-
1
-
-
34249652891
-
Effects of fluid flow on voltagedependent calcium channels in rat vascular myocytes: Fluid flow as a shear stress and a source of artifacts during patch-clamp studies
-
Park SW, Byun D, Bae YM, et al. Effects of fluid flow on voltagedependent calcium channels in rat vascular myocytes: fluid flow as a shear stress and a source of artifacts during patch-clamp studies. Biochem Biophys Res Commun 2007;358(4):1021-7
-
(2007)
Biochem Biophys Res Commun
, vol.358
, Issue.4
, pp. 1021-1027
-
-
Park, S.W.1
Byun, D.2
Bae, Y.M.3
-
2
-
-
24744448516
-
Facilitation of L-type Ca2+ currents by fluid flow in rabbit cerebral artery myocytes
-
Amano S, Ishikawa T, Nakayama K. Facilitation of L-type Ca2+ currents by fluid flow in rabbit cerebral artery myocytes. J Pharmacol Sci 2005;98(4):425-9
-
(2005)
J Pharmacol Sci
, vol.98
, Issue.4
, pp. 425-429
-
-
Amano, S.1
Ishikawa, T.2
Nakayama, K.3
-
3
-
-
84913588095
-
Mechanoresponsive networks controlling vascular inflammation
-
Bryan MT, Duckles H, Feng S, et al. Mechanoresponsive networks controlling vascular inflammation. Arterioscler Thromb Vasc Biol 2014;34(10):2199-205
-
(2014)
Arterioscler Thromb Vasc Biol
, vol.34
, Issue.10
, pp. 2199-2205
-
-
Bryan, M.T.1
Duckles, H.2
Feng, S.3
-
4
-
-
84900992096
-
Shear stress regulated gene expression and angiogenesis in vascular endothelium
-
Wragg JW, Durant S, McGettrick HM, et al. Shear stress regulated gene expression and angiogenesis in vascular endothelium. Microcirculation 2014;21(4):290-300
-
(2014)
Microcirculation
, vol.21
, Issue.4
, pp. 290-300
-
-
Wragg, J.W.1
Durant, S.2
McGettrick, H.M.3
-
5
-
-
84903889718
-
Shear stress and atherosclerosis
-
Heo KS, Fujiwara K, Abe J. Shear stress and atherosclerosis. Mol Cells 2014;37(6):435-40
-
(2014)
Mol Cells
, vol.37
, Issue.6
, pp. 435-440
-
-
Heo, K.S.1
Fujiwara, K.2
Abe, J.3
-
6
-
-
84856223002
-
Procoagulant activity in hemostasis and thrombosis: Virchow's triad revisited
-
Wolberg AS, Aleman MM, Leiderman K, Machlus KR. Procoagulant activity in hemostasis and thrombosis: virchow's triad revisited. Anesth Analg 2012;114(2):275-85
-
(2012)
Anesth Analg
, vol.114
, Issue.2
, pp. 275-285
-
-
Wolberg, A.S.1
Aleman, M.M.2
Leiderman, K.3
Machlus, K.R.4
-
7
-
-
84938093513
-
Increased erythrocyte adhesion to VCAM-1 during pulsatile flow: Application of a microfluidic flow adhesion bioassay
-
In Press
-
White J, Lancelot M, Sarnaik S, Hines P. Increased erythrocyte adhesion to VCAM-1 during pulsatile flow: application of a microfluidic flow adhesion bioassay. Clin Hemorheol Microcirc 2014. In Press. doi: 10.3233/CH-141847
-
(2014)
Clin Hemorheol Microcirc
-
-
White, J.1
Lancelot, M.2
Sarnaik, S.3
Hines, P.4
-
8
-
-
84905754409
-
Microfluidic organs-on-chips
-
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014;32(8):760-72
-
(2014)
Nat Biotechnol
, vol.32
, Issue.8
, pp. 760-772
-
-
Bhatia, S.N.1
Ingber, D.E.2
-
9
-
-
33947625690
-
Vascular mimetics based on microfluidics for imaging the leukocyte - endothelial inflammatory response
-
Schaff UY, Xing MM, Lin KK, et al. Vascular mimetics based on microfluidics for imaging the leukocyte - endothelial inflammatory response. Lab Chip 2007;7(4):448-56
-
(2007)
Lab Chip
, vol.7
, Issue.4
, pp. 448-456
-
-
Schaff, U.Y.1
Xing, M.M.2
Lin, K.K.3
-
10
-
-
0027421845
-
Fabrication of in vitro microvascular blood flow systems by photolithography
-
Cokelet GR, Soave R, Pugh G, Rathbun L. Fabrication of in vitro microvascular blood flow systems by photolithography. Microvasc Res 1993;46(3):394-400
