메뉴 건너뛰기




Volumn 8, Issue 11, 2013, Pages 2135-2157

Microfabrication of human organs-on-chips

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOCHIP; BIOENGINEERING; BREATHING; CELL CULTURE; HUMAN; HUMAN CELL; LUNG; LUNG ALVEOLUS EPITHELIUM; MICROFLUIDICS; MICROTECHNOLOGY; MICROVASCULAR ENDOTHELIAL CELL; ORGAN ON CHIP; PRIORITY JOURNAL;

EID: 84887012341     PISSN: 17542189     EISSN: 17502799     Source Type: Journal    
DOI: 10.1038/nprot.2013.137     Document Type: Article
Times cited : (529)

References (63)
  • 1
    • 81355146382 scopus 로고    scopus 로고
    • From 3D cell culture to organs-on-chips
    • Huh, D., Hamilton, G.A. & Ingber, D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745-754 (2011).
    • (2011) Trends Cell Biol , vol.21 , pp. 745-754
    • Huh, D.1    Hamilton, G.A.2    Ingber, D.E.3
  • 2
    • 38349063305 scopus 로고    scopus 로고
    • Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening
    • Jang, K., Sato, K., Igawa, K., Chung, U.I. & Kitamori, T. Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening. Anal. Bioanal. Chem. 390, 825-832 (2008).
    • (2008) Anal. Bioanal. Chem , vol.390 , pp. 825-832
    • Jang, K.1    Sato, K.2    Igawa, K.3    Chung, U.I.4    Kitamori, T.5
  • 4
    • 46649087122 scopus 로고    scopus 로고
    • Characterization of microfluidic human epidermal keratinocyte culture
    • O?Neill, A.T., Monteiro-Riviere, N.A. & Walker, G.M. Characterization of microfluidic human epidermal keratinocyte culture. Cytotechnology 56, 197-207 (2008).
    • (2008) Cytotechnology , vol.56 , pp. 197-207
    • Oneill, A.T.1    Monteiro-Riviere, N.A.2    Walker, G.M.3
  • 6
    • 35348827791 scopus 로고    scopus 로고
    • Development of a renal microchip for in vitro distal tubule models
    • DOI 10.1021/bp0603513
    • Baudoin, R., Griscom, L., Monge, M., Legallais, C. & Leclerc, E. Development of a renal microchip for in vitro distal tubule models. Biotechnol. Prog. 23, 1245-1253 (2007). (Pubitemid 47587101)
    • (2007) Biotechnology Progress , vol.23 , Issue.5 , pp. 1245-1253
    • Baudoin, R.1    Griscom, L.2    Monge, M.3    Legallais, C.4    Leclerc, E.5
  • 7
    • 2942709867 scopus 로고    scopus 로고
    • Microfluidic PDMS (Polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes
    • DOI 10.1021/bp0300568
    • Leclerc, E., Sakai, Y. & Fujii, T. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Biotechnol. Prog. 20, 750-755 (2004). (Pubitemid 38784012)
    • (2004) Biotechnology Progress , vol.20 , Issue.3 , pp. 750-755
    • Leclerc, E.1    Sakai, Y.2    Fujii, T.3
  • 9
    • 0035811241 scopus 로고    scopus 로고
    • Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor
    • DOI 10.1002/bit.1071
    • Tilles, A.W., Baskaran, H., Roy, P., Yarmush, M.L. & Toner, M. Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol. Bioeng. 73, 379-389 (2001). (Pubitemid 32493234)
    • (2001) Biotechnology and Bioengineering , vol.73 , Issue.5 , pp. 379-389
    • Tilles, A.W.1    Baskaran, H.2    Roy, P.3    Yarmush, M.L.4    Toner, M.5
  • 11
    • 84862186471 scopus 로고    scopus 로고
    • Microengineered physiological biomimicry: Organs-on-chips
    • Huh, D., Torisawa, Y.S., Hamilton, G.A., Kim, H.J. & Ingber, D.E. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12, 2156-2164 (2012).
    • (2012) Lab Chip , vol.12 , pp. 2156-2164
    • Huh, D.1    Torisawa, Y.S.2    Hamilton, G.A.3    Kim, H.J.4    Ingber, D.E.5
  • 12
    • 84860481842 scopus 로고    scopus 로고
    • Organs-on-chips: Breaking the in vitro impasse
    • van der Meer, A.D. & van den Berg, A. Organs-on-chips: Breaking the in vitro impasse. Integr. Biol. 4, 461-470 (2012).
