMed]
-
(2013)
Appl. Environ. Microbiol
, vol.79
, pp. 2891-2898
-
-
Ishii, S.1
Segawa, T.2
Okabe, S.3
-
45
-
-
45849087630
-
High throughput gene expression measurement with real time PCR in a microfluidic dynamic array
-
[CrossRef][PubMed]
-
Spurgeon, S.L. Jones, R.C. Ramakrishnan, R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS ONE 2008, 3, e1662. [CrossRef][PubMed]
-
(2008)
Plos ONE
, vol.3
-
-
Spurgeon, S.L.1
Jones, R.C.2
Ramakrishnan, R.3
-
46
-
-
84934435026
-
Microfluidic devices for high-throughput gene expression profiling of single hESC-derived neural stem cells. Methods Mol
-
[PubMed]
-
Chen, Y. Zhong, J.F. Microfluidic devices for high-throughput gene expression profiling of single hESC-derived neural stem cells. Methods Mol. Biol. 2008, 438, 293–303. [PubMed]
-
(2008)
Biol
, vol.438
, pp. 293-303
-
-
Chen, Y.1
Zhong, J.F.2
-
47
-
-
84857197781
-
Molecular characterization of corona radiata cells from patients with diminished ovarian reserve using microarray and microfluidic-based gene expression profiling. Hum
-
[CrossRef][PubMed]
-
May-Panloup, P. Ferre-L’Hotellier, V. Moriniere, C. Marcaillou, C. Lemerle, S. Malinge, M.-C. Coutolleau, A. Lucas, N. Reynier, P. Descamps, P. et al. Molecular characterization of corona radiata cells from patients with diminished ovarian reserve using microarray and microfluidic-based gene expression profiling. Hum. Reprod. 2012, 27, 829–843. [CrossRef][PubMed]
-
(2012)
Reprod
, vol.27
, pp. 829-843
-
-
May-Panloup, P.1
Ferre-L’hotellier, V.2
Moriniere, C.3
Marcaillou, C.4
Lemerle, S.5
Malinge, M.-C.6
Coutolleau, A.7
Lucas, N.8
Reynier, P.9
Descamps, P.10
-
48
-
-
84881065768
-
Integrated RNA extraction and RT-PCR for semi-quantitative gene expression studies on a microfluidic device
-
[CrossRef][PubMed]
-
Shaw, K.J. Hughes, E.M. Dyer, C.E. Greenman, J. Haswell, S.J. Integrated RNA extraction and RT-PCR for semi-quantitative gene expression studies on a microfluidic device. Lab. Investig. 2013, 93, 961–966. [CrossRef][PubMed]
-
(2013)
Lab. Investig
, vol.93
, pp. 961-966
-
-
Shaw, K.J.1
Hughes, E.M.2
Dyer, C.E.3
Greenman, J.4
Haswell, S.J.5
-
49
-
-
51949107286
-
Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry. Anal
-
[CrossRef][PubMed]
-
Mellors, J.S. Gorbounov, V. Ramsey, R.S. Ramsey, J.M. Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry. Anal. Chem. 2008, 80, 6881–6887. [CrossRef][PubMed]
-
(2008)
Chem
, vol.80
, pp. 6881-6887
-
-
Mellors, J.S.1
Gorbounov, V.2
Ramsey, R.S.3
Ramsey, J.M.4
-
50
-
-
79960519962
-
Microfluidic cartridges for DNA purification and genotyping processed in standard laboratory instruments
-
In , 18–20 April, Schmid, U., Sánchez-Rojas, J.L., Leester-Schaedel, M., Eds
-
Focke, M. Mark, D. Stumpf, F. Müller, M. Roth, G. Zengerle, R. von Stetten, F. Microfluidic cartridges for DNA purification and genotyping processed in standard laboratory instruments. In Proceedings of the SPIE, Smart Sensors, Actuators, and MEMS V, Prague, Czech Republic, 18–20 April 2011; Schmid, U., Sánchez-Rojas, J.L., Leester-Schaedel, M., Eds. Volume 8066.
-
(2011)
Proceedings of the SPIE, Smart Sensors, Actuators, and MEMS V, Prague, Czech Republic
, vol.8066
-
-
Focke, M.1
Mark, D.2
Stumpf, F.3
Müller, M.4
Roth, G.5
Zengerle, R.6
Von Stetten, F.7
-
51
-
-
34247273993
-
Patterned paper as a platform for inexpensive, low-volume, portable bioassays.
-
[CrossRef][PubMed]
-
Martinez, A.W. Phillips, S.T. Butte, M.J. Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320. [CrossRef][PubMed]
-
Angew. Chem. Int. Ed. 2007
, vol.46
, pp. 1318-1320
-
-
Martinez, A.W.1
Phillips, S.T.2
Butte, M.J.3
Whitesides, G.M.4
-
52
-
-
75749113741
-
Diagnostics for the developing world: Microfluidic paper-based analytical devices.
-
[CrossRef][PubMed]
-
Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010, 82, 3–10. [CrossRef][PubMed]
-
(2010)
Anal. Chem
, vol.82
, pp. 3-10
-
-
Martinez, A.W.1
Phillips, S.T.2
Whitesides, G.M.3
Carrilho, E.4
-
53
-
-
27544475970
-
When microfluidic devices go bad
-
[CrossRef][PubMed]
-
Mukhopadhyay, R. When microfluidic devices go bad. Anal. Chem. 2005, 77, 429A–432A. [CrossRef][PubMed]
-
(2005)
Anal. Chem
, vol.77
, pp. 429A-432A
-
-
Mukhopadhyay, R.1
-
54
-
-
84555188864
-
Surface modification for PDMS-based microfluidic devices
-
[CrossRef][PubMed]
-
Zhou, J. Khodakov, D.A. Ellis, A.V. Voelcker, N.H. Surface modification for PDMS-based microfluidic devices. Electrophoresis 2012, 33, 89–104. [CrossRef][PubMed]
-
(2012)
Electrophoresis
, vol.33
, pp. 89-104
-
-
Zhou, J.1
Khodakov, D.A.2
Ellis, A.V.3
Voelcker, N.H.4
-
56
-
-
84906214128
-
Recent developments in microfluidics for cell studies. Adv
-
[CrossRef][PubMed]
-
Xiong, B. Ren, K. Shu, Y. Chen, Y. Shen, B. Wu, H. Recent developments in microfluidics for cell studies. Adv. Mater. 2014, 26, 5525–5532. [CrossRef][PubMed]
-
(2014)
Mater
, vol.26
, pp. 5525-5532
-
-
Xiong, B.1
Ren, K.2
Shu, Y.3
Chen, Y.4
Shen, B.5
Wu, H.6
-
57
-
-
83455253663
-
Engineering tissue with BioMEMS
-
[CrossRef][PubMed]
-
Borenstein, J.T. Vunjak-Novakovic, G. Engineering tissue with BioMEMS. IEEE Pulse 2011, 2, 28–34. [CrossRef][PubMed]
-
(2011)
IEEE Pulse
, vol.2
, pp. 28-34
-
-
Borenstein, J.T.1
Vunjak-Novakovic, G.2
-
58
-
-
84907011121
-
Tissue-engineered microenvironment systems for modeling human vasculature. Exp. Biol
-
[CrossRef][PubMed]
-
Tourovskaia, A. Fauver, M. Kramer, G. Simonson, S. Neumann, T. Tissue-engineered microenvironment systems for modeling human vasculature. Exp. Biol. Med. 2014, 239, 1264–1271. [CrossRef][PubMed]
-
(2014)
Med
, vol.239
, pp. 1264-1271
-
-
Tourovskaia, A.1
Fauver, M.2
Kramer, G.3
Simonson, S.4
Neumann, T.5
-
59
-
-
84924942217
-
Microfluidic multiculture assay to analyze biomolecular signaling in angiogenesis.
-
[CrossRef][PubMed]
-
Theberge, A.B. Yu, J. Young, E.W.K. Ricke, W.A. Bushman, W. Beebe, D.J. Microfluidic multiculture assay to analyze biomolecular signaling in angiogenesis. Anal. Chem. 2015, 87, 3239–3246. [CrossRef][PubMed]
-
(2015)
Anal. Chem
, vol.87
, pp. 3239-3246
-
-
Theberge, A.B.1
Yu, J.2
Young, E.3
Ricke, W.A.4
Bushman, W.5
Beebe, D.J.6
-
60
-
-
84900534365
-
Microfluidic analysis of red blood cell deformability
-
[CrossRef][PubMed]
-
Guo, Q. Duffy, S.P. Matthews, K. Santoso, A.T. Scott, M.D. Ma, H. Microfluidic analysis of red blood cell deformability. J. Biomech. 2014, 47, 1767–1776. [CrossRef][PubMed]
-
(2014)
J. Biomech
, vol.47
, pp. 1767-1776
-
-
Guo, Q.1
Duffy, S.P.2
Matthews, K.3
Santoso, A.T.4
Scott, M.D.5
Ma, H.6
-
61
-
-
84857964726
-
Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip
-
[CrossRef][PubMed]
-
Grosberg, A. Alford, P.W. McCain, M.L. Parker, K.K. Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip. Lab Chip 2011, 11, 4165–4173. [CrossRef][PubMed]
-
(2011)
Lab Chip
, vol.11
, pp. 4165-4173
-
-
Grosberg, A.1
Alford, P.W.2
McCain, M.L.3
Parker, K.K.4
-
62
-
-
84926319995
-
Changes in velocity profile according to blood viscosity in a microchannel
-
[CrossRef][PubMed]
-
Yeom, E. Kang, Y.J. Lee, S. Changes in velocity profile according to blood viscosity in a microchannel. Biomicrofluidics 2014, 8, 034110:1–034110:11. [CrossRef][PubMed]
-
(2014)
Biomicrofluidics
, vol.8
-
-
Yeom, E.1
Kang, Y.J.2
Lee, S.3
-
63
-
-
84934973743
-
Hybrid system for ex vivo hemorheological and hemodynamic analysis: A feasibility study. Sci
-
[CrossRef][PubMed]
-
Yeom, E. Jun Kang, Y. Joon Lee, S. Hybrid system for ex vivo hemorheological and hemodynamic analysis: A feasibility study. Sci. Rep. 2015, 5, 1–15. [CrossRef][PubMed]
-
(2015)
Rep
, vol.5
, pp. 1-15
-
-
Yeom, E.1
Jun Kang, Y.2
Joon Lee, S.3
-
64
-
-
84949882045
-
Microconfined flow behavior of red blood cells. Med. Eng
-
[CrossRef][PubMed]
-
Tomaiuolo, G. Lanotte, L. D’Apolito, R. Cassinese, A. Guido, S. Microconfined flow behavior of red blood cells. Med. Eng. Phys. 2015. [CrossRef][PubMed]
-
(2015)
Phys
-
-
Tomaiuolo, G.1
Lanotte, L.2
D’Apolito, R.3
Cassinese, A.4
Guido, S.5
-
65
-
-
84903940578
-
Biomimetic microfluidic device for in vitro antihypertensive drug evaluation. Mol
-
[CrossRef][PubMed]
-
Li, L. Lv, X. Ostrovidov, S. Shi, X. Zhang, N. Liu, J. Biomimetic microfluidic device for in vitro antihypertensive drug evaluation. Mol. Pharm. 2014, 11, 2009–2015. [CrossRef][PubMed]
-
(2014)
Pharm
, vol.11
, pp. 2009-2015
-
-
Li, L.1
Lv, X.2
Ostrovidov, S.3
Shi, X.4
Zhang, N.5
Liu, J.6
-
66
-
-
84878958845
-
Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip
-
[CrossRef][PubMed]
-
McCain, M.L. Sheehy, S.P. Grosberg, A. Goss, J.A. Parker, K.K. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc. Natl. Acad. Sci. USA 2013, 110, 9770–9775. [CrossRef][PubMed]
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 9770-9775
-
-
McCain, M.L.1
Sheehy, S.P.2
Grosberg, A.3
Goss, J.A.4
Parker, K.K.5
-
67
-
-
77956575158
-
Microfluidic cardiac cell culture model (_CCCM). Anal
-
[CrossRef][PubMed]
-
Giridharan, G.A. Nguyen, M.-D. Estrada, R. Parichehreh, V. Hamid, T. Ismahil, M.A. Prabhu, S.D. Sethu, P. Microfluidic cardiac cell culture model (_CCCM). Anal. Chem. 2010, 82, 7581–7587. [CrossRef][PubMed]
-
(2010)
Chem
, vol.82
, pp. 7581-7587
-
-
Giridharan, G.A.1
Nguyen, M.-D.2
Estrada, R.3
Parichehreh, V.4
Hamid, T.5
Ismahil, M.A.6
Prabhu, S.D.7
Sethu, P.8
-
68
-
-
84934882141
-
Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function
-
[CrossRef][PubMed]
-
Yasotharan, S. Pinto, S. Sled, J.G. Bolz, S.-S. Günther, A. Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function. Lab Chip 2015, 15, 2660–2669. [CrossRef][PubMed]
-
(2015)
Lab Chip
, vol.15
, pp. 2660-2669
-
-
Yasotharan, S.1
Pinto, S.2
Sled, J.G.3
Bolz, S.-S.4
Günther, A.5
-
69
-
-
84930243229
-
N.L. Engineering a blood vessel network module for body-on-a-chip applications
-
[CrossRef][PubMed]
-
Ryu, H. Oh, S. Lee, H.J. Lee, J.Y. Lee, H.K. Jeon, N.L. Engineering a blood vessel network module for body-on-a-chip applications. J. Lab. Autom. 2015, 20, 296–301. [CrossRef][PubMed]
-
(2015)
J. Lab. Autom
, vol.20
, pp. 296-301
-
-
Ryu, H.O.1
Lee, S.2
Lee, H.J.3
Lee, J.Y.4
Jeon, H.K.5
-
70
-
-
84905442308
-
Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function
-
[CrossRef][PubMed]
-
Hattori, K. Munehira, Y. Kobayashi, H. Satoh, T. Sugiura, S. Kanamori, T. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function. J. Biosci. Bioeng. 2014, 118, 327–332. [CrossRef][PubMed]
-
(2014)
J. Biosci. Bioeng
, vol.118
, pp. 327-332
-
-
Hattori, K.1
Munehira, Y.2
Kobayashi, H.3
Satoh, T.4
Sugiura, S.5
Kanamori, T.6
-
71
-
-
84914696701
-
Long-term vascular contractility assay using genipin-modified muscular thin films
-
[CrossRef][PubMed]
-
Hald, E.S. Steucke, K.E. Reeves, J.A. Win, Z. Alford, P.W. Long-term vascular contractility assay using genipin-modified muscular thin films. Biofabrication 2014, 6, 045005:1–045005:11. [CrossRef][PubMed]
-
(2014)
Biofabrication
, vol.6
-
-
Hald, E.S.1
Steucke, K.E.2
Reeves, J.A.3
Win, Z.4
Alford, P.W.5
-
72
-
-
84925069525
-
In vitro microfluidic model for the study of vaso-occlusive processes. Exp
-
[CrossRef][PubMed]
-
Dominical, V.M. Vital, D.M. O’Dowd, F. Saad, S.T.O. Costa, F.F. Conran, N. In vitro microfluidic model for the study of vaso-occlusive processes. Exp. Hematol. 2015, 43, 223–228. [CrossRef][PubMed]
-
(2015)
Hematol
, vol.43
, pp. 223-228
-
-
Dominical, V.M.1
Vital, D.M.2
O’Dowd, F.3
Saad, S.T.O.4
Costa, F.F.5
Conran, N.6
-
73
-
-
84926687867
-
Four-dimensional characterization of thrombosis in a live-cell, shear-flow assay: Development and application to xenotransplantation
-
[CrossRef][PubMed]
-
Harris, D.G. Benipal, P.K. Cheng, X. Burdorf, L. Azimzadeh, A.M. Pierson, R.N. Four-dimensional characterization of thrombosis in a live-cell, shear-flow assay: Development and application to xenotransplantation. PLoS ONE 2015, 10, e0123015. [CrossRef][PubMed]
-
(2015)
Plos ONE
, vol.10
-
-
Harris, D.G.1
Benipal, P.K.2
Cheng, X.3
Burdorf, L.4
Azimzadeh, A.M.5
Pierson, R.N.6
-
74
-
-
84958759912
-
Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels.