-
(1993)
Microvasc Res
, vol.46
, Issue.3
, pp. 394-400
-
-
Cokelet, G.R.1
Soave, R.2
Pugh, G.3
Rathbun, L.4
-
11
-
-
70549088948
-
A physiologically realistic in vitro model of microvascular networks
-
Rosano JM, Tousi N, Scott RC, et al. A physiologically realistic in vitro model of microvascular networks. Biomed Microdevices 2009;11(5):1051-7
-
(2009)
Biomed Microdevices
, vol.11
, Issue.5
, pp. 1051-1057
-
-
Rosano, J.M.1
Tousi, N.2
Scott, R.C.3
-
12
-
-
84887536962
-
Advances in microfluidic cell culture systems for studying angiogenesis
-
Young EW. Advances in microfluidic cell culture systems for studying angiogenesis. J Lab Autom 2013;18(6):427-36
-
(2013)
J Lab Autom
, vol.18
, Issue.6
, pp. 427-436
-
-
Young, E.W.1
-
14
-
-
81055157068
-
Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature
-
Prabhakarpandian B, Shen MC, Pant K, Kiani MF. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature. Microvasc Res 2011;82(3):210-20
-
(2011)
Microvasc Res
, vol.82
, Issue.3
, pp. 210-220
-
-
Prabhakarpandian, B.1
Shen, M.C.2
Pant, K.3
Kiani, M.F.4
-
15
-
-
84863793836
-
Endothelialized microfluidics for studying microvascular interactions in hematologic diseases
-
Myers DR, Sakurai Y, Tran R, et al. Endothelialized microfluidics for studying microvascular interactions in hematologic diseases. J Vis Exp 2012;64
-
(2012)
J Vis Exp
, pp. 64
-
-
Myers, D.R.1
Sakurai, Y.2
Tran, R.3
-
16
-
-
84881062682
-
Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system
-
Yu JQ, Liu XF, Chin LK, et al. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system. Lab Chip 2013;13(14):2693-700
-
(2013)
Lab Chip
, vol.13
, Issue.14
, pp. 2693-2700
-
-
Yu, J.Q.1
Liu, X.F.2
Chin, L.K.3
-
17
-
-
84906256618
-
Bioinspired microfluidic assay for in vitro modeling of leukocyteendothelium interactions
-
Lamberti G, Prabhakarpandian B, Garson C, et al. Bioinspired microfluidic assay for in vitro modeling of leukocyteendothelium interactions. Anal Chem 2014;86(16):8344-51
-
(2014)
Anal Chem
, vol.86
, Issue.16
, pp. 8344-8351
-
-
Lamberti, G.1
Prabhakarpandian, B.2
Garson, C.3
-
18
-
-
84862197029
-
In vitro microvessels for the study of angiogenesis and thrombosis
-
Zheng Y, Chen J, Craven M, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci USA 2012;109(24):9342-7
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.24
, pp. 9342-9347
-
-
Zheng, Y.1
Chen, J.2
Craven, M.3
-
20
-
-
33745686447
-
Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes
-
Kane BJ, Zinner MJ, Yarmush ML, Toner M. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal Chem 2006;78(13):4291-8
-
(2006)
Anal Chem
, vol.78
, Issue.13
, pp. 4291-4298
-
-
Kane, B.J.1
Zinner, M.J.2
Yarmush, M.L.3
Toner, M.4
-
21
-
-
77954038080
-
Reconstituting organ-level lung functions on a chip
-
Huh D, Matthews BD, Mammoto A, et al. Reconstituting organ-level lung functions on a chip. Science 2010;328(5986):1662-8
-
(2010)
Science
, vol.328
, Issue.5986
, pp. 1662-1668
-
-
Huh, D.1
Matthews, B.D.2
Mammoto, A.3
-
22
-
-
84876719079
-
Engineering a 3D vascular network in hydrogel for mimicking a nephron
-
Mu X, Zheng W, Xiao L, et al. Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab Chip 2013;13(8):1612-18
-
(2013)
Lab Chip
, vol.13
, Issue.8
, pp. 1612-1618
-
-
Mu, X.1
Zheng, W.2
Xiao, L.3
-
23
-
-
72649085963
-
Study of the crosstalk between hepatocytes and endothelial cells using a novel multicompartmental bioreactor: A comparison between connected cultures and cocultures