    • (2012) Integr. Biol , vol.4 , pp. 461-470
    • Van Der Meer, A.D.1    Van Den Berg, A.2
  • 13
    • 84874894377 scopus 로고    scopus 로고
    • Microfabricated mammalian organ systems and their integration into models of whole animals and humans
    • Sung, J.H. et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13, 1201-1212 (2013).
    • (2013) Lab Chip , vol.13 , pp. 1201-1212
    • Sung, J.H.1
  • 14
    • 84862117005 scopus 로고    scopus 로고
    • Organs-on-a-chip:A focus on compartmentalized microdevices
    • Moraes, C., Mehta, G., Lesher-Perez, S.C. & Takayama, S. Organs-on-a-chip: A focus on compartmentalized microdevices. Ann. Biomed. Eng. 40, 1211-1227 (2012).
    • (2012) Ann. Biomed. Eng , vol.40 , pp. 1211-1227
    • Moraes, C.1    Mehta, G.2    Lesher-Perez, S.C.3    Takayama, S.4
  • 16
    • 79960527448 scopus 로고    scopus 로고
    • The role of body-on-a-chip devices in drug and toxicity studies
    • Esch, M.B., King, T.L. & Shuler, M.L. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 13, 55-72 (2011).
    • (2011) Annu. Rev. Biomed. Eng , vol.13 , pp. 55-72
    • Esch, M.B.1    King, T.L.2    Shuler, M.L.3
  • 17
    • 79951474125 scopus 로고    scopus 로고
    • Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells
    • Jang, K.J. et al. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr. Biol. 3, 134-141 (2011).
    • (2011) Integr. Biol , vol.3 , pp. 134-141
    • Jang, K.J.1
  • 18
    • 77951884924 scopus 로고    scopus 로고
    • A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells
    • Jang, K.J. & Suh, K.Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10, 36-42 (2010).
    • (2010) Lab Chip , vol.10 , pp. 36-42
    • Jang, K.J.1    Suh, K.Y.2
  • 19
    • 84882590738 scopus 로고    scopus 로고
    • Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment
    • Jang, K.J. et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119-1129 (2013
    • (2013) Integr. Biol , vol.5 , pp. 1119-1129
    • Jang, K.J.1
  • 20
    • 52449122645 scopus 로고    scopus 로고
    • In vitro analysis of a hepatic device with intrinsic microvascular-based channels
    • Carraro, A. et al. In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed. Microdevices 10, 795-805 (2008).
    • (2008) Biomed. Microdevices , vol.10 , pp. 795-805
    • Carraro, A.1
  • 21
    • 33745686447 scopus 로고    scopus 로고
    • Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes
    • Kane, B.J., Zinner, M.J., Yarmush, M.L. & Toner, M. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal. Chem. 78, 4291-4298 (2006).
    • (2006) Anal. Chem , vol.78 , pp. 4291-4298
    • Kane, B.J.1    Zinner, M.J.2    Yarmush, M.L.3    Toner, M.4
  • 22
    • 38049011979 scopus 로고    scopus 로고
    • Microscale culture of human liver cells for drug development
    • Khetani, S.R. & Bhatia, S.N. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26, 120-126 (2008).
    • (2008) Nat. Biotechnol , vol.26 , pp. 120-126
    • Khetani, S.R.1    Bhatia, S.N.2
  • 23
    • 34547581758 scopus 로고    scopus 로고
    • An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture
    • DOI 10.1002/bit.21360
    • Lee, P.J., Hung, P.J. & Lee, L.P. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97, 1340-1346 (2007). (Pubitemid 47195329)
    • (2007) Biotechnology and Bioengineering , vol.97 , Issue.5 , pp. 1340-1346
    • Lee, P.J.1    Hung, P.J.2    Lee, L.P.3
  • 24
    • 79959866368 scopus 로고    scopus 로고
    • Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device
    • Nakao, Y., Kimura, H., Sakai, Y. & Fujii, T. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics 5, 22212 (2011).