-
[CrossRef][PubMed]
-
Hu, R. Li, F. Lv, J. He, Y. Lu, D. Yamada, T. Ono, N. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels. Biomed. Microdevices 2015, 17, 1387–2176. [CrossRef][PubMed]
-
(2015)
Biomed. Microdevices
, vol.17
, pp. 1387-2176
-
-
Hu, R.1
Li, F.2
Lv, J.3
He, Y.4
Lu, D.5
Yamada, T.6
Ono, N.7
-
75
-
-
77954038080
-
Reconstituting organ-level lung functions on a chip
-
[CrossRef][PubMed]
-
Huh, D. Matthews, B.D. Mammoto, A. Montoya-Zavala, M. Hsin, H.Y. Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science 2010, 328, 1662–1668. [CrossRef][PubMed]
-
(2010)
Science
, vol.328
, pp. 1662-1668
-
-
Huh, D.1
Matthews, B.D.2
Mammoto, A.3
Montoya-Zavala, M.4
Hsin, H.Y.5
Ingber, D.E.6
-
76
-
-
84898814912
-
Microdevice for parallelized pulmonary permeability studies. Biomed
-
[CrossRef][PubMed]
-
Bol, L. Galas, J.-C. Hillaireau, H. Potier, I.L. Nicolas, V. Haghiri-Gosnet, A.-M. Fattal, E. Taverna, M. A microdevice for parallelized pulmonary permeability studies. Biomed. Microdevices 2014, 16, 277–285. [CrossRef][PubMed]
-
(2014)
Microdevices
, vol.16
, pp. 277-285
-
-
Bol, L.1
Galas, J.-C.2
Hillaireau, H.3
Potier, I.L.4
Nicolas, V.5
Haghiri-Gosnet, A.-M.6
Fattal, E.7
Taverna, M.A.8
-
77
-
-
84946595472
-
Modulating chemotaxis of lung cancer cells by using electric fields in a microfluidic device
-
[CrossRef][PubMed]
-
Kao, Y.-C. Hsieh, M.-H. Liu, C.-C. Pan, H.-J. Liao, W.-Y. Cheng, J.-Y. Kuo, P.-L. Lee, C.-H. Modulating chemotaxis of lung cancer cells by using electric fields in a microfluidic device. Biomicrofluidics 2014, 8, 024107:1–024107:12. [CrossRef][PubMed]
-
(2014)
Biomicrofluidics
, vol.8
-
-
Kao, Y.-C.1
Hsieh, M.-H.2
Liu, C.-C.3
Pan, H.-J.4
Liao, W.-Y.5
Cheng, J.-Y.6
Kuo, P.-L.7
Lee, C.-H.8
-
78
-
-
84905457584
-
A biomimetic multicellular model of the airways using primary human cells
-
[CrossRef][PubMed]
-
Sellgren, K.L. Butala, E.J. Gilmour, B.P. Randell, S.H. Grego, S. A biomimetic multicellular model of the airways using primary human cells. Lab Chip 2014, 14, 3349–3358. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 3349-3358
-
-
Sellgren, K.L.1
Butala, E.J.2
Gilmour, B.P.3
Randell, S.H.4
Grego, S.5
-
79
-
-
84899962362
-
Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin—Microbubble scaffold
-
[CrossRef][PubMed]
-
Ling, T.-Y. Liu, Y.-L. Huang, Y.-K. Gu, S.-Y. Chen, H.-K. Ho, C.-C. Tsao, P.-N. Tung, Y.-C. Chen, H.-W. Cheng, C.-H. et al. Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin—Microbubble scaffold. Biomaterials 2014, 35, 5660–5669. [CrossRef][PubMed]
-
(2014)
Biomaterials
, vol.35
, pp. 5660-5669
-
-
Ling, T.-Y.1
Liu, Y.-L.2
Huang, Y.-K.3
Gu, S.-Y.4
Chen, H.-K.5
Ho, C.-C.6
Tsao, P.-N.7
Tung, Y.-C.8
Chen, H.-W.9
Cheng, C.-H.10
-
80
-
-
84923100240
-
A biologically inspired lung-on-a-chip device for the study of protein-induced lung inflammation. Integr
-
[CrossRef][PubMed]
-
Punde, T.H. Wu, W.-H. Lien, P.-C. Chang, Y.-L. Kuo, P.-H. Chang, M.D.-T. Lee, K.-Y. Huang, C.-D. Kuo, H.-P. Chan, Y.-F. et al. A biologically inspired lung-on-a-chip device for the study of protein-induced lung inflammation. Integr. Biol. 2015, 7, 162–169. [CrossRef][PubMed]
-
(2015)
Biol
, vol.7
, pp. 162-169
-
-
Punde, T.H.1
Wu, W.-H.2
Lien, P.-C.3
Chang, Y.-L.4
Kuo, P.-H.5
Chang, M.D.6
Lee, K.-Y.7
Huang, C.-D.8
Kuo, H.-P.9
Chan, Y.-F.10
-
81
-
-
84930620813
-
A microfluidic platform for evaluating neutrophil chemotaxis induced by sputum from COPD patients
-
[CrossRef][PubMed]
-
Wu, J. Hillier, C. Komenda, P. Lobato de Faria, R. Levin, D. Zhang, M. Lin, F. A microfluidic platform for evaluating neutrophil chemotaxis induced by sputum from COPD patients. PLoS ONE 2015, 10, e0126523. [CrossRef][PubMed]
-
(2015)
Plos ONE
, vol.10
-
-
Wu, J.1
Hillier, C.2
Komenda, P.3
Lobato De Faria, R.4
Levin, D.5
Zhang, M.6
Lin, F.7
-
82
-
-
84927145828
-
Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform
-
[CrossRef][PubMed]
-
Cortez-Jugo, C. Qi, A. Rajapaksa, A. Friend, J.R. Yeo, L.Y. Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. Biomicrofluidics 2015, 9, 1–10. [CrossRef][PubMed]
-
(2015)
Biomicrofluidics
, vol.9
, pp. 1-10
-
-
Cortez-Jugo, C.1
Qi, A.2
Rajapaksa, A.3
Friend, J.R.4
Yeo, L.Y.5
-
83
-
-
84916240313
-
An integrated array of microfluidic oxygenators as a neonatal lung assist device: In vitro characterization and in vivo demonstration.
-
[CrossRef][PubMed]
-
Rochow, N. Manan, A. Wu, W.-I. Fusch, G. Monkman, S. Leung, J. Chan, E. Nagpal, D. Predescu, D. Brash, J. et al. An integrated array of microfluidic oxygenators as a neonatal lung assist device: In vitro characterization and in vivo demonstration. Artif. Organs 2014, 38, 856–866. [CrossRef][PubMed]
-
(2014)
Artif. Organs
, vol.38
, pp. 856-866
-
-
Rochow, N.1
Manan, A.2
Wu, W.-I.3
Fusch, G.4
Monkman, S.5
Leung, J.6
Chan, E.7
Nagpal, D.8
Predescu, D.9
Brash, J.10
-
84
-
-
84905858181
-
Continual exposure to cigarette smoke extracts induces tumor-Like transformation of human nontumor bronchial epithelial cells in a microfluidic chip
-
[CrossRef][PubMed]
-
Li, E. Xu, Z. Liu, F. Wang, H. Wen, J. Shao, S. Zhang, L. Wang, L. Liu, C. Lu, J. et al. Continual exposure to cigarette smoke extracts induces tumor-Like transformation of human nontumor bronchial epithelial cells in a microfluidic chip. J. Thorac. Oncol. 2014, 9, 1091–1100. [CrossRef][PubMed]
-
(2014)
J. Thorac. Oncol
, vol.9
, pp. 1091-1100
-
-
Li, E.1
Xu, Z.2
Liu, F.3
Wang, H.4
Wen, J.5
Shao, S.6
Zhang, L.7
Wang, L.8
Liu, C.9
Lu, J.10
-
85
-
-
84911062904
-
The potential of microfluidic lung epithelial wounding: Towards in vivo-like alveolar microinjuries. Integr
-
[CrossRef][PubMed]
-
Felder, M. Stucki, A.O. Stucki, J.D. Geiser, T. Guenat, O.T. The potential of microfluidic lung epithelial wounding: Towards in vivo-like alveolar microinjuries. Integr. Biol. 2014, 6, 1132–1140. [CrossRef][PubMed]
-
(2014)
Biol
, vol.6
, pp. 1132-1140
-
-
Felder, M.1
Stucki, A.O.2
Stucki, J.D.3
Geiser, T.4
Guenat, O.T.5
-
86
-
-
84903776107
-
Specific retrograde transduction of spinal motor neurons using lentiviral vectors targeted to presynaptic NMJ receptors. Mol
-
[CrossRef][PubMed]
-
Eleftheriadou, I. Trabalza, A. Ellison, S.M. Gharun, K. Mazarakis, N.D. Specific retrograde transduction of spinal motor neurons using lentiviral vectors targeted to presynaptic NMJ receptors. Mol. Ther. 2014, 22, 1285–1298. [CrossRef][PubMed]
-
(2014)
Ther
, vol.22
, pp. 1285-1298
-
-
Eleftheriadou, I.1
Trabalza, A.2
Ellison, S.M.3
Gharun, K.4
Mazarakis, N.D.5
-
87
-
-
84908313405
-
Characterizing the composition of molecular motors on moving axonal cargo using “cargo mapping” analysis.
-
[CrossRef][PubMed]
-
Neumann, S. Campbell, G.E. Szpankowski, L. Goldstein, L.S.B. Encalada, S.E. Characterizing the composition of molecular motors on moving axonal cargo using “cargo mapping” analysis. J. Vis. Exp. 2014, 1–2. [CrossRef][PubMed]
-
(2014)
J. Vis. Exp
, pp. 1-2
-
-
Neumann, S.1
Campbell, G.E.2
Szpankowski, L.3
Goldstein, L.4
Encalada, S.E.5
-
88
-
-
84929251718
-
Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type A
-
[CrossRef][PubMed]
-
Wang, T. Martin, S. Papadopulos, A. Harper, C.B. Mavlyutov, T.A. Niranjan, D. Glass, N.R. Cooper-White, J.J. Sibarita, J.-B. Choquet, D. et al. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type A. J. Neurosci. 2015, 35, 6179–6194. [CrossRef][PubMed]
-
(2015)
J. Neurosci
, vol.35
, pp. 6179-6194
-
-
Wang, T.1
Martin, S.2
Papadopulos, A.3
Harper, C.B.4
Mavlyutov, T.A.5
Niranjan, D.6
Glass, N.R.7
Cooper-White, J.J.8
Sibarita, J.-B.9
Choquet, D.10
-
89
-
-
84908268799
-
Real-time imaging of axonal transport of quantum dot-labeled BDNF in primary neurons
-
[CrossRef][PubMed]
-
Zhao, X. Zhou, Y. Weissmiller, A.M. Pearn, M.L. Mobley, W.C. Wu, C. Real-time imaging of axonal transport of quantum dot-labeled BDNF in primary neurons. J. Vis. Exp. 2014, 91, e51899. [CrossRef][PubMed]
-
(2014)
J. Vis. Exp
, vol.91
-
-
Zhao, X.1
Zhou, Y.2
Weissmiller, A.M.3
Pearn, M.L.4
Mobley, W.C.5
Wu, C.6
-
90
-
-
84901588133
-
Chemically induced synaptic activity between mixed primary hippocampal co-cultures in a microfluidic system. Integr
-
[CrossRef][PubMed]
-
Robertson, G. Bushell, T.J. Zagnoni, M. Chemically induced synaptic activity between mixed primary hippocampal co-cultures in a microfluidic system. Integr. Biol. 2014, 6, 636–644. [CrossRef][PubMed]
-
(2014)
Biol
, vol.6
, pp. 636-644
-
-
Robertson, G.1
Bushell, T.J.2
Zagnoni, M.3
-
91
-
-
84901045133
-
Small-molecule axon-polarization studies enabled by a shear-free microfluidic gradient generator
-
[CrossRef][PubMed]
-
Xu, H. Ferreira, M.M. Heilshorn, S.C. Small-molecule axon-polarization studies enabled by a shear-free microfluidic gradient generator. Lab Chip 2014, 14, 2047–2056. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 2047-2056
-
-
Xu, H.1
Ferreira, M.M.2
Heilshorn, S.C.3
-
92
-
-
84893079204
-
Brain tumor cell line authentication, an efficient alternative to capillary electrophoresis by using a microfluidics-based system. Neuro
-
[CrossRef][PubMed]
-
An, Q. Fillmore, H.L. Vouri, M. Pilkington, G.J. Brain tumor cell line authentication, an efficient alternative to capillary electrophoresis by using a microfluidics-based system. Neuro. Oncol. 2014, 16, 265–273. [CrossRef][PubMed]
-
(2014)
Oncol
, vol.16
, pp. 265-273
-
-
An, Q.1
Fillmore, H.L.2
Vouri, M.3
Pilkington, G.J.4
-
93
-
-
84922321862
-
Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat
-
[CrossRef][PubMed]
-
Pollen, A.A. Nowakowski, T.J. Shuga, J. Wang, X. Leyrat, A.A. Lui, J.H. Li, N. Szpankowski, L. Fowler, B. Chen, P. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 2014, 32, 1053–1058. [CrossRef][PubMed]
-
(2014)
Biotechnol
, vol.32
, pp. 1053-1058
-
-
Pollen, A.A.1
Nowakowski, T.J.2
Shuga, J.3
Wang, X.4
Leyrat, A.A.5
Lui, J.H.6
Li, N.7
Szpankowski, L.8
Fowler, B.9
Chen, P.10
-
94
-
-
84931090025
-
In vitro myelin formation using embryonic stem cells
-
[CrossRef][PubMed]
-
Kerman, B.E. Kim, H.J. Padmanabhan, K. Mei, A. Georges, S. Joens, M.S. Fitzpatrick, J.A.J. Jappelli, R. Chandross, K.J. August, P. et al. In vitro myelin formation using embryonic stem cells. Development 2015, 142, 2213–2225. [CrossRef][PubMed]
-
(2015)
Development
, vol.142
, pp. 2213-2225
-
-
Kerman, B.E.1
Kim, H.J.2
Padmanabhan, K.3
Mei, A.4
Georges, S.5
Joens, M.S.6
Fitzpatrick, J.A.J.7
Jappelli, R.8
Chandross, K.J.9
August, P.10
-
95
-
-
84908334440
-