-
Guzzardi MA, Vozzi F, Ahluwalia AD. Study of the crosstalk between hepatocytes and endothelial cells using a novel multicompartmental bioreactor: a comparison between connected cultures and cocultures. Tissue Eng Part A 2009;15(11):3635-44
-
(2009)
Tissue Eng Part A
, vol.15
, Issue.11
, pp. 3635-3644
-
-
Guzzardi, M.A.1
Vozzi, F.2
Ahluwalia, A.D.3
-
24
-
-
84874894377
-
Microfabricated mammalian organ systems and their integration into models of whole animals and humans
-
Sung JH, Esch MB, Prot JM, et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 2013;13(7):1201-12
-
(2013)
Lab Chip
, vol.13
, Issue.7
, pp. 1201-1212
-
-
Sung, J.H.1
Esch, M.B.2
Prot, J.M.3
-
25
-
-
72049119863
-
Towards a human-on-chip: Culturing multiple cell types on a chip with compartmentalized microenvironments
-
Zhang C, Zhao Z, Abdul Rahim NA, et al. Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 2009;9(22):3185-92
-
(2009)
Lab Chip
, vol.9
, Issue.22
, pp. 3185-3192
-
-
Zhang, C.1
Zhao, Z.2
Abdul Rahim, N.A.3
-
26
-
-
84882253484
-
Integrating biological vasculature into a multi-organ-chip microsystem
-
Schimek K, Busek M, Brincker S, et al. Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip 2013;13(18):3588-98
-
(2013)
Lab Chip
, vol.13
, Issue.18
, pp. 3588-3598
-
-
Schimek, K.1
Busek, M.2
Brincker, S.3
-
28
-
-
84907303250
-
Microfluidic device to culture 3D in vitro human capillary networks
-
Moya ML, Alonzo LF, George SC. Microfluidic device to culture 3D in vitro human capillary networks. Methods Mol Biol 2014;1202:21-7
-
(2014)
Methods Mol Biol
, vol.1202
, pp. 21-27
-
-
Moya, M.L.1
Alonzo, L.F.2
George, S.C.3
-
29
-
-
84899850161
-
Shear forces enhance Toxoplasma gondii tachyzoite motility on vascular endothelium
-
Harker KS, Jivan E, McWhorter FY, et al. Shear forces enhance Toxoplasma gondii tachyzoite motility on vascular endothelium. mBio 2014;5(2):e01111-13
-
(2014)
mBio
, vol.5
, Issue.2
, pp. e01111-e01113
-
-
Harker, K.S.1
Jivan, E.2
McWhorter, F.Y.3
-
30
-
-
84870724071
-
Accelerated endothelial wound healing on microstructured substrates under flow
-
Franco D, Milde F, Klingauf M, et al. Accelerated endothelial wound healing on microstructured substrates under flow. Biomaterials 2013;34(5):1488-97
-
(2013)
Biomaterials
, vol.34
, Issue.5
, pp. 1488-1497
-
-
Franco, D.1
Milde, F.2
Klingauf, M.3
-
31
-
-
84879536016
-
Using shape effects to target antibodycoated nanoparticles to lung and brain endothelium
-
Kolhar P, Anselmo AC, Gupta V, et al. Using shape effects to target antibodycoated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA 2013;110(26):10753-8
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.26
, pp. 10753-10758
-
-
Kolhar, P.1
Anselmo, A.C.2
Gupta, V.3
-
32
-
-
84890819967
-
Microfluidic evaluation of red cells collected and stored in modified processing solutions used in blood banking
-
Wang Y, Giebink A, Spence DM. Microfluidic evaluation of red cells collected and stored in modified processing solutions used in blood banking. Integr Biol (Camb) 2014;6(1):65-75
-
(2014)
Integr Biol (Camb)
, vol.6
, Issue.1
, pp. 65-75
-
-
Wang, Y.1
Giebink, A.2
Spence, D.M.3
-
33
-
-
84896758506
-
Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea
-
Lockwood SY, Erkal JL, Spence DM. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea. Nitric Oxide 2014;38:1-7 • This paper showcases the use of microfluidics for assessment of paracrine signaling within the vasculature.