    • (2011) Biomicrofluidics , vol.5 , pp. 22212
    • Nakao, Y.1    Kimura, H.2    Sakai, Y.3    Fujii, T.4
  • 25
    • 84872610509 scopus 로고    scopus 로고
    • BBB on CHIP: Microfluidic platform to mechanically and biochemically modulate blood-brain barrier function
    • Griep, L.M. et al. BBB ON CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed. Microdevices 15, 145-150 (2013).
    • (2013) Biomed. Microdevices , vol.15 , pp. 145-150
    • Griep, L.M.1
  • 27
    • 84857964726 scopus 로고    scopus 로고
    • Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip
    • Grosberg, A., Alford, P.W., McCain, M.L. & Parker, K.K. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11, 4165-4173 (2011).
    • (2011) Lab Chip , vol.11 , pp. 4165-4173
    • Grosberg, A.1    Alford, P.W.2    McCain, M.L.3    Parker, K.K.4
  • 29
    • 84864883326 scopus 로고    scopus 로고
    • A tissue-engineered jellyfish with biomimetic propulsion
    • Nawroth, J.C. et al. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30, 792-797 (2012).
    • (2012) Nat. Biotechnol , vol.30 , pp. 792-797
    • Nawroth, J.C.1
  • 31
    • 77956575158 scopus 로고    scopus 로고
    • Microfluidic cardiac cell culture model (muCCCM)
    • Giridharan, G.A. et al. Microfluidic cardiac cell culture model (muCCCM). Anal. Chem. 82, 7581-7587 (2010).
    • (2010) Anal. Chem , vol.82 , pp. 7581-7587
    • Giridharan, G.A.1
  • 32
    • 77956189599 scopus 로고    scopus 로고
    • Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement
    • Wilson, K., Das, M., Wahl, K.J., Colton, R.J. & Hickman, J. Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement. PLoS ONE 5, e11042 (2010).
    • (2010) PLoS ONE , vol.5
    • Wilson, K.1    Das, M.2    Wahl, K.J.3    Colton, R.J.4    Hickman, J.5
  • 33
    • 84870293748 scopus 로고    scopus 로고
    • On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices
    • Esch, M.B. et al. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ?body-on-a-chip? devices. Biomed. Microdevices 14, 895-906 (2012).
    • (2012) Biomed. Microdevices , vol.14 , pp. 895-906
    • Esch, M.B.1
  • 34
    • 72249109147 scopus 로고    scopus 로고
    • A microfluidic system to evaluate intestinal absorption
    • Imura, Y., Asano, Y., Sato, K. & Yoshimura, E. A microfluidic system to evaluate intestinal absorption. Anal. Sci. 25, 1403-1407 (2009).
    • (2009) Anal. Sci , vol.25 , pp. 1403-1407
    • Imura, Y.1    Asano, Y.2    Sato, K.3    Yoshimura, E.4
  • 36
    • 69249095795 scopus 로고    scopus 로고
    • Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity
    • Mahler, G.J., Esch, M.B., Glahn, R.P. & Shuler, M.L. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 104, 193-205 (2009).
    • (2009) Biotechnol. Bioeng , vol.104 , pp. 193-205
    • Mahler, G.J.1    Esch, M.B.2    Glahn, R.P.3    Shuler, M.L.4
  • 37
    • 78751507903 scopus 로고    scopus 로고
    • Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model
    • Sung, J.H., Yu, J., Luo, D., Shuler, M.L. & March, J.C. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11, 389-392 (2011).
    • (2011) Lab Chip , vol.11 , pp. 389-392
    • Sung, J.H.1    Yu, J.2    Luo, D.3    Shuler, M.L.4    March, J.C.5
  • 38
    • 77955267560 scopus 로고    scopus 로고
    • Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes
    • Wang, L., Murthy, S.K., Barabino, G.A. & Carrier, R.L. Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes. Biomaterials 31, 7586-7598 (2010).
    • (2010) Biomaterials , vol.31 , pp. 7586-7598
    • Wang, L.1    Murthy, S.K.2    Barabino, G.A.3    Carrier, R.L.4
  • 39
    • 72049098211 scopus 로고    scopus 로고
    • Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture
    • Puleo, C.M., McIntosh Ambrose, W., Takezawa, T., Elisseeff, J. & Wang, T.H. Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture. Lab Chip 9, 3221-3227 (2009).