New methods for investigation of neuronal migration in embryonic brain explants
-
[CrossRef][PubMed]
-
Nery, F.C. da Hora, C.C. Yaqub, U. Zhang, X. McCarthy, D.M. Bhide, P.G. Irimia, D. Breakefield, X.O. New methods for investigation of neuronal migration in embryonic brain explants. J. Neurosci. Methods 2015, 239, 80–84. [CrossRef][PubMed]
-
(2015)
J. Neurosci. Methods
, vol.239
, pp. 80-84
-
-
Nery, F.C.1
Da Hora, C.C.2
Yaqub, U.3
Zhang, X.4
McCarthy, D.M.5
Bhide, P.G.6
Irimia, D.7
Breakefield, X.O.8
-
96
-
-
84906842146
-
Semaphorin 3A activates the guanosine triphosphatase Rab5 to promote growth cone collapse and organize callosal axon projections. Sci
-
[CrossRef][PubMed]
-
Wu, K.-Y. He, M. Hou, Q.-Q. Sheng, A.-L. Yuan, L. Liu, F. Liu, W.-W. Li, G. Jiang, X.-Y. Luo, Z.-G. Semaphorin 3A activates the guanosine triphosphatase Rab5 to promote growth cone collapse and organize callosal axon projections. Sci. Signal. 2014, 7, 1–13. [CrossRef][PubMed]
-
(2014)
Signal
, vol.7
, pp. 1-13
-
-
Wu, K.-Y.1
He, M.2
Hou, Q.-Q.3
Sheng, A.-L.4
Yuan, L.5
Liu, F.6
Liu, W.-W.7
Li, G.8
Jiang, X.-Y.9
Luo, Z.-G.10
-
97
-
-
84924115599
-
Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons
-
[CrossRef][PubMed]
-
Rajbhandari, L. Tegenge, M.A. Shrestha, S. Ganesh Kumar, N. Malik, A. Mithal, A. Hosmane, S. Venkatesan, A. Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons. Glia 2014, 62, 1982–1991. [CrossRef][PubMed]
-
(2014)
Glia
, vol.62
, pp. 1982-1991
-
-
Rajbhandari, L.1
Tegenge, M.A.2
Shrestha, S.3
Ganesh Kumar, N.4
Malik, A.5
Mithal, A.6
Hosmane, S.7
Venkatesan, A.8
-
98
-
-
84919832789
-
In vitro and in situ visualization of cytoskeletal deformation under load: Traumatic axonal injury
-
[CrossRef][PubMed]
-
Fournier, A.J. Rajbhandari, L. Shrestha, S. Venkatesan, A. Ramesh, K.T. In vitro and in situ visualization of cytoskeletal deformation under load: Traumatic axonal injury. FASEB J. 2014, 28, 5277–5287. [CrossRef][PubMed]
-
(2014)
FASEB J
, vol.28
, pp. 5277-5287
-
-
Fournier, A.J.1
Rajbhandari, L.2
Shrestha, S.3
Venkatesan, A.4
Ramesh, K.T.5
-
99
-
-
84920769320
-
Metabolic consequences of interleukin-6 challenge in developing neurons and astroglia
-
[CrossRef][PubMed]
-
Brown, J.A. Sherrod, S.D. Goodwin, C.R. Brewer, B. Yang, L. Garbett, K.A. Li, D. McLean, J.A. Wikswo, J.P. Mirnics, K. Metabolic consequences of interleukin-6 challenge in developing neurons and astroglia. J. Neuroinflamm. 2014, 11, 1–12. [CrossRef][PubMed]
-
(2014)
J. Neuroinflamm
, vol.11
, pp. 1-12
-
-
Brown, J.A.1
Sherrod, S.D.2
Goodwin, C.R.3
Brewer, B.4
Yang, L.5
Garbett, K.A.6
Li, D.7
McLean, J.A.8
Wikswo, J.P.9
Mirnics, K.10
-
100
-
-
84899892266
-
Localized drug application and sub-second voltammetric dopamine release measurements in a brain slice perfusion device
-
[CrossRef][PubMed]
-
Sun, M. Kaplan, S.V. Gehringer, R.C. Limbocker, R.A. Johnson, M.A. Localized drug application and sub-second voltammetric dopamine release measurements in a brain slice perfusion device. Anal. Chem. 2014, 86, 4151–4156. [CrossRef][PubMed]
-
(2014)
Anal. Chem
, vol.86
, pp. 4151-4156
-
-
Sun, M.1
Kaplan, S.V.2
Gehringer, R.C.3
Limbocker, R.A.4
Johnson, M.A.5
-
101
-
-
84921627659
-
High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates
-
[CrossRef][PubMed]
-
Lin, X. Wang, S. Yu, X. Liu, Z. Wang, F. Li, W.T. Cheng, S.H. Dai, Q. Shi, P. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates. Lab Chip 2015, 15, 680–689. [CrossRef][PubMed]
-
(2015)
Lab Chip
, vol.15
, pp. 680-689
-
-
Lin, X.1
Wang, S.2
Yu, X.3
Liu, Z.4
Wang, F.5
Li, W.T.6
Cheng, S.H.7
Dai, Q.8
Shi, P.9
-
102
-
-
84903782193
-
Testing A_ toxicity on primary CNS cultures using drug-screening microfluidic chips
-
[CrossRef][PubMed]
-
Ruiz, A. Joshi, P. Mastrangelo, R. Francolini, M. Verderio, C. Matteoli, M. Testing A_ toxicity on primary CNS cultures using drug-screening microfluidic chips. Lab Chip 2014, 14, 2860–2866. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 2860-2866
-
-
Ruiz, A.1
Joshi, P.2
Mastrangelo, R.3
Francolini, M.4
Verderio, C.5
Matteoli, M.6
-
103
-
-
84919415828
-
Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood–brain barrier model
-
[CrossRef][PubMed]
-
Booth, R. Kim, H. Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood–brain barrier model. Ann. Biomed. Eng. 2014, 42, 2379–2391. [CrossRef][PubMed]
-
(2014)
Ann. Biomed. Eng
, vol.42
, pp. 2379-2391
-
-
Booth, R.1
Kim, H.2
-
104
-
-
84903313648
-
Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. Integr
-
[CrossRef][PubMed]
-
Zhao, Y. Abdelfattah, A.S. Zhao, Y. Ruangkittisakul, A. Ballanyi, K. Campbell, R.E. Harrison, D.J. Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. Integr. Biol. 2014, 6, 714–725. [CrossRef][PubMed]
-
(2014)
Biol
, vol.6
, pp. 714-725
-
-
Zhao, Y.1
Abdelfattah, A.S.2
Zhao, Y.3
Ruangkittisakul, A.4
Ballanyi, K.5
Campbell, R.E.6
Harrison, D.J.7
-
105
-
-
84898465933
-
Microfluidic based in vitro model of synaptic competition. Mol. Cell
-
[CrossRef][PubMed]
-
Coquinco, A. Kojic, L. Wen, W. Wang, Y.T. Jeon, N.L. Milnerwood, A.J. Cynader, M. A microfluidic based in vitro model of synaptic competition. Mol. Cell. Neurosci. 2014, 60, 43–52. [CrossRef][PubMed]
-
(2014)
Neurosci
, vol.60
, pp. 43-52
-
-
Coquinco, A.1
Kojic, L.2
Wen, W.3
Wang, Y.T.4
Jeon, N.L.5
Milnerwood, A.J.6
Cynader, M.A.7
-
106
-
-
84965087631
-
B-amyloid induces a dying-back process and remote trans-synaptic alterations in a microfluidic-based reconstructed neuronal network. Acta Neuropathol
-
[CrossRef][PubMed]
-
Deleglise, B. Magnifico, S. Duplus, E. Vaur, P. Soubeyre, V. Belle, M. Vignes, M. Viovy, J.-L. Jacotot, E. Peyrin, J.-M. et al. B-amyloid induces a dying-back process and remote trans-synaptic alterations in a microfluidic-based reconstructed neuronal network. Acta Neuropathol. Commun. 2014, 2, 1–9. [CrossRef][PubMed]
-
(2014)
Commun
, vol.2
, pp. 1-9
-
-
Deleglise, B.1
Magnifico, S.2
Duplus, E.3
Vaur, P.4
Soubeyre, V.5
Belle, M.6
Vignes, M.7
Viovy, J.-L.8
Jacotot, E.9
Peyrin, J.-M.10
-
107
-
-
84929126317
-
An ALS-mutant TDP-43 neurotoxic peptide adopts an anti-parallel -structure and induces TDP-43 redistribution. Hum. Mol
-
[CrossRef][PubMed]
-
Zhu, L. Xu, M. Yang, M. Yang, Y. Li, Y. Deng, J. Ruan, L. Liu, J. Du, S. Liu, X. et al. An ALS-mutant TDP-43 neurotoxic peptide adopts an anti-parallel -structure and induces TDP-43 redistribution. Hum. Mol. Genet. 2014, 23, 6863–6877. [CrossRef][PubMed]
-
(2014)
Genet
, vol.23
, pp. 6863-6877
-
-
Zhu, L.1
Xu, M.2
Yang, M.3
Yang, Y.4
Li, Y.5
Deng, J.6
Ruan, L.7
Liu, J.8
Du, S.9
Liu, X.10
-
108
-
-
84908274561
-
Parallel microfluidic chemosensitivity testing on individual slice cultures
-
[CrossRef][PubMed]
-
Chang, T.C. Mikheev, A.M. Huynh, W. Monnat, R.J. Rostomily, R.C. Folch, A. Parallel microfluidic chemosensitivity testing on individual slice cultures. Lab Chip 2014, 14, 4540–4551. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 4540-4551
-
-
Chang, T.C.1
Mikheev, A.M.2
Huynh, W.3
Monnat, R.J.4
Rostomily, R.C.5
Folch, A.6
-
109
-
-
84876719079
-
Engineering a 3D vascular network in hydrogel for mimicking a nephron
-
[CrossRef][PubMed]
-
Mu, X. Zheng, W. Xiao, L. Zhang, W. Jiang, X. Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab Chip 2013, 13, 1612–1618. [CrossRef][PubMed]
-
(2013)
Lab Chip
, vol.13
, pp. 1612-1618
-
-
Mu, X.1
Zheng, W.2
Xiao, L.3
Zhang, W.4
Jiang, X.5
-
110
-
-
84898547243
-
Investigation of expression and activity levels of primary rat hepatocyte detoxication genes under various flow rates and cell densities in microfluidic biochips. Biotechnol
-
[CrossRef][PubMed]
-
Baudoin, R. Alberto, G. Legendre, A. Paullier, P. Naudot, M. Fleury, M.J. Jacques, S. Griscom, L. Leclerc, E. Investigation of expression and activity levels of primary rat hepatocyte detoxication genes under various flow rates and cell densities in microfluidic biochips. Biotechnol. Prog. 2014, 30, 401–410. [CrossRef][PubMed]
-
(2014)
Prog
, vol.30
, pp. 401-410
-
-
Baudoin, R.1
Alberto, G.2
Legendre, A.3
Paullier, P.4
Naudot, M.5
Fleury, M.J.6
Jacques, S.7
Griscom, L.8
Leclerc, E.9
-
111
-
-
34547581758
-
An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol
-
[CrossRef][PubMed]
-
Lee, P.J. Hung, P.J. Lee, L.P. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 2007, 97, 1340–1346. [CrossRef][PubMed]
-
(2007)
Bioeng
, vol.97
, pp. 1340-1346
-
-
Lee, P.J.1
Hung, P.J.2
Lee, L.P.3
-
112
-
-
84886067352
-
A microfluidic device designed to induce media flow throughout pancreatic islets while limiting shear-induced damage
-
[CrossRef][PubMed]
-
Silva, P.N. Green, B.J. Altamentova, S.M. Rocheleau, J.V. A microfluidic device designed to induce media flow throughout pancreatic islets while limiting shear-induced damage. Lab Chip 2013, 13, 4374–4384. [CrossRef][PubMed]
-
(2013)
Lab Chip
, vol.13
, pp. 4374-4384
-
-
Silva, P.N.1
Green, B.J.2
Altamentova, S.M.3
Rocheleau, J.V.4
-
113
-
-
84881667053
-
Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection
-
[CrossRef][PubMed]
-
Jun, Y. Kim, M.J. Hwang, Y.H. Jeon, E.A. Kang, A.R. Lee, S.-H. Lee, D.Y. Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials 2013, 34, 8122–8130. [CrossRef][PubMed]
-
(2013)
Biomaterials
, vol.34
, pp. 8122-8130
-
-
Jun, Y.1
Kim, M.J.2
Hwang, Y.H.3
Jeon, E.A.4
Kang, A.R.5
Lee, S.-H.6
Lee, D.Y.7
-
114
-
-
84857791820
-
Dual microfluidic perifusion networks for concurrent islet perifusion and optical imaging.
-
[CrossRef][PubMed]
-
Lee, D. Wang, Y. Mendoza-Elias, J.E. Adewola, A.F. Harvat, T.A. Kinzer, K. Gutierrez, D. Qi, M. Eddington, D.T. Oberholzer, J. Dual microfluidic perifusion networks for concurrent islet perifusion and optical imaging. Biomed. Microdevices 2012, 14, 7–16. [CrossRef][PubMed]
-
(2012)
Biomed. Microdevices
, vol.14
, pp. 7-16
-
-
Lee, D.1
Wang, Y.2
Mendoza-Elias, J.E.3
Adewola, A.F.4
Harvat, T.A.5
Kinzer, K.6
Gutierrez, D.7
Qi, M.8
Eddington, D.T.9
Oberholzer, J.10
-
115
-
-
37749026012
-
Microfluidic environment for high density hepatocyte culture. Biomed
-
[CrossRef][PubMed]
-
Zhang, M.Y. Lee, P.J. Hung, P.J. Johnson, T. Lee, L.P. Mofrad, M.R.K. Microfluidic environment for high density hepatocyte culture. Biomed. Microdevices 2008, 10, 117–121. [CrossRef][PubMed]
-
(2008)
Microdevices
, vol.10
, pp. 117-121
-
-
Zhang, M.Y.1
Lee, P.J.2
Hung, P.J.3
Johnson, T.4
Lee, L.P.5
Mofrad, M.R.K.6
-
116
-
-
78649912552
-
Behavior ofHepG2/C3A cell cultures in a microfluidic bioreactor.