-
(2014)
Nitric Oxide
, vol.38
, pp. 1-7
-
-
Lockwood, S.Y.1
Erkal, J.L.2
Spence, D.M.3
-
34
-
-
84883264594
-
The use of microfluidics in hemostasis: Clinical diagnostics and biomimetic models of vascular injury
-
Neeves KB, Onasoga AA, Wufsus AR. The use of microfluidics in hemostasis: clinical diagnostics and biomimetic models of vascular injury. Curr Opin Hematol 2013;20(5):417-23
-
(2013)
Curr Opin Hematol
, vol.20
, Issue.5
, pp. 417-423
-
-
Neeves, K.B.1
Onasoga, A.A.2
Wufsus, A.R.3
-
35
-
-
84904093484
-
Lab-on-CD microfluidic platform for rapid separation and mixing of plasma from whole blood
-
Kuo JN, Li BS. Lab-on-CD microfluidic platform for rapid separation and mixing of plasma from whole blood. Biomed Microdevices 2014;16(4):549-58
-
(2014)
Biomed Microdevices
, vol.16
, Issue.4
, pp. 549-558
-
-
Kuo, J.N.1
Li, B.S.2
-
36
-
-
84910064689
-
A sample-to-result system for blood coagulation tests on a microfluidic disk analyzer
-
Lin CH, Liu CY, Shih CH, Lu CH. A sample-to-result system for blood coagulation tests on a microfluidic disk analyzer. Biomicrofluidics 2014;8(5):052105
-
(2014)
Biomicrofluidics
, vol.8
, Issue.5
, pp. 052105
-
-
Lin, C.H.1
Liu, C.Y.2
Shih, C.H.3
Lu, C.H.4
-
37
-
-
84915750359
-
A cartridge based sensor array platform for multiple coagulation measurements from plasma
-
Cakmak O, Ermek E, Kilinc N, et al. A cartridge based sensor array platform for multiple coagulation measurements from plasma. Lab Chip 2014;15(1):113-20
-
(2014)
Lab Chip
, vol.15
, Issue.1
, pp. 113-120
-
-
Cakmak, O.1
Ermek, E.2
Kilinc, N.3
-
38
-
-
84910085671
-
Real-time measurement of thrombin generation using continuous droplet microfluidics
-
Yu J, Tao D, Ng EX, et al. Real-time measurement of thrombin generation using continuous droplet microfluidics. Biomicrofluidics 2014;8(5):052108
-
(2014)
Biomicrofluidics
, vol.8
, Issue.5
, pp. 052108
-
-
Yu, J.1
Tao, D.2
Ng, E.X.3
-
39
-
-
84915785104
-
Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay
-
Zhu S, Diamond SL. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay. Thromb Res 2014;134(6):1335-43
-
(2014)
Thromb Res
, vol.134
, Issue.6
, pp. 1335-1343
-
-
Zhu, S.1
Diamond, S.L.2
-
40
-
-
56749092145
-
Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shearresistance of platelet aggregates
-
Neeves KB, Maloney SF, Fong KP, et al. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shearresistance of platelet aggregates. J Thromb Haemost 2008;6(12):2193-201
-
(2008)
J Thromb Haemost
, vol.6
, Issue.12
, pp. 2193-2201
-
-
Neeves, K.B.1
Maloney, S.F.2
Fong, K.P.3
-
41
-
-
84907855075
-
Blood coagulation screening using a paper-based microfluidic lateral flow device
-
Li H, Han D, Pauletti GM, Steckl AJ. Blood coagulation screening using a paper-based microfluidic lateral flow device. Lab Chip 2014;14(20):4035-41
-
(2014)
Lab Chip
, vol.14
, Issue.20
, pp. 4035-4041
-
-
Li, H.1
Han, D.2
Pauletti, G.M.3
Steckl, A.J.4
-
42
-
-
84923381543
-
Rapid onchip recalcification and drug dosing of citrated whole blood using microfluidic buffer sheath flow
-
Muthard RW, Diamond SL. Rapid onchip recalcification and drug dosing of citrated whole blood using microfluidic buffer sheath flow. Biorheology 2014;51(2-3):227-37
-
(2014)
Biorheology
, vol.51
, Issue.2-3
, pp. 227-237
-
-
Muthard, R.W.1
Diamond, S.L.2
-
43
-
-
84863286346
-
Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood
-
Li M, Ku DN, Forest CR. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 2012;12(7):1355-62
-
(2012)
Lab Chip
, vol.12
, Issue.7
, pp. 1355-1362
-
-
Li, M.1
Ku, D.N.2
Forest, C.R.3
-
44
-
-
75149121866
-
A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood
-
Tovar-Lopez FJ, Rosengarten G, Westein E, et al. A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip 2010;10(3):291-302
-
(2010)
Lab Chip
, vol.10
, Issue.3
, pp. 291-302
-
-
Tovar-Lopez, F.J.1
Rosengarten, G.2
Westein, E.3
-
45
-
-
54749127812
-
Interactions between multiple cell types in parallel microfluidic channels: Monitoring platelet adhesion to an endothelium in the presence of an antiadhesion drug
-
Ku CJ, Oblak TD, Spence DM. Interactions between multiple cell types in parallel microfluidic channels: monitoring platelet adhesion to an endothelium in the presence of an antiadhesion drug. Anal Chem 2008;80(19):7543-8
-
(2008)
Anal Chem
, vol.80
, Issue.19
, pp. 7543-7548
-
-
Ku, C.J.1
Oblak, T.D.2
Spence, D.M.3
-
46
-
-
19444380695
-
Agonist-induced calcium response in single human platelets assayed in a microfluidic device
-
Tran L, Farinas J, Ruslim-Litrus L, et al. Agonist-induced calcium response in single human platelets assayed in a microfluidic device. Anal Biochem 2005;341(2):361-8
-
(2005)
Anal Biochem
, vol.341
, Issue.2
, pp. 361-368
-
-
Tran, L.1
Farinas, J.2
Ruslim-Litrus, L.3
-
47
-
-
84893588068
-
Glaucocalyxin A inhibits platelet activation and thrombus formation preferentially via GPVI signaling pathway
-
Li W, Tang X, Yi W, et al. Glaucocalyxin A inhibits platelet activation and thrombus formation preferentially via GPVI signaling pathway. PLoS One 2013;8(12):e85120
-
(2013)
PLoS One
, vol.8
, Issue.12
, pp. e85120
-
-
Li, W.1
Tang, X.2
Yi, W.3
-
48
-
-
84905921965
-
Modulation of platelet activation and thrombus formation using a pan-PI3K inhibitor S14161
-
Yi W LQ, Shen J, Ren L, et al. Modulation of platelet activation and thrombus formation using a pan-PI3K inhibitor S14161. PLoS One 2014;9(8):e102394
-
(2014)
PLoS One
, vol.9
, Issue.8
, pp. e102394
-
-
Yi, W.L.Q.1
Shen, J.2
Ren, L.3
-
49
-
-
84896752543
-
Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses
-
Li M, Hotaling NA, Ku DN, Forest CR. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses. PLoS One 2014;9(1):e82493
-
(2014)
PLoS One
, vol.9
, Issue.1
, pp. e82493
-
-
Li, M.1
Hotaling, N.A.2
Ku, D.N.3
Forest, C.R.4
-
50
-
-
52649129923
-
Design, fabrication and implementation of a novel multiparameter control microfluidic platform for three-dimensional cell culture and real-time imaging
-
Vickerman V, Blundo J, Chung S, Kamm R. Design, fabrication and implementation of a novel multiparameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 2008;8(9):1468-77
-
(2008)
Lab Chip
, vol.8
, Issue.9
, pp. 1468-1477
-
-
Vickerman, V.1
Blundo, J.2
Chung, S.3
Kamm, R.4
-
51
-
-
80053894424
-
Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel
-
Jeong GS, Kwon GH, Kang AR, et al. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel. Biomed Microdevices 2011;13(4):717-23
-
(2011)
Biomed Microdevices
, vol.13
, Issue.4
, pp. 717-723
-
-
Jeong, G.S.1
Kwon, G.H.2
Kang, A.R.3
-
52
-
-
84915793469
-
A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs
-
Kim C, Kasuya J, Jeon J, et al. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Lab Chip 2014;15(1):301-10