    • (2009) Lab Chip , vol.9 , pp. 3221-3227
    • Puleo, C.M.1    McIntosh Ambrose, W.2    Takezawa, T.3    Elisseeff, J.4    Wang, T.H.5
  • 40
    • 62749175785 scopus 로고    scopus 로고
    • Cell migration into scaffolds under co-culture conditions in a microfluidic platform
    • Chung, S. et al. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9, 269-275 (2009).
    • (2009) Lab Chip , vol.9 , pp. 269-275
    • Chung, S.1
  • 41
    • 84862157431 scopus 로고    scopus 로고
    • Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels
    • Shin, Y. et al. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat. Protoc. 7, 1247-1259 (2012).
    • (2012) Nat. Protoc , vol.7 , pp. 1247-1259
    • Shin, Y.1
  • 42
    • 67651172783 scopus 로고    scopus 로고
    • Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices
    • Sung, K.E. et al. Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials 30, 4833-4841 (2009).
    • (2009) Biomaterials , vol.30 , pp. 4833-4841
    • Sung, K.E.1
  • 43
    • 79953731991 scopus 로고    scopus 로고
    • Transition to invasion in breast cancer: A microfluidic in vitro model enables examination of spatial and temporal effects
    • Sung, K.E. et al. Transition to invasion in breast cancer: A microfluidic in vitro model enables examination of spatial and temporal effects. Integr. Biol. 3, 439-450 (2011).
    • (2011) Integr. Biol , vol.3 , pp. 439-450
    • Sung, K.E.1
  • 44
    • 79953270125 scopus 로고    scopus 로고
    • Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments
    • Zervantonakis, I.K., Kothapalli, C.R., Chung, S., Sudo, R. & Kamm, R.D. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics 5, 13406 (2011).
    • (2011) Biomicrofluidics , vol.5 , pp. 13406
    • Zervantonakis, I.K.1    Kothapalli, C.R.2    Chung, S.3    Sudo, R.4    Kamm, R.D.5
  • 45
    • 84875775289 scopus 로고    scopus 로고
    • A modular approach to create a neurovascular unit-on-a-chip
    • Achyuta, A.K. et al. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 13, 542-553 (2013).
    • (2013) Lab Chip , vol.13 , pp. 542-553
    • Achyuta, A.K.1
  • 46
    • 84865232255 scopus 로고    scopus 로고
    • Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study
    • Park, J., Koito, H., Li, J. & Han, A. Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. Lab Chip 12, 3296-3304 (2012).
    • (2012) Lab Chip , vol.12 , pp. 3296-3304
    • Park, J.1    Koito, H.2    Li, J.3    Han, A.4
  • 47
    • 84875833460 scopus 로고    scopus 로고
    • SyM-BBB: A microfluidic Blood Brain Barrier model
    • Prabhakarpandian, B. et al. SyM-BBB: A microfluidic Blood Brain Barrier model. Lab Chip 13, 1093-1101 (2013).
    • (2013) Lab Chip , vol.13 , pp. 1093-1101
    • Prabhakarpandian, B.1
  • 48
    • 12344267714 scopus 로고    scopus 로고
    • An endothelial and astrocyte co-culture model of the blood-brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane
    • DOI 10.1039/b405713a
    • Ma, S.H., Lepak, L.A., Hussain, R.J., Shain, W. & Shuler, M.L. An endothelial and astrocyte co-culture model of the blood-brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane. Lab Chip 5, 74-85 (2005). (Pubitemid 40139343)
    • (2005) Lab on a Chip - Miniaturisation for Chemistry and Biology , vol.5 , Issue.1 , pp. 74-85
    • Ma, S.H.1    Lepak, L.A.2    Hussain, R.J.3    Shain, W.4    Shuler, M.L.5
  • 49
    • 0037420747 scopus 로고    scopus 로고
    • Formation of steady-state oxygen gradients in vitro: Application to liver zonation
    • DOI 10.1002/bit.10569
    • Allen, J.W. & Bhatia, S.N. Formation of steady-state oxygen gradients in vitro: Application to liver zonation. Biotechnol. Bioeng. 82, 253-262 (2003). (Pubitemid 36402538)
    • (2003) Biotechnology and Bioengineering , vol.82 , Issue.3 , pp. 253-262
    • Allen, J.W.1    Bhatia, S.N.2
  • 50
    • 78751638496 scopus 로고    scopus 로고
    • Mucin (MUC5AC)Expression by lung epithelial cells cultured in a microfluidic gradient device
    • Kim, S.H., Kang, J.H., Chung, I.Y. & Chung, B.G. Mucin (MUC5AC) expression by lung epithelial cells cultured in a microfluidic gradient device. Electrophoresis 32, 254-260 (2011).