-
[CrossRef]
-
Baudoin, R. Griscom, L. Prot, J.M. Legallais, C. Leclerc, E. Behavior of HepG2/C3A cell cultures in a microfluidic bioreactor. Biochem. Eng. J. 2011, 53, 172–181. [CrossRef]
-
(2011)
Biochem. Eng. J
, vol.53
, pp. 172-181
-
-
Baudoin, R.1
Griscom, L.2
Prot, J.M.3
Legallais, C.4
Leclerc, E.5
-
117
-
-
84910650521
-
A novel modular bioreactor to in vitro study the hepatic sinusoid
-
[CrossRef][PubMed]
-
Illa, X. Vila, S. Yeste, J. Peralta, C. Gracia-Sancho, J. Villa, R. A novel modular bioreactor to in vitro study the hepatic sinusoid. PLoS ONE 2014, 9, e111864. [CrossRef][PubMed]
-
(2014)
Plos ONE
, vol.9
-
-
Illa, X.1
Vila, S.2
Yeste, J.3
Peralta, C.4
Gracia-Sancho, J.5
Villa, R.6
-
118
-
-
84902097724
-
Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng
-
[CrossRef][PubMed]
-
Li, C.Y. Stevens, K.R. Schwartz, R.E. Alejandro, B.S. Huang, J.H. Bhatia, S.N. Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng. Part A 2014, 20, 2200–2212. [CrossRef][PubMed]
-
(2014)
Part A
, vol.20
, pp. 2200-2212
-
-
Li, C.Y.1
Stevens, K.R.2
Schwartz, R.E.3
Alejandro, B.S.4
Huang, J.H.5
Bhatia, S.N.6
-
119
-
-
38049011979
-
Microscale culture of human liver cells for drug development. Nat
-
[CrossRef][PubMed]
-
Khetani, S.R. Bhatia, S.N. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 2008, 26, 120–126. [CrossRef][PubMed]
-
(2008)
Biotechnol
, vol.26
, pp. 120-126
-
-
Khetani, S.R.1
Bhatia, S.N.2
-
120
-
-
77951919817
-
Perfused multiwell plate for 3D liver tissue engineering
-
[CrossRef][PubMed]
-
Domansky, K. Inman, W. Serdy, J. Dash, A. Lim, M.H.M. Griffith, L.G. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 2010, 10, 51–58. [CrossRef][PubMed]
-
(2010)
Lab Chip
, vol.10
, pp. 51-58
-
-
Domansky, K.1
Inman, W.2
Serdy, J.3
Dash, A.4
Lim, M.H.M.5
Griffith, L.G.6
-
121
-
-
77951884924
-
A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells
-
[CrossRef][PubMed]
-
Jang, K.-J. Suh, K.-Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 2010, 10, 36–42. [CrossRef][PubMed]
-
(2010)
Lab Chip
, vol.10
, pp. 36-42
-
-
Jang, K.-J.1
Suh, K.-Y.2
-
122
-
-
41549086042
-
Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips
-
[CrossRef][PubMed]
-
Ju, X. Li, D. Gao, N. Shi, Q. Hou, H. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips. Biotechnol. J. 2008, 3, 383–391. [CrossRef][PubMed]
-
(2008)
Biotechnol. J
, vol.3
, pp. 383-391
-
-
Ju, X.1
Li, D.2
Gao, N.3
Shi, Q.4
Hou, H.5
-
123
-
-
84881164304
-
Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells. Tissue Eng
-
[CrossRef][PubMed]
-
Huang, H.-C. Chang, Y.-J. Chen, W.-C. Harn, H.I.-C. Tang, M.-J. Wu, C.-C. Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells. Tissue Eng. Part A 2013, 19, 2024–2034. [CrossRef][PubMed]
-
(2013)
Part A
, vol.19
, pp. 2024-2034
-
-
Huang, H.-C.1
Chang, Y.-J.2
Chen, W.-C.3
Harn, H.I.4
Tang, M.-J.5
Wu, C.-C.6
-
124
-
-
84939246731
-
Postnatal pancreas of mice contains tripotent progenitors capable of giving rise to duct, acinar, and endocrine cells in vitro
-
[CrossRef][PubMed]
-
Ghazalli, N. Mahdavi, A. Feng, T. Jin, L. Kozlowski, M.T. Hsu, J. Riggs, A.D. Tirrell, D.A. Ku, H.T. Postnatal pancreas of mice contains tripotent progenitors capable of giving rise to duct, acinar, and endocrine cells in vitro. Stem Cells Dev. 2015. [CrossRef][PubMed]
-
(2015)
Stem Cells Dev
-
-
Ghazalli, N.1
Mahdavi, A.2
Feng, T.3
Jin, L.4
Kozlowski, M.T.5
Hsu, J.6
Riggs, A.D.7
Tirrell, D.A.8
Ku, H.T.9
-
125
-
-
84889042632
-
Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip
-
[CrossRef][PubMed]
-
Sheng, W. Ogunwobi, O.O. Chen, T. Zhang, J. George, T.J. Liu, C. Fan, Z.H. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip 2014, 14, 89–98. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 89-98
-
-
Sheng, W.1
Ogunwobi, O.O.2
Chen, T.3
Zhang, J.4
George, T.J.5
Liu, C.6
Fan, Z.H.7
-
126
-
-
84898895483
-
Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: Characterization, optimization and downstream analysis.
-
[CrossRef][PubMed]
-
Thege, F.I. Lannin, T.B. Saha, T.N. Tsai, S. Kochman, M.L. Hollingsworth, M.A. Rhim, A.D. Kirby, B.J. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: Characterization, optimization and downstream analysis. Lab Chip 2014, 14, 1775–1784. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 1775-1784
-
-
Thege, F.I.1
Lannin, T.B.2
Saha, T.N.3
Tsai, S.4
Kochman, M.L.5
Hollingsworth, M.A.6
Rhim, A.D.7
Kirby, B.J.8
-
127
-
-
84894314470
-
Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions
-
[CrossRef][PubMed]
-
Rhim, A.D. Thege, F.I. Santana, S.M. Lannin, T.B. Saha, T.N. Tsai, S. Maggs, L.R. Kochman, M.L. Ginsberg, G.G. Lieb, J.G. et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 2014, 146, 647–651. [CrossRef][PubMed]
-
(2014)
Gastroenterology
, vol.146
, pp. 647-651
-
-
Rhim, A.D.1
Thege, F.I.2
Santana, S.M.3
Lannin, T.B.4
Saha, T.N.5
Tsai, S.6
Maggs, L.R.7
Kochman, M.L.8
Ginsberg, G.G.9
Lieb, J.G.10
-
128
-
-
84882627623
-
Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr
-
[CrossRef][PubMed]
-
Kim, H.J. Ingber, D.E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 2013, 5, 1130–1140. [CrossRef][PubMed]
-
(2013)
Biol
, vol.5
, pp. 1130-1140
-
-
Kim, H.J.1
Ingber, D.E.2
-
129
-
-
84870293748
-
On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic “body-on-a-chip” devices. Biomed
-
[CrossRef][PubMed]
-
Esch, M.B. Sung, J.H. Yang, J. Yu, C. Yu, J. March, J.C. Shuler, M.L. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic “body-on-a-chip” devices. Biomed. Microdevices 2012, 14, 895–906. [CrossRef][PubMed]
-
(2012)
Microdevices
, vol.14
, pp. 895-906
-
-
Esch, M.B.1
Sung, J.H.2
Yang, J.3
Yu, C.4
Yu, J.5
March, J.C.6
Shuler, M.L.7
-
130
-
-
84891536845
-
A microfluidic device with 3D hydrogel villi scaffold to simulate intestinal absorption
-
[CrossRef][PubMed]
-
Kim, S.H. Lee, J.W. Choi, I. Kim, Y.C. Lee, J.B. Sung, J.H. A microfluidic device with 3D hydrogel villi scaffold to simulate intestinal absorption. J. Nanosci. Nanotechnol. 2013, 13, 7220–7228. [CrossRef][PubMed]
-
(2013)
J. Nanosci. Nanotechnol
, vol.13
, pp. 7220-7228
-
-
Kim, S.H.1
Lee, J.W.2
Choi, I.3
Kim, Y.C.4
Lee, J.B.5
Sung, J.H.6
-
131
-
-
84881563382
-
Metabolic characterization of primary rat hepatocytes cultivated in parallel microfluidic biochips
-
[CrossRef][PubMed]
-
Legendre, A. Baudoin, R. Alberto, G. Paullier, P. Naudot, M. Bricks, T. Brocheton, J. Jacques, S. Cotton, J. Leclerc, E. Metabolic characterization of primary rat hepatocytes cultivated in parallel microfluidic biochips. J. Pharm. Sci. 2013, 102, 3264–3276. [CrossRef][PubMed]
-
(2013)
J. Pharm. Sci
, vol.102
, pp. 3264-3276
-
-
Legendre, A.1
Baudoin, R.2
Alberto, G.3
Paullier, P.4
Naudot, M.5
Bricks, T.6
Brocheton, J.7
Jacques, S.8
Cotton, J.9
Leclerc, E.10
-
132
-
-
42549115139
-
An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models
-
[CrossRef][PubMed]
-
Kimura, H. Yamamoto, T. Sakai, H. Sakai, Y. Fujii, T. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 2008, 8, 741–746. [CrossRef][PubMed]
-
(2008)
Lab Chip
, vol.8
, pp. 741-746
-
-
Kimura, H.1
Yamamoto, T.2
Sakai, H.3
Sakai, Y.4
Fujii, T.5
-
133
-
-
84903841216
-
Low cost microfluidic cell culture array using normally closed valves for cytotoxicity assay
-
[CrossRef][PubMed]
-
Pasirayi, G. Scott, S.M. Islam, M. O’Hare, L. Bateson, S. Ali, Z. Low cost microfluidic cell culture array using normally closed valves for cytotoxicity assay. Talanta 2014, 129, 491–498. [CrossRef][PubMed]
-
(2014)
Talanta
, vol.129
, pp. 491-498
-
-
Pasirayi, G.1
Scott, S.M.2
Islam, M.3
O’Hare, L.4
Bateson, S.5
Ali, Z.6
-
134
-
-
79953002875
-
Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model
-
[CrossRef][PubMed]
-
Chang, R. Emami, K. Wu, H. Sun, W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2010, 2, 1–11. [CrossRef][PubMed]
-
(2010)
Biofabrication
, vol.2
, pp. 1-11
-
-
Chang, R.1
Emami, K.2
Wu, H.3
Sun, W.4
-
135
-
-
79952200356
-
Microprinting of liver micro-organ for drug metabolism study. Methods Mol
-
[PubMed]
-
Chang, R.C. Emami, K. Jeevarajan, A. Wu, H. Sun, W. Microprinting of liver micro-organ for drug metabolism study. Methods Mol. Biol. 2011, 671, 219–238. [PubMed]
-
(2011)
Biol
, vol.671
, pp. 219-238
-
-
Chang, R.C.1
Emami, K.2
Jeevarajan, A.3
Wu, H.4
Sun, W.5
-
136
-
-
84870907365
-
NutriChip: Nutrition analysis meets microfluidics
-
[CrossRef][PubMed]
-
Ramadan, Q. Jafarpoorchekab, H. Huang, C. Silacci, P. Carrara, S. Koklü, G. Ghaye, J. Ramsden, J. Ruffert, C. Vergeres, G. et al. NutriChip: Nutrition analysis meets microfluidics. Lab Chip 2013, 13, 196–203. [CrossRef][PubMed]
-
(2013)
Lab Chip
, vol.13
, pp. 196-203
-
-
Ramadan, Q.1
Jafarpoorchekab, H.2
Huang, C.3
Silacci, P.4
Carrara, S.5
Koklü, G.6
Ghaye, J.7
Ramsden, J.8
Ruffert, C.9
Vergeres, G.10
-
137
-
-
84876504162
-
Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips.
-
[CrossRef][PubMed]
-
Snouber, L.C. Bunescu, A. Naudot, M. Legallais, C. Brochot, C. Dumas, M.E. Elena-Herrmann, B. Leclerc, E. Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips. Toxicol. Sci. 2013, 132, 8–20. [CrossRef][PubMed]
-
(2013)
Toxicol. Sci
, vol.132
, pp. 8-20
-
-
Snouber, L.C.1
Bunescu, A.2
Naudot, M.3
Legallais, C.4
Brochot, C.5
Dumas, M.E.6
Elena-Herrmann, B.7
Leclerc, E.8
-
138
-
-
84940840695
-
Measurement of the entrainment window of islets of Langerhans by microfluidic delivery of a chirped glucose waveform. Integr
-
[CrossRef][PubMed]
-
Dhumpa, R. Truong, T.M. Wang, X. Roper, M.G. Measurement of the entrainment window of islets of Langerhans by microfluidic delivery of a chirped glucose waveform. Integr. Biol. 2015, 7, 1061–1067. [CrossRef][PubMed]
-
(2015)
Biol
, vol.7
, pp. 1061-1067
-
-
Dhumpa, R.1
Truong, T.M.2
Wang, X.3
Roper, M.G.4
-
139
-
-
84882684591
-
Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of langerhans on a microfluidic device. Anal
-
[CrossRef][PubMed]
-
Lomasney, A.R. Yi, L. Roper, M.G. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of langerhans on a microfluidic device. Anal. Chem. 2013, 85, 7919–7925. [CrossRef][PubMed]
-
(2013)
Chem
, vol.85
, pp. 7919-7925
-
-
Lomasney, A.R.1
Yi, L.2
Roper, M.G.3
-
140
-
-
84863337615
-
Islet preconditioning via multimodal microfluidic modulation of intermittent hypoxia. Anal
-
[CrossRef][PubMed]
-
Lo, J.F. Wang, Y. Blake, A. Yu, G. Harvat, T.A. Jeon, H. Oberholzer, J. Eddington, D.T. Islet preconditioning via multimodal microfluidic modulation of intermittent hypoxia. Anal. Chem. 2012, 84, 1987–1993. [CrossRef][PubMed]
-
(2012)
Chem
, vol.84
, pp. 1987-1993
-
-
Lo, J.F.1
Wang, Y.2
Blake, A.3
Yu, G.4
Harvat, T.A.5
Jeon, H.6
Oberholzer, J.7
Eddington, D.T.8
-
141
-
-
84855930703
-
Albumin handling by renal tubular epithelial cells in a microfluidic bioreactor. Biotechnol
-
[CrossRef][PubMed]
-
Ferrell, N. Ricci, K.B. Groszek, J. Marmerstein, J.T. Fissell, W.H. Albumin handling by renal tubular epithelial cells in a microfluidic bioreactor. Biotechnol. Bioeng. 2012, 109, 797–803. [CrossRef][PubMed]
-
(2012)
Bioeng
, vol.109
, pp. 797-803
-
-
Ferrell, N.1
Ricci, K.B.2
Groszek, J.3
Marmerstein, J.T.4
Fissell, W.H.5
-
142
-
-
49049114566
-
Development of a gastrointestinal tract microscale cell culture analog to predict drug transport. Mol
-
McAuliffe, G.J. Chang, J.Y. Glahn, R.P. Shuler, M.L. Development of a gastrointestinal tract microscale cell culture analog to predict drug transport. Mol. Celullar Biomech. 2008, 5, 119–132.
-
(2008)
Celullar Biomech
, vol.5
, pp. 119-132
-
-
McAuliffe, G.J.1
Chang, J.Y.2
Glahn, R.P.3
Shuler, M.L.4
-
143
-
-
84888991090
-
Microfluidic array with integrated oxygenation control for real-time live-cell imaging: Effect of hypoxia on physiology of microencapsulated pancreatic islets. Anal
-
[CrossRef][PubMed]
-
Nourmohammadzadeh, M. Lo, J.F. Bochenek, M. Mendoza-Elias, J.E. Wang, Q. Li, Z. Zeng, L. Qi, M. Eddington, D.T. Oberholzer, J. et al. Microfluidic array with integrated oxygenation control for real-time live-cell imaging: Effect of hypoxia on physiology of microencapsulated pancreatic islets. Anal. Chem. 2013, 85, 11240–11249. [CrossRef][PubMed]
-
(2013)
Chem
, vol.85
, pp. 11240-11249
-
-
Nourmohammadzadeh, M.1
Lo, J.F.2
Bochenek, M.3
Mendoza-Elias, J.E.4
Wang, Q.5
Li, Z.6
Zeng, L.7
Qi, M.8
Eddington, D.T.9
Oberholzer, J.10
-
144
-
-
84899535269
-
Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines.