-
(2014)
Lab Chip
, vol.15
, Issue.1
, pp. 301-310
-
-
Kim, C.1
Kasuya, J.2
Jeon, J.3
-
53
-
-
84892372328
-
A bioengineered array of 3D microvessels for vascular permeability assay
-
Lee H, Kim S, Chung M, et al. A bioengineered array of 3D microvessels for vascular permeability assay. Microvasc Res 2014;91:90-8
-
(2014)
Microvasc Res
, vol.91
, pp. 90-98
-
-
Lee, H.1
Kim, S.2
Chung, M.3
-
54
-
-
4344654280
-
A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings
-
Werdich AA, Lima EA, Ivanov B, et al. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab Chip 2004;4(4):357-62
-
(2004)
Lab Chip
, vol.4
, Issue.4
, pp. 357-362
-
-
Werdich, A.A.1
Lima, E.A.2
Ivanov, B.3
-
55
-
-
33747587891
-
Dynamic responses of single cardiomyocytes to graded ischemia studied by oxygen clamp in on-chip picochambers
-
Ganitkevich V, Reil S, Schwethelm B, et al. Dynamic responses of single cardiomyocytes to graded ischemia studied by oxygen clamp in on-chip picochambers. Circ Res 2006;99(2):165-71
-
(2006)
Circ Res
, vol.99
, Issue.2
, pp. 165-171
-
-
Ganitkevich, V.1
Reil, S.2
Schwethelm, B.3
-
56
-
-
77951201263
-
Microfluidic cell arrays for metabolic monitoring of stimulated cardiomyocytes
-
Cheng W, Klauke N, Smith G, Cooper JM. Microfluidic cell arrays for metabolic monitoring of stimulated cardiomyocytes. Electrophoresis 2010;31(8):1405-13
-
(2010)
Electrophoresis
, vol.31
, Issue.8
, pp. 1405-1413
-
-
Cheng, W.1
Klauke, N.2
Smith, G.3
Cooper, J.M.4
-
57
-
-
34548023278
-
An onchip cardiomyocyte cell network assay for stable drug screening regarding community effect of cell network size
-
Kaneko T, Kojima K, Yasuda K. An onchip cardiomyocyte cell network assay for stable drug screening regarding community effect of cell network size. Analyst 2007;132(9):892-8
-
(2007)
Analyst
, vol.132
, Issue.9
, pp. 892-898
-
-
Kaneko, T.1
Kojima, K.2
Yasuda, K.3
-
58
-
-
34548694284
-
Muscular thin films for building actuators and powering devices
-
Feinberg AW, Feigel A, Shevkoplyas SS, et al. Muscular thin films for building actuators and powering devices. Science 2007;317(5843):1366-70
-
(2007)
Science
, vol.317
, Issue.5843
, pp. 1366-1370
-
-
Feinberg, A.W.1
Feigel, A.2
Shevkoplyas, S.S.3
-
59
-
-
84882240631
-
Microfluidic heart on a chip for higher throughput pharmacological studies
-
Agarwal A, Goss JA, Cho A, et al. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 2013;13(18):3599-608
-
(2013)
Lab Chip
, vol.13
, Issue.18
, pp. 3599-3608
-
-
Agarwal, A.1
Goss, J.A.2
Cho, A.3
-
60
-
-
84857964726
-
Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip
-
Grosberg A, Alford PW, McCain ML, Parker KK. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 2011;11(24):4165-73
-
(2011)
Lab Chip
, vol.11
, Issue.24
, pp. 4165-4173
-
-
Grosberg, A.1
Alford, P.W.2
McCain, M.L.3
Parker, K.K.4
-
61
-
-
84899489485
-
Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues
-
McCain ML, Agarwal A, Nesmith HW, et al. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 2014;35(21):5462-71
-
(2014)
Biomaterials
, vol.35
, Issue.21
, pp. 5462-5471
-
-
McCain, M.L.1
Agarwal, A.2
Nesmith, H.W.3
-
62
-
-
84875669562
-
Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators
-
Shin SR, Jung SM, Zalabany M, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 2013;7(3):2369-80
-
(2013)
ACS Nano
, vol.7