    • (2011) Electrophoresis , vol.32 , pp. 254-260
    • Kim, S.H.1    Kang, J.H.2    Chung, I.Y.3    Chung, B.G.4
  • 51
    • 78149278006 scopus 로고    scopus 로고
    • Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells
    • Torisawa, Y.S. et al. Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells. Integr. Biol. 2, 680-686 (2010).
    • (2010) Integr. Biol , vol.2 , pp. 680-686
    • Torisawa, Y.S.1
  • 52
    • 79551635268 scopus 로고    scopus 로고
    • Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model
    • Douville, N.J. et al. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip 11, 609-619 (2011).
    • (2011) Lab Chip , vol.11 , pp. 609-619
    • Douville, N.J.1
  • 53
    • 37649009647 scopus 로고    scopus 로고
    • Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems
    • Huh, D. et al. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl. Acad. Sci. USA 104, 18886-18891 (2007).
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 18886-18891
    • Huh, D.1
  • 54
    • 77954038080 scopus 로고    scopus 로고
    • Reconstituting organ-level lung functions on a chip
    • Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662-1668 (2010).
    • (2010) Science , vol.328 , pp. 1662-1668
    • Huh, D.1
  • 55
    • 84869126274 scopus 로고    scopus 로고
    • A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice
    • Huh, D. et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4, 159ra147 (2012).
    • (2012) Sci. Transl. Med , vol.4
    • Huh, D.1
  • 56
    • 84862207235 scopus 로고    scopus 로고
    • Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
    • Kim, H.J., Huh, D., Hamilton, G. & Ingber, D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165-2174 (2012).
    • (2012) Lab Chip , vol.12 , pp. 2165-2174
    • Kim, H.J.1    Huh, D.2    Hamilton, G.3    Ingber, D.E.4
  • 57
    • 84882627623 scopus 로고    scopus 로고
    • Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation
    • Kim, H.J. & Ingber, D.E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130-1140 (2013).
    • (2013) Integr. Biol , vol.5 , pp. 1130-1140
    • Kim, H.J.1    Ingber, D.E.2
  • 60
    • 84865115966 scopus 로고    scopus 로고
    • Quantitative analysis of molecular absorption into PDMS microfluidic channels
    • Wang, J.D., Douville, N.J., Takayama, S. & ElSayed, M. Quantitative analysis of molecular absorption into PDMS microfluidic channels. Ann. Biomed. Eng. 40, 1862-1873 (2012).
    • (2012) Ann. Biomed. Eng , vol.40 , pp. 1862-1873
    • Wang, J.D.1    Douville, N.J.2    Takayama, S.3    Elsayed, M.4
  • 61
    • 78049508638 scopus 로고    scopus 로고
    • Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications
    • Gomez-Sjoberg, R., Leyrat, A.A., Houseman, B.T., Shokat, K. & Quake, S.R. Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications. Anal. Chem. 82, 8954-8960 (2010).
    • (2010) Anal. Chem , vol.82 , pp. 8954-8960
    • Gomez-Sjoberg, R.1    Leyrat, A.A.2    Houseman, B.T.3    Shokat, K.4    Quake, S.R.5
  • 62
    • 84881060292 scopus 로고    scopus 로고
    • Simple replica micromolding of biocompatible styrenic elastomers
    • Borysiak, M.D. et al. Simple replica micromolding of biocompatible styrenic elastomers. Lab Chip 13, 2773-2784 (2013).
    • (2013) Lab Chip , vol.13 , pp. 2773-2784
    • Borysiak, M.D.1
  • 63
    • 84883305025 scopus 로고    scopus 로고
    • Clear castable polyurethane elastomer for fabrication of microfluidic devices
    • Domansky, K. et al. Clear castable polyurethane elastomer for fabrication of microfluidic devices. Lab Chip 13, 3956-3964 (2013).
    • (2013) Lab Chip , vol.13 , pp. 3956-3964
    • Domansky, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.