-
[CrossRef][PubMed]
-
Bricks, T. Paullier, P. Legendre, A. Fleury, M.J. Zeller, P. Merlier, F. Anton, P.M. Leclerc, E. Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicol. Vitr. 2014, 28, 885–895. [CrossRef][PubMed]
-
(2014)
Toxicol. Vitr
, vol.28
, pp. 885-895
-
-
Bricks, T.1
Paullier, P.2
Legendre, A.3
Fleury, M.J.4
Zeller, P.5
Merlier, F.6
Anton, P.M.7
Leclerc, E.8
-
145
-
-
84930246473
-
An on-chip small intestine-liver model for pharmacokinetic studies
-
[CrossRef][PubMed]
-
Kimura, H. Ikeda, T. Nakayama, H. Sakai, Y. Fujii, T. An on-chip small intestine-liver model for pharmacokinetic studies. J. Lab. Autom. 2015, 20, 265–273. [CrossRef][PubMed]
-
(2015)
J. Lab. Autom
, vol.20
, pp. 265-273
-
-
Kimura, H.1
Ikeda, T.2
Nakayama, H.3
Sakai, Y.4
Fujii, T.5
-
146
-
-
84906877858
-
Detecting transforming growth factor-_ release from liver cells using an aptasensor integrated with microfluidics. Anal
-
[CrossRef][PubMed]
-
Matharu, Z. Patel, D. Gao, Y. Haque, A. Zhou, Q. Revzin, A. Detecting transforming growth factor-_ release from liver cells using an aptasensor integrated with microfluidics. Anal. Chem. 2014, 86, 8865–8872. [CrossRef][PubMed]
-
(2014)
Chem
, vol.86
, pp. 8865-8872
-
-
Matharu, Z.1
Patel, D.2
Gao, Y.3
Haque, A.4
Zhou, Q.5
Revzin, A.6
-
147
-
-
84922265838
-
Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer. Biosens
-
[CrossRef][PubMed]
-
Zilberman, Y. Sonkusale, S.R. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer. Biosens. Bioelectron. 2015, 67, 465–471. [CrossRef][PubMed]
-
(2015)
Bioelectron
, vol.67
, pp. 465-471
-
-
Zilberman, Y.1
Sonkusale, S.R.2
-
148
-
-
84931863705
-
Beyond isolated cells: Microfluidic transport of large tissue for pancreatic cancer diagnosis. Proc
-
Das, R. Murphy, R.G. Seibel, E.J. Beyond isolated cells: Microfluidic transport of large tissue for pancreatic cancer diagnosis. Proc. SPIE 2015, 9320, 1–29.
-
(2015)
SPIE
, vol.9320
, pp. 1-29
-
-
Das, R.1
Murphy, R.G.2
Seibel, E.J.3
-
149
-
-
71549146338
-
Technical approaches toward ambulatory ESRD therapy
-
[CrossRef][PubMed]
-
Leonard, E.F. Technical approaches toward ambulatory ESRD therapy. Seminars Dial. 2009, 22, 658–660. [CrossRef][PubMed]
-
(2009)
Seminars Dial
, vol.22
, pp. 658-660
-
-
Leonard, E.F.1
-
150
-
-
78651458067
-
The path to wearable ultrafiltration and dialysis devices
-
[CrossRef][PubMed]
-
Leonard, E.F. Cortell, S. Jones, J. The path to wearable ultrafiltration and dialysis devices. Blood Purification 2011, 31, 92–95. [CrossRef][PubMed]
-
(2011)
Blood Purification
, vol.31
, pp. 92-95
-
-
Leonard, E.F.1
Cortell, S.2
Jones, J.3
-
151
-
-
84862207235
-
Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
-
[CrossRef][PubMed]
-
Kim, H.J. Huh, D. Hamilton, G. Ingber, D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012, 12, 2165–2174. [CrossRef][PubMed]
-
(2012)
Lab Chip
, vol.12
, pp. 2165-2174
-
-
Kim, H.J.1
Huh, D.2
Hamilton, G.3
Ingber, D.E.4
-
152
-
-
84887012341
-
Microfabrication of human organs-on-chips. Nat
-
[CrossRef][PubMed]
-
Huh, D. Kim, H.J. Fraser, J.P. Shea, D.E. Khan, M. Bahinski, A. Hamilton, G.A. Ingber, D.E. Microfabrication of human organs-on-chips. Nat. Protoc. 2013, 8, 2135–2157. [CrossRef][PubMed]
-
(2013)
Protoc
, vol.8
, pp. 2135-2157
-
-
Huh, D.1
Kim, H.J.2
Fraser, J.P.3
Shea, D.E.4
Khan, M.5
Bahinski, A.6
Hamilton, G.A.7
Ingber, D.E.8
-
153
-
-
84901375338
-
Investigation of the hepatotoxicity of flutamide: Pro-survival/apoptotic and necrotic switch in primary rat hepatocytes characterized by metabolic and transcriptomic profiles in microfluidic liver biochips. Toxicol
-
[CrossRef][PubMed]
-
Legendre, A. Jacques, S. Dumont, F. Cotton, J. Paullier, P. Fleury, M.J. Leclerc, E. Investigation of the hepatotoxicity of flutamide: Pro-survival/apoptotic and necrotic switch in primary rat hepatocytes characterized by metabolic and transcriptomic profiles in microfluidic liver biochips. Toxicol. Vitr. 2014, 28, 1075–1087. [CrossRef][PubMed]
-
(2014)
Vitr
, vol.28
, pp. 1075-1087
-
-
Legendre, A.1
Jacques, S.2
Dumont, F.3
Cotton, J.4
Paullier, P.5
Fleury, M.J.6
Leclerc, E.7
-
154
-
-
84929835389
-
Investigation of acetaminophen toxicity in HepG2/C3a microscale cultures using a system biology model of glutathione depletion. Cell Biol
-
[CrossRef][PubMed]
-
Leclerc, E. Hamon, J. Claude, I. Jellali, R. Naudot, M. Bois, F. Investigation of acetaminophen toxicity in HepG2/C3a microscale cultures using a system biology model of glutathione depletion. Cell Biol. Toxicol. 2015, 31, 173–185. [CrossRef][PubMed]
-
(2015)
Toxicol
, vol.31
, pp. 173-185
-
-
Leclerc, E.1
Hamon, J.2
Claude, I.3
Jellali, R.4
Naudot, M.5
Bois, F.6
-
155
-
-
84862773705
-
Transcriptomic analysis of the effect of ifosfamide on MDCK cells cultivated in microfluidic biochips
-
[CrossRef][PubMed]
-
Snouber, L.C. Jacques, S. Monge, M. Legallais, C. Leclerc, E. Transcriptomic analysis of the effect of ifosfamide on MDCK cells cultivated in microfluidic biochips. Genomics 2012, 100, 27–34. [CrossRef][PubMed]
-
(2012)
Genomics
, vol.100
, pp. 27-34
-
-
Snouber, L.C.1
Jacques, S.2
Monge, M.3
Legallais, C.4
Leclerc, E.5
-
156
-
-
84859635020
-
Analysis of transcriptomic and proteomic profiles demonstrates improved Madin-Darby canine kidney cell function in a renal microfluidic biochip.
-
[CrossRef][PubMed]
-
Snouber, L.C. Letourneur, F. Chafey, P. Broussard, C. Monge, M. Legallais, C. Leclerc, E. Analysis of transcriptomic and proteomic profiles demonstrates improved Madin-Darby canine kidney cell function in a renal microfluidic biochip. Biotechnol. Prog. 2011, 28, 474–484. [CrossRef][PubMed]
-
(2011)
Biotechnol. Prog
, vol.28
, pp. 474-484
-
-
Snouber, L.C.1
Letourneur, F.2
Chafey, P.3
Broussard, C.4
Monge, M.5
Legallais, C.6
Leclerc, E.7
-
157
-
-
84871719607
-
Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip. Biotechnol
-
[CrossRef][PubMed]
-
Snouber, L.C. Aninat, C. Grsicom, L. Madalinski, G. Brochot, C. Poleni, P.E. Razan, F. Guillouzo, C.G. Legallais, C. Corlu, A. et al. Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip. Biotechnol. Bioeng. 2013, 110, 597–608. [CrossRef][PubMed]
-
(2013)
Bioeng
, vol.110
, pp. 597-608
-
-
Snouber, L.C.1
Aninat, C.2
Grsicom, L.3
Madalinski, G.4
Brochot, C.5
Poleni, P.E.6
Razan, F.7
Guillouzo, C.G.8
Legallais, C.9
Corlu, A.10
-
158
-
-
69249095795
-
Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol
-
[CrossRef][PubMed]
-
Mahler, G.J. Esch, M.B. Glahn, R.P. Shuler, M.L. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 2009, 104, 193–205. [CrossRef][PubMed]
-
(2009)
Bioeng
, vol.104
, pp. 193-205
-
-
Mahler, G.J.1
Esch, M.B.2
Glahn, R.P.3
Shuler, M.L.4
-
159
-
-
84904279966
-
Integration of pharmacokinetic and NRF2 system biology models to describe reactive oxygen species production and subsequent glutathione depletion in liver microfluidic biochips after flutamide exposure. Toxicol
-
[CrossRef][PubMed]
-
Leclerc, E. Hamon, J. Legendre, A. Bois, F.Y. Integration of pharmacokinetic and NRF2 system biology models to describe reactive oxygen species production and subsequent glutathione depletion in liver microfluidic biochips after flutamide exposure. Toxicol. Vitr. 2014, 28, 1230–1241. [CrossRef][PubMed]
-
(2014)
Vitr
, vol.28
, pp. 1230-1241
-
-
Leclerc, E.1
Hamon, J.2
Legendre, A.3
Bois, F.Y.4
-
160
-
-
84882590738
-
Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.
-
[CrossRef][PubMed]
-
Jang, K.-J. Mehr, A.P. Hamilton, G.A. McPartlin, L.A. Chung, S. Suh, K.-Y. Ingber, D.E. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 2013, 5, 1119–1129. [CrossRef][PubMed]
-
(2013)
Integr. Biol
, vol.5
, pp. 1119-1129
-
-
Jang, K.-J.1
Mehr, A.P.2
Hamilton, G.A.3
McPartlin, L.A.4
Chung, S.5
Suh, K.-Y.6
Ingber, D.E.7
-
161
-
-
84887770767
-
Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integr
-
[CrossRef][PubMed]
-
Lang, J.D. Berry, S.M. Powers, G.L. Beebe, D.J. Alarid, E.T. Hormonally responsive breast cancer cells in a microfluidic co-culture model as a sensor of microenvironmental activity. Integr. Biol. 2013, 5, 807–816. [CrossRef][PubMed]
-
(2013)
Biol
, vol.5
, pp. 807-816
-
-
Lang, J.D.1
Berry, S.M.2
Powers, G.L.3
Beebe, D.J.4
Alarid, E.T.5
-
162
-
-
84880264772
-
Cooperative roles of SDF-1_ and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model
-
[CrossRef][PubMed]
-
Kim, B.J. Hannanta-anan, P. Chau, M. Kim, Y.S. Swartz, M.A. Wu, M. Cooperative roles of SDF-1_ and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model. PLoS ONE 2013, 8, e68422. [CrossRef][PubMed]
-
(2013)
Plos ONE
, vol.8
-
-
Kim, B.J.1
Hannanta-Anan, P.2
Chau, M.3
Kim, Y.S.4
Swartz, M.A.5
Wu, M.6
-
163
-
-
84887554388
-
Isolation of motile spermatozoa with a microfluidic chip having a surface-modified microchannel
-
[CrossRef][PubMed]
-
Huang, H.-Y. Wu, T.-L. Huang, H.-R. Li, C.-J. Fu, H.-T. Soong, Y.-K. Lee, M.-Y. Yao, D.-J. Isolation of motile spermatozoa with a microfluidic chip having a surface-modified microchannel. J. Lab. Autom. 2014, 19, 91–99. [CrossRef][PubMed]
-
(2014)
J. Lab. Autom
, vol.19
, pp. 91-99
-
-
Huang, H.-Y.1
Wu, T.-L.2
Huang, H.-R.3
Li, C.-J.4
Fu, H.-T.5
Soong, Y.-K.6
Lee, M.-Y.7
Yao, D.-J.8
-
164
-
-
84928659911
-
Microgrooves and fluid flows provide preferential passageways for sperm over pathogen Tritrichomonas foetus.
-
[CrossRef][PubMed]
-
Tung, C. Hu, L. Fiore, A.G. Ardon, F. Hickman, D.G. Gilbert, R.O. Suarez, S.S. Wu, M. Microgrooves and fluid flows provide preferential passageways for sperm over pathogen Tritrichomonas foetus. Proc. Natl. Acad. Sci. USA 2015, 112, 5431–5436. [CrossRef][PubMed]
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, pp. 5431-5436
-
-
Tung, C.1
Hu, L.2
Fiore, A.G.3
Ardon, F.4
Hickman, D.G.5
Gilbert, R.O.6
Suarez, S.S.7
Wu, M.8
-
165
-
-
84884681390
-
Label-free optical biosensor with microfluidics identifies an intracellular signalling wave mediated through the _2-adrenergic receptor. Integr
-
[CrossRef][PubMed]
-
Ferrie, A.M. Wang, C. Deng, H. Fang, Y. A label-free optical biosensor with microfluidics identifies an intracellular signalling wave mediated through the _2-adrenergic receptor. Integr. Biol. 2013, 5, 1253–1261. [CrossRef][PubMed]
-
(2013)
Biol
, vol.5
, pp. 1253-1261
-
-
Ferrie, A.M.1
Wang, C.2
Deng, H.3
Fang, Y.A.4
-
166
-
-
84888150332
-
A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells
-
[CrossRef][PubMed]
-
Ges, I.A. Brindley, R.L. Currie, K.P.M. Baudenbacher, F.J. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells. Lab Chip 2013, 13, 4663–4673. [CrossRef][PubMed]
-
(2013)
Lab Chip
, vol.13
, pp. 4663-4673
-
-
Ges, I.A.1
Brindley, R.L.2
Currie, K.P.M.3
Baudenbacher, F.J.4
-
167
-
-
84886575186
-
Detection of stress hormones by a microfluidic-integrated polycarbazole/fullerene photodetector
-
Pires, N.M. Dong, T. Detection of stress hormones by a microfluidic-integrated polycarbazole/fullerene photodetector. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013.
-
(2013)
Proceedings of the 35Th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7
-
-
Pires, N.M.1
Dong, T.2
-
168
-
-
84880997446
-
Multiplexed analysis of steroid hormones in human serum using novel microflow tile technology and LC-MS/MS. J. Chromatogr. B Anal.