, Issue.3
, pp. 2369-2380
-
-
Shin, S.R.1
Jung, S.M.2
Zalabany, M.3
-
63
-
-
84911805267
-
Fishing on chips: Up-and-coming technological advances in analysis of zebrafish and Xenopus embryos
-
Zhu F, Skommer J, Huang Y, et al. Fishing on chips: up-and-coming technological advances in analysis of zebrafish and Xenopus embryos. Cytometry A 2014;85(11):921-32
-
(2014)
Cytometry A
, vol.85
, Issue.11
, pp. 921-932
-
-
Zhu, F.1
Skommer, J.2
Huang, Y.3
-
64
-
-
84922582785
-
Microfluidic devices for imaging trafficking events in vivo using genetic model organisms
-
Mondal S, Koushika SP. Microfluidic devices for imaging trafficking events in vivo using genetic model organisms. Methods Mol Biol 2014;1174:375-96
-
(2014)
Methods Mol Biol
, vol.1174
, pp. 375-396
-
-
Mondal, S.1
Koushika, S.P.2
-
65
-
-
84899652386
-
Zebrafish on a chip: A novel platform for real-time monitoring of drug-induced developmental toxicity
-
Li Y, Yang F, Chen Z, et al. Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity. PLoS One 2014;9(4):e94792
-
(2014)
PLoS One
, vol.9
, Issue.4
, pp. e94792
-
-
Li, Y.1
Yang, F.2
Chen, Z.3
-
66
-
-
84905694065
-
OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests
-
editorial board, J Paul Robinson, managing editor [et al.] Unit944 .
-
Akagi J, Hall CJ, Crosier KE, et al. OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests. Curr Protoc Cytom/editorial board, J Paul Robinson, managing editor [et al.] 2014;67:Unit 9 44
-
(2014)
Curr Protoc Cytom
, vol.67
-
-
Akagi, J.1
Hall, C.J.2
Crosier, K.E.3
-
67
-
-
84877907923
-
Toward embedded laboratory automation for smart Lab-on-a-Chip embryo arrays
-
Wang KI, Salcic Z, Yeh J, et al. Toward embedded laboratory automation for smart Lab-on-a-Chip embryo arrays. Biosens Bioelectron 2013;48:188-96
-
(2013)
Biosens Bioelectron
, vol.48
, pp. 188-196
-
-
Wang, K.I.1
Salcic, Z.2
Yeh, J.3
-
68
-
-
84875764544
-
Zebrafish Entrapment By Restriction Array (ZEBRA) device: A low-cost, agarose-free zebrafish mounting technique for automated imaging
-
Bischel LL, Mader BR, Green JM, et al. Zebrafish Entrapment By Restriction Array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging. Lab Chip 2013;13(9):1732-6
-
(2013)
Lab Chip
, vol.13
, Issue.9
, pp. 1732-1736
-
-
Bischel, L.L.1
Mader, B.R.2
Green, J.M.3
-
69
-
-
84861011083
-
Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos
-
Akagi J, Khoshmanesh K, Evans B, et al. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos. PLoS One 2012;7(5):e36630
-
(2012)
PLoS One
, vol.7
, Issue.5
, pp. e36630
-
-
Akagi, J.1
Khoshmanesh, K.2
Evans, B.3
-
70
-
-
84901462721
-
Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology
-
Akagi J, Zhu F, Hall CJ, et al. Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology. Cytometry A 2014;85(6):537-47
-
(2014)
Cytometry A
, vol.85
, Issue.6
, pp. 537-547
-
-
Akagi, J.1
Zhu, F.2
Hall, C.J.3
-
71
-
-
84890050288
-
Real-time, aptamer-based tracking of circulating therapeutic agents in living animals
-
Ferguson BS, Hoggarth DA, Maliniak D, et al. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci Transl Med 2013;5(213):213ra165
-
(2013)
Sci Transl Med
, vol.5
, Issue.213
, pp. 213ra165
-
-
Ferguson, B.S.1
Hoggarth, D.A.2
Maliniak, D.3
-
72
-
-
67749086547
-
Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamerbased sensor
-