-
[CrossRef][PubMed]
-
Broccardo, C.J. Schauer, K.L. Kohrt, W.M. Schwartz, R.S. Murphy, J.P. Prenni, J.E. Multiplexed analysis of steroid hormones in human serum using novel microflow tile technology and LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 934, 16–21. [CrossRef][PubMed]
-
(2013)
Technol. Biomed. Life Sci
, vol.934
, pp. 16-21
-
-
Broccardo, C.J.1
Schauer, K.L.2
Kohrt, W.M.3
Schwartz, R.S.4
Murphy, J.P.5
Prenni, J.E.6
-
169
-
-
84928963840
-
A microfluidic technique for quantification of steroids in core needle biopsies. Anal
-
[CrossRef][PubMed]
-
Kim, J. Abdulwahab, S. Choi, K. Lafrenière, N.M. Mudrik, J.M. Gomaa, H. Ahmado, H. Behan, L.-A. Casper, R.F. Wheeler, A.R. A microfluidic technique for quantification of steroids in core needle biopsies. Anal. Chem. 2015, 87, 4688–4695. [CrossRef][PubMed]
-
(2015)
Chem
, vol.87
, pp. 4688-4695
-
-
Kim, J.1
Abdulwahab, S.2
Choi, K.3
Lafrenière, N.M.4
Mudrik, J.M.5
Gomaa, H.6
Ahmado, H.7
Behan, L.-A.8
Casper, R.F.9
Wheeler, A.R.10
-
170
-
-
84921749439
-
Electrochemical sensing method for point-of-care cortisol detection in human immunodeficiency virus-infected patients
-
[PubMed]
-
Kaushik, A. Yndart, A. Jayant, R.D. Sagar, V. Atluri, V. Bhansali, S. Nair, M. Electrochemical sensing method for point-of-care cortisol detection in human immunodeficiency virus-infected patients. Int. J. Nanomedicine 2015, 10, 677–685. [PubMed]
-
(2015)
Int. J. Nanomedicine
, vol.10
, pp. 677-685
-
-
Kaushik, A.1
Yndart, A.2
Jayant, R.D.3
Sagar, V.4
Atluri, V.5
Bhansali, S.6
Nair, M.7
-
171
-
-
84907969464
-
Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release
-
[CrossRef][PubMed]
-
Selimovic, A. Erkal, J.L. Spence, D.M. Martin, R.S. Microfluidic device with tunable post arrays and integrated electrodes for studying cellular release. Analyst 2014, 139, 5686–5694. [CrossRef][PubMed]
-
(2014)
Analyst
, vol.139
, pp. 5686-5694
-
-
Selimovic, A.1
Erkal, J.L.2
Spence, D.M.3
Martin, R.S.4
-
172
-
-
84891438395
-
A digital microfluidic electrochemical immunoassay
-
[CrossRef][PubMed]
-
Shamsi, M.H. Choi, K. Ng, A.H.C. Wheeler, A.R. A digital microfluidic electrochemical immunoassay. Lab Chip 2014, 14, 547–554. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 547-554
-
-
Shamsi, M.H.1
Choi, K.2
Ng, A.H.C.3
Wheeler, A.R.4
-
173
-
-
84938304741
-
A microfluidics approach to study the accumulation of molecules at basal lamina interfaces
-
[CrossRef][PubMed]
-
Arends, F. Sellner, S. Seifert, P. Gerland, U. Rehberg, M. Lieleg, O. A microfluidics approach to study the accumulation of molecules at basal lamina interfaces. Lab Chip 2015, 15, 3326–3334. [CrossRef][PubMed]
-
(2015)
Lab Chip
, vol.15
, pp. 3326-3334
-
-
Arends, F.1
Sellner, S.2
Seifert, P.3
Gerland, U.4
Rehberg, M.5
Lieleg, O.6
-
174
-
-
84883037125
-
Microfluidic enrichment of mouse epidermal stem cells and validation of stem cell proliferation in vitro. Tissue Eng
-
[CrossRef][PubMed]
-
Zhu, B. Smith, J. Yarmush, M.L. Nahmias, Y. Kirby, B.J. Murthy, S.K. Microfluidic enrichment of mouse epidermal stem cells and validation of stem cell proliferation in vitro. Tissue Eng. Part C Methods 2013, 19, 765–773. [CrossRef][PubMed]
-
(2013)
Part C Methods
, vol.19
, pp. 765-773
-
-
Zhu, B.1
Smith, J.2
Yarmush, M.L.3
Nahmias, Y.4
Kirby, B.J.5
Murthy, S.K.6
-
175
-
-
84921774762
-
The Rho family GEF Asef2 regulates cell migration in three dimensional (3D) collagen matrices through myosin II.
-
[CrossRef][PubMed]
-
Jean, L. Yang, L. Majumdar, D. Gao, Y. Shi, M. Brewer, B.M. Li, D. Webb, D.J. The Rho family GEF Asef2 regulates cell migration in three dimensional (3D) collagen matrices through myosin II. Cell Adh. Migr. 2014, 8, 460–467. [CrossRef][PubMed]
-
(2014)
Cell Adh. Migr
, vol.8
, pp. 460-467
-
-
Jean, L.1
Yang, L.2
Majumdar, D.3
Gao, Y.4
Shi, M.5
Brewer, B.M.6
Li, D.7
Webb, D.J.8
-
176
-
-
84979096854
-
Implementation of a microfluidic conductivity sensor—A potential sweat electrolyte sensing system for dehydration detection. Conf. Proc. IEEE Eng.
-
[CrossRef]
-
Liu, G. Smith, K. Kaya, T. Implementation of a microfluidic conductivity sensor—A potential sweat electrolyte sensing system for dehydration detection. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014. [CrossRef]
-
(2014)
Med. Biol. Soc
-
-
Liu, G.1
Smith, K.2
Kaya, T.3
-
177
-
-
84964247804
-
Sensor patch for monitoring of sweat electrolytes
-
[CrossRef][PubMed]
-
Rose, D.P. Ratterman, M.E. Griffin, D.K. Hou, L. Kelley-Loughnane, N. Naik, R.R. Hagen, J.A. Papautsky, I. Heikenfeld, J. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 2015, 62, 1457–1465. [CrossRef][PubMed]
-
(2015)
IEEE Trans. Biomed. Eng
, vol.62
, pp. 1457-1465
-
-
Rose, D.P.1
Ratterman, M.E.2
Griffin, D.K.3
Hou, L.4
Kelley-Loughnane, N.5
Naik, R.R.6
Hagen, J.A.7
Papautsky, I.8
Heikenfeld, J.9
Adhesive, R.10
-
178
-
-
84924421480
-
Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip
-
[CrossRef][PubMed]
-
Li, Y. Wang, S. Huang, R. Huang, Z. Hu, B. Zheng, W. Yang, G. Jiang, X. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip. Biomacromolecules 2015, 16, 780–789. [CrossRef][PubMed]
-
(2015)
Biomacromolecules
, vol.16
, pp. 780-789
-
-
Li, Y.1
Wang, S.2
Huang, R.3
Huang, Z.4
Hu, B.5
Zheng, W.6
Yang, G.7
Jiang, X.8
-
179
-
-
84874841292
-
Microfluidic wound bandage: Localized oxygen modulation of collagen maturation
-
[CrossRef][PubMed]
-
Lo, J.F. Brennan, M. Merchant, Z. Chen, L. Guo, S. Eddington, D.T. DiPietro, L.A. Microfluidic wound bandage: Localized oxygen modulation of collagen maturation. Wound Repair Regen. 2013, 21, 226–234. [CrossRef][PubMed]
-
(2013)
Wound Repair Regen
, vol.21
, pp. 226-234
-
-
Lo, J.F.1
Brennan, M.2
Merchant, Z.3
Chen, L.4
Guo, S.5
Eddington, D.T.6
Dipietro, L.A.7
-
180
-
-
84857944649
-
Engineers are from PDMS-land, biologists are from Polystyrenia
-
[CrossRef][PubMed]
-
Berthier, E. Young, E.W.K. Beebe, D. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip 2012, 12, 1224–1237. [CrossRef][PubMed]
-
(2012)
Lab Chip
, vol.12
, pp. 1224-1237
-
-
Berthier, E.1
Young, E.W.K.2
Beebe, D.3
-
181
-
-
84865270577
-
A microfluidic flow-stretch chip for investigating blood vessel biomechanics
-
[CrossRef][PubMed]
-
Zheng, W. Jiang, B. Wang, D. Zhang, W. Wang, Z. Jiang, X. A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip 2012, 12, 3441–3450. [CrossRef][PubMed]
-
(2012)
Lab Chip
, vol.12
, pp. 3441-3450
-
-
Zheng, W.1
Jiang, B.2
Wang, D.3
Zhang, W.4
Wang, Z.5
Jiang, X.6
-
182
-
-
84914689345
-
Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip
-
[CrossRef][PubMed]
-
Zheng, W. Jiang, B. Hao, Y. Zhao, Y. Zhang, W. Jiang, X. Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip. Biofabrication 2014, 6, 045004:1–045004:11. [CrossRef][PubMed]
-
(2014)
Biofabrication
, vol.6
-
-
Zheng, W.1
Jiang, B.2
Hao, Y.3
Zhao, Y.4
Zhang, W.5
Jiang, X.6
-
183
-
-
72649106451
-
Engineering an artificial alveolar-capillary membrane: A novel continuously perfused model within microchannels
-
[CrossRef][PubMed]
-
Nalayanda, D.D. Wang, Q. Fulton, W.B. Wang, T.-H. Abdullah, F. Engineering an artificial alveolar-capillary membrane: A novel continuously perfused model within microchannels. J. Pediatr. Surg. 2010, 45, 45–51. [CrossRef][PubMed]
-
(2010)
J. Pediatr. Surg
, vol.45
, pp. 45-51
-
-
Nalayanda, D.D.1
Wang, Q.2
Fulton, W.B.3
Wang, T.-H.4
Abdullah, F.5
-
184
-
-
34547887267
-
Characterization of pulmonary cell growth parameters in a continuous perfusion microfluidic environment. Exp
-
[CrossRef][PubMed]
-
Nalayanda, D.D. Puleo, C.M. Fulton, W.B. Wang, T.-H. Abdullah, F. Characterization of pulmonary cell growth parameters in a continuous perfusion microfluidic environment. Exp. Lung Res. 2007, 33, 321–335. [CrossRef][PubMed]
-
(2007)
Lung Res
, vol.33
, pp. 321-335
-
-
Nalayanda, D.D.1
Puleo, C.M.2
Fulton, W.B.3
Wang, T.-H.4
Abdullah, F.5
-
185
-
-
84907016366
-
Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use.
-
[CrossRef][PubMed]
-
Nichols, J.E. Niles, J.A. Vega, S.P. Argueta, L.B. Eastaway, A. Cortiella, J. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp. Biol. Med. 2014, 239, 1135–1169. [CrossRef][PubMed]
-
(2014)
Exp. Biol. Med
, vol.239
, pp. 1135-1169
-
-
Nichols, J.E.1
Niles, J.A.2
Vega, S.P.3
Argueta, L.B.4
Eastaway, A.5
Cortiella, J.6
-
186
-
-
84944513880
-
Isolation of lung multipotent stem cells using a novel microfluidic magnetic activated cell sorting system.
-
[CrossRef][PubMed]
-
Zeng, L. Qiu, L. Yang, X. Zhou, Y. Du, J. Wang, H. Sun, J. Yang, C. Jiang, J. Isolation of lung multipotent stem cells using a novel microfluidic magnetic activated cell sorting system. Cell Biol. Int. 2015. [CrossRef][PubMed]
-
(2015)
Cell Biol. Int
-
-
Zeng, L.1
Qiu, L.2
Yang, X.3
Zhou, Y.4
Du, J.5
Wang, H.6
Sun, J.7
Yang, C.8
Jiang, J.9
-
187
-
-
79551648948
-
Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform
-
[CrossRef][PubMed]
-
Hoganson, D.M. Pryor, H.I.,; Bassett, E.K. Spool, I.D. Vacanti, J.P. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform. Lab Chip 2011, 11, 700–707. [CrossRef][PubMed]
-
(2011)
Lab Chip
, vol.11
, pp. 700-707
-
-
Hoganson, D.M.1
Pryor, H.I.2
Bassett, E.K.3
Spool, I.D.4
Vacanti, J.P.5
-
188
-
-
79958170979
-
A microfluidic respiratory assist device with high gas permeance for artificial lung applications. Biomed
-
[CrossRef][PubMed]
-
Kniazeva, T. Hsiao, J.C. Charest, J.L. Borenstein, J.T. A microfluidic respiratory assist device with high gas permeance for artificial lung applications. Biomed. Microdevices 2011, 13, 315–323. [CrossRef][PubMed]
-
(2011)
Microdevices
, vol.13
, pp. 315-323
-
-
Kniazeva, T.1
Hsiao, J.C.2
Charest, J.L.3
Borenstein, J.T.4
-
189
-
-
84859805443
-
Performance and scaling effects in a multilayer microfluidic extracorporeal lung oxygenation device
-
[CrossRef][PubMed]
-
Kniazeva, T. Epshteyn, A.A. Hsiao, J.C. Kim, E.S. Kolachalama, V.B. Charest, J.L. Borenstein, J.T. Performance and scaling effects in a multilayer microfluidic extracorporeal lung oxygenation device. Lab Chip 2012, 12, 1686–1695. [CrossRef][PubMed]
-
(2012)
Lab Chip
, vol.12
, pp. 1686-1695
-
-
Kniazeva, T.1
Epshteyn, A.A.2
Hsiao, J.C.3
Kim, E.S.4
Kolachalama, V.B.5
Charest, J.L.6
Borenstein, J.T.7
-
190
-
-
84923209082
-
In vitro evaluation and in vivo demonstration of a biomimetic, hemocompatible, microfluidic artificial lung
-
[CrossRef][PubMed]
-
Kovach, K.M. LaBarbera, M.A. Moyer, M.C. Cmolik, B.L. van Lunteren, E. Sen Gupta, A. Capadona, J.R. Potkay, J.A. In vitro evaluation and in vivo demonstration of a biomimetic, hemocompatible, microfluidic artificial lung. Lab Chip 2015, 15, 1366–1375. [CrossRef][PubMed]
-
(2015)
Lab Chip
, vol.15
, pp. 1366-1375
-
-
Kovach, K.M.1
Labarbera, M.A.2
Moyer, M.C.3
Cmolik, B.L.4
Van Lunteren, E.5
Sen Gupta, A.6
Capadona, J.R.7
Potkay, J.A.8
-
191
-
-
23144439234
-
A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat
-
[CrossRef][PubMed]
-
Taylor, A.M. Blurton-Jones, M. Rhee, S.W. Cribbs, D.H. Cotman, C.W. Jeon, N.L. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods 2005, 2, 599–605. [CrossRef][PubMed]
-
(2005)
Methods
, vol.2
, pp. 599-605
-
-
Taylor, A.M.1
Blurton-Jones, M.2
Rhee, S.W.3
Cribbs, D.H.4
Cotman, C.W.5
Jeon, N.L.6
-
192
-
-
84860366574
-
Characterization of a microfluidic in vitro model of the blood-brain barrier (MBBB)
-
[CrossRef][PubMed]
-
Booth, R. Kim, H. Characterization of a microfluidic in vitro model of the blood-brain barrier (mBBB). Lab Chip 2012, 12, 1784–1792. [CrossRef][PubMed]
-
(2012)
Lab Chip
, vol.12
, pp. 1784-1792
-
-
Booth, R.1
Kim, H.2
-
193
-
-
84858841248
-
Metabolomics-on-a-chip and predictive systems toxicology in microfluidic bioartificial organs. Anal
-
[CrossRef][PubMed]
-
Shintu, L. Baudoin, R. Navratil, V. Prot, J.-M. Pontoizeau, C. Defernez, M. Blaise, B.J. Domange, C. Péry, A.R. Toulhoat, P. et al. Metabolomics-on-a-chip and predictive systems toxicology in microfluidic bioartificial organs. Anal. Chem. 2012, 84, 1840–1848. [CrossRef][PubMed]
-
(2012)
Chem
, vol.84
, pp. 1840-1848
-
-
Shintu, L.1
Baudoin, R.2
Navratil, V.3
Prot, J.-M.4
Pontoizeau, C.5
Defernez, M.6
Blaise, B.J.7
Domange, C.8
Péry, A.R.9
Toulhoat, P.10
-
194
-
-
84895922881
-
Evaluation of a liver microfluidic biochip to predict in vivo clearances of seven drugs in rats
-
[CrossRef][PubMed]
-
Baudoin, R. Legendre, A. Jacques, S. Cotton, J. Bois, F. Leclerc, E. Evaluation of a liver microfluidic biochip to predict in vivo clearances of seven drugs in rats. J. Pharm. Sci. 2014, 103, 706–718. [CrossRef][PubMed]
-
(2014)
J. Pharm. Sci
, vol.103
, pp. 706-718
-
-
Baudoin, R.1
Legendre, A.2
Jacques, S.3
Cotton, J.4
Bois, F.5
Leclerc, E.6
-
195
-
-
79959549073
-
Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr
-
[CrossRef][PubMed]
-
Van Midwoud, P.M. Verpoorte, E. Groothuis, G.M.M. Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr. Biol. 2011, 3, 509–521. [CrossRef][PubMed]
-
(2011)
Biol
, vol.3
, pp. 509-521
-
-
Van Midwoud, P.M.1
Verpoorte, E.2
Groothuis, G.3
-
196
-
-
84904574791
-
Outpatient glycemic control with a bionic pancreas in type 1 diabetes
-
[CrossRef][PubMed]
-
Russell, S.J. El-Khatib, F.H. Sinha, M. Magyar, K.L. McKeon, K. Goergen, L.G. Balliro, C. Hillard, M.A. Nathan, D.M. Damiano, E.R. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 2014, 371, 313–325. [CrossRef][PubMed]
-
(2014)
N. Engl. J. Med
, vol.371
, pp. 313-325
-
-
Russell, S.J.1
El-Khatib, F.H.2
Sinha, M.3
Magyar, K.L.4
McKeon, K.5
Goergen, L.G.6
Balliro, C.7
Hillard, M.A.8
Nathan, D.M.9
Damiano, E.R.10
-
197
-
-
84897552123
-
Soft microfluidic assemblies of sensors, circuits, and radios for the skin
-
[CrossRef][PubMed]
-
Xu, S. Zhang, Y. Jia, L. Mathewson, K.E. Jang, K.-I. Kim, J. Fu, H. Huang, X. Chava, P. Wang, R. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344, 70–74. [CrossRef][PubMed]
-
(2014)
Science
, vol.344
, pp. 70-74
-
-
Xu, S.1
Zhang, Y.2
Jia, L.3
Mathewson, K.E.4
Jang, K.-I.5
Kim, J.6
Fu, H.7
Huang, X.8
Chava, P.9
Wang, R.10
-
198
-
-
84930009829
-
The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications
-
[CrossRef][PubMed]
-
Sonner, Z. Wilder, E. Heikenfeld, J. Kasting, G. Beyette, F. Swaile, D. Sherman, F. Joyce, J. Hagen, J. Kelley-Loughnane, N. et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 2015. [CrossRef][PubMed]
-
(2015)
Biomicrofluidics
-
-
Sonner, Z.1
Wilder, E.2
Heikenfeld, J.3
Kasting, G.4
Beyette, F.5
Swaile, D.6
Sherman, F.7
Joyce, J.8
Hagen, J.9
Kelley-Loughnane, N.10
-
199
-
-
84857743319
-
Diagnosing the decline in pharmaceutical R&D efficiency. Nat
-
[PubMed]
-
Scannell, J.W. Blanckley, A. Boldon, H. Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012, 11, 191–200. [PubMed]
-
(2012)
Rev. Drug Discov
, vol.11
, pp. 191-200
-
-
Scannell, J.W.1
Blanckley, A.2
Boldon, H.3
Warrington, B.4
-
200
-
-
84904304750
-
Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury
-
[CrossRef][PubMed]
-
Esch, M.B. Mahler, G.J. Stokol, T. Shuler, M.L. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 2014, 14, 3081–3092. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 3081-3092
-
-
Esch, M.B.1
Mahler, G.J.2
Stokol, T.3
Shuler, M.L.4
-
201
-
-
84864559173
-
Modeling life. Ann.
-
[CrossRef][PubMed]
-
Shuler, M.L. Modeling life. Ann. Biomed. Eng. 2012, 40, 1399–1407. [CrossRef][PubMed]
-
(2012)
Biomed. Eng
, vol.40
, pp. 1399-1407
-
-
Shuler, M.L.1
-
202
-
-
84928687330
-
On-Chip Immunoelectrophoresis of Extracellular Vesicles Released from Human Breast Cancer Cells
-
[CrossRef][PubMed]
-
Akagi, T. Kato, K. Kobayashi, M. Kosaka, N. Ochiya, T. Ichiki, T. On-Chip Immunoelectrophoresis of Extracellular Vesicles Released from Human Breast Cancer Cells. PLoS ONE 2015, 10, e0123603. [CrossRef][PubMed]
-
(2015)
Plos ONE
, vol.10
-
-
Akagi, T.1
Kato, K.2
Kobayashi, M.3
Kosaka, N.4
Ochiya, T.5
Ichiki, T.6
-
203
-
-
84911470614
-
An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping
-
[CrossRef][PubMed]
-
Huang, N.-T. Chen, W. Oh, B.-R. Cornell, T.T. Shanley, T.P. Fu, J. Kurabayashi, K. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip 2012, 12, 4093–4101. [CrossRef][PubMed]
-
(2012)
Lab Chip
, vol.12
, pp. 4093-4101
-
-
Huang, N.-T.1
Chen, W.2
Oh, B.-R.3
Cornell, T.T.4
Shanley, T.P.5
Fu, J.6
Kurabayashi, K.7
-
204
-
-
79960527448
-
The role of body-on-a-chip devices in drug and toxicity studies. Annu
-
[CrossRef][PubMed]
-
Esch, M.B. King, T.L. Shuler, M.L. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 2011, 13, 55–72. [CrossRef][PubMed]
-
(2011)
Rev. Biomed. Eng
, vol.13
, pp. 55-72
-
-
Esch, M.B.1
King, T.L.2
Shuler, M.L.3
-
205
-
-
84891348288
-
HeLiVa platform: Integrated heart-liver-vascular systems for drug testing in human health and disease.
-
[CrossRef][PubMed]
-
Vunjak-Novakovic, G. Bhatia, S. Chen, C. Hirschi, K. HeLiVa platform: Integrated heart-liver-vascular systems for drug testing in human health and disease. Stem Cell Res. Ther. 2013. [CrossRef][PubMed]
-
(2013)
Stem Cell Res. Ther
-
-
Vunjak-Novakovic, G.1
Bhatia, S.2
Chen, C.3
Hirschi, K.4
-
206
-
-
84906505878
-
First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans
-
[CrossRef][PubMed]
-
Prot, J.M. Maciel, L. Bricks, T. Merlier, F. Cotton, J. Paullier, P. Bois, F.Y. Leclerc, E. First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnol. Bioeng. 2014, 111, 2027–2040. [CrossRef][PubMed]
-
(2014)
Biotechnol. Bioeng
, vol.111
, pp. 2027-2040
-
-
Prot, J.M.1
Maciel, L.2
Bricks, T.3
Merlier, F.4
Cotton, J.5
Paullier, P.6
Bois, F.Y.7
Leclerc, E.8
-
207
-
-
84930959624
-
A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents
-
[CrossRef][PubMed]
-
Maschmeyer, I. Lorenz, A.K. Schimek, K. Hasenberg, T. Ramme, A.P. Hübner, J. Lindner, M. Drewell, C. Bauer, S. Thomas, A. et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 2015, 15, 2688–2699. [CrossRef][PubMed]
-
(2015)
Lab Chip
, vol.15
, pp. 2688-2699
-
-
Maschmeyer, I.1
Lorenz, A.K.2
Schimek, K.3
Hasenberg, T.4
Ramme, A.P.5
Hübner, J.6
Lindner, M.7
Drewell, C.8
Bauer, S.9
Thomas, A.10
-
208
-
-
84944093438
-
Chip-based human liver–intestine and liver–skin co-cultures—A first step toward systemic repeated dose substance testing in vitro.
-
[CrossRef][PubMed]
-
Maschmeyer, I. Hasenberg, T. Jaenicke, A. Lindner, M. Lorenz, A.K. Zech, J. Garbe, L.-A. Sonntag, F. Hayden, P. Ayehunie, S. et al. Chip-based human liver–intestine and liver–skin co-cultures—A first step toward systemic repeated dose substance testing in vitro. Eur. J. Pharm. Biopharm. 2015. [CrossRef][PubMed]
-
(2015)
Eur. J. Pharm. Biopharm
-
-
Maschmeyer, I.1
Hasenberg, T.2
Jaenicke, A.3
Lindner, M.4
Lorenz, A.K.5
Zech, J.6
Garbe, L.-A.7
Sonntag, F.8
Hayden, P.9
Ayehunie, S.10
-
209
-
-
84903650325
-
Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat
-
Frey O., Misun, P.M., Fluri, D.A., Hengstler, J.G., Hierlemann, A. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat. Commun. 2014, 5, 1–11.
-
(2014)
Commun
, vol.5
, pp. 1-11
-
-
Frey, O.1
Misun, P.M.2
Fluri, D.A.3
Hengstler, J.G.4
Hierlemann, A.5
-
210
-
-
84930249306
-
96-Well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids.
-
[CrossRef][PubMed]
-
Kim, J.-Y., Fluri, D.A., Kelm, J.M., Hierlemann, A., Frey, O., 96-Well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids. J. Lab. Autom. 2015, 20, 274–282. [CrossRef][PubMed]
-
(2015)
J. Lab. Autom
, vol.20
, pp. 274-282
-
-
Kim, J.-Y.1
Fluri, D.A.2
Kelm, J.M.3
Hierlemann, A.4
Frey, O.5
-
211
-
-
84930940367
-
3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis
-
[CrossRef][PubMed]
-
Kim, J.-Y. Fluri, D.A. Marchan, R. Boonen, K. Mohanty, S. Singh, P. Hammad, S. Landuyt, B. Hengstler, J.G. Kelm, J.M. et al. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J. Biotechnol. 2015, 205, 24–35. [CrossRef][PubMed]
-
(2015)
J. Biotechnol
, vol.205
, pp. 24-35
-
-
Kim, J.-Y.1
Fluri, D.A.2
Marchan, R.3
Boonen, K.4
Mohanty, S.5
Singh, P.6
Hammad, S.7
Landuyt, B.8
Hengstler, J.G.9
Kelm, J.M.10
-
212
-
-
75749153235
-
A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip
-
[CrossRef][PubMed]
-
Sung, J.H. Kam, C. Shuler, M.L. A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip 2010, 10, 446–455. [CrossRef][PubMed]
-
(2010)
Lab Chip
, vol.10
, pp. 446-455
-
-
Sung, J.H.1
Kam, C.2
Shuler, M.L.3
-
213
-
-
84907014905
-
Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure. Exp. Biol
-
[CrossRef][PubMed]
-
Sung, J.H. Srinivasan, B. Esch, M.B. McLamb, W.T. Bernabini, C. Shuler, M.L. Hickman, J.J. Using physiologically-based pharmacokinetic-guided “body-on-a-chip” systems to predict mammalian response to drug and chemical exposure. Exp. Biol. Med. 2014, 239, 1225–1239. [CrossRef][PubMed]
-
(2014)
Med
, vol.239
, pp. 1225-1239
-
-
Sung, J.H.1
Srinivasan, B.2
Esch, M.B.3
McLamb, W.T.4
Bernabini, C.5
Shuler, M.L.6
Hickman, J.J.7
-
214
-
-
84882245384
-
Scaling and systems biology for integrating multiple organs-on-a-chip
-
[CrossRef][PubMed]
-
Wikswo, J.P. Curtis, E.L. Eagleton, Z.E. Evans, B.C. Kole, A. Hofmeister, L.H. Matloff, W.J. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 2013, 13, 3496–3511. [CrossRef][PubMed]
-
(2013)
Lab Chip
, vol.13
, pp. 3496-3511
-
-
Wikswo, J.P.1
Curtis, E.L.2
Eagleton, Z.E.3
Evans, B.C.4
Kole, A.5
Hofmeister, L.H.6
Matloff, W.J.7
-
215
-
-
81355146382
-
From 3D cell culture to organs-on-chips
-
[CrossRef][PubMed]
-
Huh, D. Hamilton, G.A. Ingber, D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011, 21, 745–754. [CrossRef][PubMed]
-
(2011)
Trends Cell Biol
, vol.21
, pp. 745-754
-
-
Huh, D.1
Hamilton, G.A.2
Ingber, D.E.3
-
216
-
-
84930965865
-
Correction for Dance, News Feature: Building benchtop human models
-
[CrossRef][PubMed]
-
Dance, A. Correction for Dance, News Feature: Building benchtop human models. Proc. Natl. Acad. Sci. USA 2015, 112, 6773–6775. [CrossRef][PubMed]
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, pp. 6773-6775
-
-
Dance, A.1
-
217
-
-
84929589961
-
Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations.