Swensen JS, Xiao Y, Ferguson BS, et al. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamerbased sensor. J Am Chem Soc 2009;131(12):4262-6
-
(2009)
J Am Chem Soc
, vol.131
, Issue.12
, pp. 4262-4266
-
-
Swensen, J.S.1
Xiao, Y.2
Ferguson, B.S.3
-
73
-
-
84880627888
-
Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics
-
Tarabella G, Balducci AG, Coppede N, et al. Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics. Biochim Biophys Acta 2013;1830(9):4374-80
-
(2013)
Biochim Biophys Acta
, vol.1830
, Issue.9
, pp. 4374-4380
-
-
Tarabella, G.1
Balducci, A.G.2
Coppede, N.3
-
74
-
-
84893379013
-
Multiplexed extraction and quantitative analysis of pharmaceuticals from DBS samples using digital microfluidics
-
Lafreniere NM, Shih SC, Abu-Rabie P, et al. Multiplexed extraction and quantitative analysis of pharmaceuticals from DBS samples using digital microfluidics. Bioanalysis 2014;6(3):307-18
-
(2014)
Bioanalysis
, vol.6
, Issue.3
, pp. 307-318
-
-
Lafreniere, N.M.1
Shih, S.C.2
Abu-Rabie, P.3
-
75
-
-
84892921738
-
Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis
-
Kim Y, Lobatto ME, Kawahara T, et al. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Natl Acad Sci USA 2014;111(3):1078-83
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.3
, pp. 1078-1083
-
-
Kim, Y.1
Lobatto, M.E.2
Kawahara, T.3
-
76
-
-
84878658941
-
Enhanced Intracellular Delivery of a Model Drug Using Microbubbles Produced by a Microfluidic Device
-
Dixon AJ, Dhanaliwala AH, Chen JL, Hossack JA. Enhanced Intracellular Delivery of a Model Drug Using Microbubbles Produced by a Microfluidic Device. Ultrasound Med Biol 2013;39(7):1267-76
-
(2013)
Ultrasound Med Biol
, vol.39
, Issue.7
, pp. 1267-1276
-
-
Dixon, A.J.1
Dhanaliwala, A.H.2
Chen, J.L.3
Hossack, J.A.4
-
77
-
-
84878589144
-
Liquid flooded flowfocusing microfluidic device for in situ generation of monodisperse microbubbles
-
Dhanaliwala AH, Chen JL, Wang SY, Hossack JA. Liquid flooded flowfocusing microfluidic device for in situ generation of monodisperse microbubbles. Microfluid Nanofluidics 2013;14(3-4):457-67
-
(2013)
Microfluid Nanofluidics
, vol.14
, Issue.3-4
, pp. 457-467
-
-
Dhanaliwala, A.H.1
Chen, J.L.2
Wang, S.Y.3
Hossack, J.A.4
-
78
-
-
84886716941
-
Microand nanobubbles: A versatile non-viral platform for gene delivery
-
Cavalli R, Bisazza A, Lembo D. Microand nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm 2013;456(2):437-45
-
(2013)
Int J Pharm
, vol.456
, Issue.2
, pp. 437-445
-
-
Cavalli, R.1
Bisazza, A.2
Lembo, D.3
-
79
-
-
84901541035
-
Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip
-
Li X, Mearns SM, Martins-Green M, Liu Y. Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip. J Vis Exp 2013(80):e50771
-
(2013)
J Vis Exp
, Issue.80
, pp. e50771
-
-
Li, X.1
Mearns, S.M.2
Martins-Green, M.3
Liu, Y.4
-
80
-
-
84902550157
-
The endothelial glycocalyx: A review of the vascular barrier
-
Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 2014;69(7):777-84
-
(2014)
Anaesthesia
, vol.69
, Issue.7
, pp. 777-784
-
-
Alphonsus, C.S.1
Rodseth, R.N.2
-
81
-
-
79952575609
-
Rheological analysis of non-Newtonian blood flow using a microfluidic device
-
Zeng H, Zhao Y. Rheological analysis of non-Newtonian blood flow using a microfluidic device. Sens Actuators A Phys 2011;166(2):207-13
-
(2011)
Sens Actuators A Phys
, vol.166
, Issue.2
, pp. 207-213
-
-
Zeng, H.1
Zhao, Y.2
|