-
[CrossRef][PubMed]
-
Chen, Y.-C. Allen, S.G. Ingram, P.N. Buckanovich, R. Merajver, S.D. Yoon, E. Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci. Rep. 2015, 5, 1–13. [CrossRef][PubMed]
-
(2015)
Sci. Rep
, vol.5
, pp. 1-13
-
-
Chen, Y.-C.1
Allen, S.G.2
Ingram, P.N.3
Buckanovich, R.4
Merajver, S.D.5
Yoon, E.6
-
218
-
-
84930911191
-
A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasationa
-
[CrossRef][PubMed]
-
Lee, H. Park, W. Ryu, H. Jeon, N.L. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasationa. Biomicrofluidics 2014. [CrossRef][PubMed]
-
(2014)
Biomicrofluidics
-
-
Lee, H.1
Park, W.2
Ryu, H.3
Jeon, N.L.4
-
219
-
-
84902578200
-
A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells
-
[CrossRef][PubMed]
-
Mattei, F. Schiavoni, G. De Ninno, A. Lucarini, V. Sestili, P. Sistigu, A. Fragale, A. Sanchez, M. Spada, M. Gerardino, A. et al. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. J. Immunotoxicol. 2014, 11, 337–346. [CrossRef][PubMed]
-
(2014)
J. Immunotoxicol
, vol.11
, pp. 337-346
-
-
Mattei, F.1
Schiavoni, G.2
De Ninno, A.3
Lucarini, V.4
Sestili, P.5
Sistigu, A.6
Fragale, A.7
Sanchez, M.8
Spada, M.9
Gerardino, A.10
-
220
-
-
84908577491
-
High-throughput 3D cell invasion chip enables accurate cancer metastatic assays
-
[CrossRef][PubMed]
-
Zhang, Y. Zhou, L. Qin, L. High-throughput 3D cell invasion chip enables accurate cancer metastatic assays. J. Am. Chem. Soc. 2014, 136, 15257–15262. [CrossRef][PubMed]
-
(2014)
J. Am. Chem. Soc
, vol.136
, pp. 15257-15262
-
-
Zhang, Y.1
Zhou, L.2
Qin, L.3
-
221
-
-
84937501043
-
Microfluidic platform for studying chemotaxis of adhesive cells revealed a gradient-dependent migration and acceleration of cancer stem cells. Anal
-
[CrossRef][PubMed]
-
Zou, H., Yue, W., Yu, W.-K., Liu, D., Fong, C.-C., Zhao, J., Yang, M., Microfluidic platform for studying chemotaxis of adhesive cells revealed a gradient-dependent migration and acceleration of cancer stem cells. Anal. Chem. 2015, 87, 7098–7108. [CrossRef][PubMed]
-
(2015)
Chem
, vol.87
, pp. 7098-7108
-
-
Zou, H.1
Yue, W.2
Yu, W.-K.3
Liu, D.4
Fong, C.-C.5
Zhao, J.6
Yang, M.7
-
222
-
-
84938900912
-
A microfluidic model for organ-specific extravasation of circulating tumor cells
-
[CrossRef][PubMed]
-
Riahi, R. Yang, Y.L. Kim, H. Jiang, L. Wong, P.K. Zohar, Y. A microfluidic model for organ-specific extravasation of circulating tumor cells. Biomicrofluidics 2014, 8, 024103. [CrossRef][PubMed]
-
(2014)
Biomicrofluidics
-
-
Riahi, R.1
Yang, Y.L.2
Kim, H.3
Jiang, L.4
Wong, P.K.5
Zohar, Y.6
-
223
-
-
84922563388
-
An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells
-
[CrossRef][PubMed]
-
Wang, X.-Y. Pei, Y. Xie, M. Jin, Z.-H. Xiao, Y.-S. Wang, Y. Zhang, L.-N. Li, Y. Huang, W.-H. An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells. Lab Chip 2015, 15, 1178–1187. [CrossRef][PubMed]
-
(2015)
Lab Chip
, vol.15
, pp. 1178-1187
-
-
Wang, X.-Y.1
Pei, Y.2
Xie, M.3
Jin, Z.-H.4
Xiao, Y.-S.5
Wang, Y.6
Zhang, L.-N.7
Li, Y.8
Huang, W.-H.9
-
224
-
-
84889058518
-
Paired diagnostic and pharmacodynamic analysis of rare non-small cell lung cancer cells enabled by the VerIFAST platform
-
[CrossRef][PubMed]
-
Casavant, B.P. Strotman, L.N. Tokar, J.J. Thiede, S.M. Traynor, A.M. Ferguson, J.S. Lang, J.M. Beebe, D. Paired diagnostic and pharmacodynamic analysis of rare non-small cell lung cancer cells enabled by the VerIFAST platform. Lab Chip 2014, 14, 99–105. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 99-105
-
-
Casavant, B.P.1
Strotman, L.N.2
Tokar, J.J.3
Thiede, S.M.4
Traynor, A.M.5
Ferguson, J.S.6
Lang, J.M.7
Beebe, D.8
-
225
-
-
84898873192
-
Fully automated circulating tumor cell isolation platform with large-volume capacity based on lab-on-a-disc. Anal
-
[CrossRef][PubMed]
-
Park, J.-M., Kim, M.S., Moon, H.-S., Yoo, C.E., Park, D., Kim, Y.J., Han, K.-Y., Lee, J.-Y., Oh, J.H., Kim, S.S., et al. Fully automated circulating tumor cell isolation platform with large-volume capacity based on lab-on-a-disc. Anal. Chem. 2014, 86, 3735–3742. [CrossRef][PubMed]
-
(2014)
Chem
, vol.86
, pp. 3735-3742
-
-
Park, J.-M.1
Kim, M.S.2
Moon, H.-S.3
Yoo, C.E.4
Park, D.5
Kim, Y.J.6
Han, K.-Y.7
Lee, J.-Y.8
Oh, J.H.9
Kim, S.S.10
-
226
-
-
84902265042
-
A novel flow cytometry-based cell capture platform for the detection, capture and molecular characterization of rare tumor cells in blood
-
[CrossRef][PubMed]
-
Watanabe, M., Serizawa, M., Sawada, T., Takeda, K., Takahashi, T., Yamamoto, N., Koizumi, F. Koh, Y., A novel flow cytometry-based cell capture platform for the detection, capture and molecular characterization of rare tumor cells in blood. J. Transl. Med. 2014, 12, 1–12. [CrossRef][PubMed]
-
(2014)
J. Transl. Med
, vol.12
, pp. 1-12
-
-
Watanabe Serizawa Sawada Takeda Takahashi Yamamoto Koizumi, M.M.T.K.T.N.F.1
Koh, Y.2
-
227
-
-
84905833898
-
A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and CO2
-
[CrossRef][PubMed]
-
Yu, I.F. Yu, Y.H., Chen, L.Y., Fan, S.K., Chou, H.Y.E., Yang, J.T., A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and CO2. Lab Chip 2014, 14, 3621–3628. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 3621-3628
-
-
Yu, I.F.1
Yu, Y.H.2
Chen, L.Y.3
Fan, S.K.4
Chou, H.Y.E.5
Yang, J.T.6
-
228
-
-
84889032451
-
Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device
-
[CrossRef][PubMed]
-
Galletti, G. Sung, M.S. Vahdat, L.T. Shah, M.A. Santana, S.M. Altavilla, G. Kirby, B.J. Giannakakou, P. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device. Lab Chip 2014, 14, 147–156. [CrossRef][PubMed]
-
(2014)
Lab Chip
, vol.14
, pp. 147-156
-
-
Galletti, G.1
Sung, M.S.2
Vahdat, L.T.3
Shah, M.A.4
Santana, S.M.5
Altavilla, G.6
Kirby, B.J.7
Giannakakou, P.8
-
229
-
-
84934437818
-
A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat
-
[CrossRef][PubMed]
-
Sarioglu, A.F. Aceto, N. Kojic, N. Donaldson, M.C. Zeinali, M. Hamza, B. Engstrom, A. Zhu, H. Sundaresan, T.K. Miyamoto, D.T. et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 2015, 12, 685–691. [CrossRef][PubMed]
-
(2015)
Methods
, vol.12
, pp. 685-691
-
-
Sarioglu, A.F.1
Aceto, N.2
Kojic, N.3
Donaldson, M.C.4
Zeinali, M.5
Hamza, B.6
Engstrom, A.7
Zhu, H.8
Sundaresan, T.K.9
Miyamoto, D.T.10
-
230
-
-
84887611211
-
NanoVelcro chip for CTC enumeration in prostate cancer patients
-
[CrossRef][PubMed]
-
Lu, Y.-T. Zhao, L. Shen, Q. Garcia, M.A., Wu, D., Hou S. Song, M. Xu, X. OuYang, W.-H., OuYang, W.W.-L., et al. NanoVelcro chip for CTC enumeration in prostate cancer patients. Methods 2013, 64, 144–152. [CrossRef][PubMed]
-
(2013)
Methods
, vol.64
, pp. 144-152
-
-
Lu, Y.-T.1
Zhao, L.2
Shen, Q.3
Garcia, M.A.4
Wu, D.5
Hou, S.6
Song, M.7
Xu, X.8
Ouyang, W.-H.9
Ouyang, W.W.10
-
231
-
-
84922392376
-
Decreasing relapse in colorectal cancer patients treated with cetuximab by using the activating KRAS detection chip
-
[CrossRef][PubMed]
-
Huang, M.-Y. Liu, H.-C. Yen, L.-C. Chang, J.-Y. Huang, J.-J. Wang, J.-Y. Lin, S.-R. Decreasing relapse in colorectal cancer patients treated with cetuximab by using the activating KRAS detection chip. Tumor Biol. 2014, 35, 9639–9647. [CrossRef][PubMed]
-
(2014)
Tumor Biol
, vol.35
, pp. 9639-9647
-
-
Huang, M.-Y.1
Liu, H.-C.2
Yen, L.-C.3
Chang, J.-Y.4
Huang, J.-J.5
Wang, J.-Y.6
Lin, S.-R.7
-
232
-
-
84924390513
-
Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays.
-
[CrossRef][PubMed]
-
Xue, P., Wu, Y., Guo, J., Kang, Y., Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays. Biomed. Microdevices 2015. [CrossRef][PubMed]
-
(2015)
Biomed. Microdevices
-
-
Xue, P.1
Wu, Y.2
Guo, J.3
Kang, Y.4
-
233
-
-
84920000942
-
Expansion of CTCs from early stage lung cancer patients using a microfluidic co-culture model
-
[CrossRef][PubMed]
-
Zhang, Z. Shiratsuchi, H. Lin, J. Chen, G. Reddy, R.M. Azizi, E. Fouladdel, S. Chang, A.C. Lin, L. Jiang, H. et al. Expansion of CTCs from early stage lung cancer patients using a microfluidic co-culture model. Oncotarget 2014, 5, 12383–12397. [CrossRef][PubMed]
-
(2014)
Oncotarget
, vol.5
, pp. 12383-12397
-
-
Zhang, Z.1
Shiratsuchi, H.2
Lin, J.3
Chen, G.4
Reddy, R.M.5
Azizi, E.6
Fouladdel, S.7
Chang, A.C.8
Lin, L.9
Jiang, H.10
-
234
-
-
84884524922
-
Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosens
-
[CrossRef][PubMed]
-
Huang, T., Jia, C.-P., Jun Yang; Sun, W.-J., Wang, W.-T., Zhang, H.-L., Cong, H., Jing, F.-X., Mao, H.-J., Jin, Q.-H., et al. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Biosens. Bioelectron. 2014, 51, 213–218. [CrossRef][PubMed]
-
(2014)
Bioelectron
, vol.51
, pp. 213-218
-
-
Huang, T.1
Jia, C.-P.2
Yang, J.3
Sun, W.-J.4
Wang, W.-T.5
Zhang, H.-L.6
Cong, H.7
Jing, F.-X.8
Mao, H.-J.9
Jin, Q.-H.10
-
235
-
-
84938347800
-
Cancer associated fibroblast-derived hepatocyte growth factor inhibits the paclitaxel-induced apoptosis of lung cancer A549 cells by up-regulating the PI3K/Akt and GRP78 signaling on a microfluidic platform
-
[CrossRef][PubMed]
-
Ying, L. Zhu, Z., Xu, Z., He, T., Li, E., Guo, Z., Liu, F., Jiang, C., Wang, Q., Cancer associated fibroblast-derived hepatocyte growth factor inhibits the paclitaxel-induced apoptosis of lung cancer A549 cells by up-regulating the PI3K/Akt and GRP78 signaling on a microfluidic platform. PLoS ONE 2015, 10, e0129593. [CrossRef][PubMed]
-
(2015)
Plos ONE
, vol.10
-
-
Ying, L.1
Zhu, Z.2
Xu, Z.3
He, T.4
Li, E.5
Guo, Z.6
Liu, F.7
Jiang, C.8
Wang, Q.9
-
236
-
-
84934292399
-
Towards personalized medicine: Chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform
-
[CrossRef][PubMed]
-
Ruppen, J. Wildhaber, F.D. Strub, C. Hall, S.R.R. Schmid, R.A. Geiser, T. Guenat, O.T. Towards personalized medicine: Chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab Chip 2015, 15, 3076–3085. [CrossRef][PubMed]
-
(2015)
Lab Chip
, vol.15
, pp. 3076-3085
-
-
Ruppen, J.1
Wildhaber, F.D.2
Strub, C.3
Hall, S.R.R.4
Schmid, R.A.5
Geiser, T.6
Guenat, O.T.7
-
237
-
-
84874223528
-
In vitro model of tumor cell extravasation
-
[CrossRef][PubMed]
-
Jeon, J.S. Zervantonakis, I.K. Chung, S. Kamm, R.D. Charest, J.L. In vitro model of tumor cell extravasation. PLoS ONE 2013, 8, e56910. [CrossRef][PubMed]
-
(2013)
Plos ONE
, vol.8
-
-
Jeon, J.S.1
Zervantonakis, I.K.2
Chung, S.3
Kamm, R.D.4
Charest, J.L.5
-
238
-
-
84891742591
-
A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone
-
[CrossRef][PubMed]
-
Bersini, S. Jeon, J.S. Dubini, G. Arrigoni, C. Chung, S. Charest, J.L. Moretti, M. Kamm, R.D. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 2014, 35, 2454–2461. [CrossRef][PubMed]
-
(2014)
Biomaterials
, vol.35
, pp. 2454-2461
-
-
Bersini, S.1
Jeon, J.S.2
Dubini, G.3
Arrigoni, C.4
Chung, S.5
Charest, J.L.6
Moretti, M.7
Kamm, R.D.8
-
239
-
-
84920385055
-
Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation
-
[CrossRef][PubMed]
-
Jeon, J.S. Bersini, S. Gilardi, M. Dubini, G. Charest, J.L. Moretti, M. Kamm, R.D. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl. Acad. Sci. USA 2015, 112, 214–219. [CrossRef][PubMed]
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, pp. 214-219
-
-
Jeon, J.S.1
Bersini, S.2
Gilardi, M.3
Dubini, G.4
Charest, J.L.5
Moretti, M.6
Kamm, R.D.7
-
240
-
-
84882268761
-
Engineering challenges for instrumenting and controlling integrated organ-on-chip systems
-
[CrossRef][PubMed]
-
Wikswo, J.P. Block, F.E. Cliffel, D.E. Goodwin, C.R. Marasco, C.C. Markov, D.A. McLean, D.L. McLean, J.A. McKenzie, J.R. Reiserer, R.S. et al. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans. Biomed. Eng. 2013, 60, 682–690. [CrossRef][PubMed]
-
(2013)
IEEE Trans. Biomed. Eng
, vol.60
, pp. 682-690
-
-
Wikswo, J.P.1
Block, F.E.2
Cliffel, D.E.3
Goodwin, C.R.4
Marasco, C.C.5
Markov, D.A.6
McLean, D.L.7
McLean, J.A.8
McKenzie, J.R.9
Reiserer, R.S.10
-
241
-
-
33846814619
-
Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin
-
[CrossRef][PubMed]
-
Hayes, D.F., Cristofanilli, M., Budd, G.T., Ellis, M.J., Stopeck, A., Miller, M.C., Matera, J., Allard, W.J., Doyle, G.V., Terstappen, L.W.W.M., Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 2006, 12, 4218–4224. [CrossRef][PubMed]
-
(2006)
Cancer Res
, vol.12
, pp. 4218-4224
-
-
Hayes, D.F.1
Cristofanilli, M.2
Budd, G.T.3
Ellis, M.J.4
Stopeck, A.5
Miller, M.C.6
Matera, J.7
Allard, W.J.8
Doyle, G.V.9
Terstappen, L.W.W.M.10
|