메뉴 건너뛰기




Volumn 21, Issue 12, 2011, Pages 745-754

From 3D cell culture to organs-on-chips

Author keywords

[No Author keywords available]

Indexed keywords

BIOCHIP; CELL CULTURE; CYTOLOGY; HUMAN; IN VITRO STUDY; MICROCHIP ANALYSIS; MICROENVIRONMENT; MICROFLUIDICS; MICROTECHNOLOGY; PRIORITY JOURNAL; REVIEW; THREE DIMENSIONAL CELL CULTURE; TISSUE DIFFERENTIATION;

EID: 81355146382     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2011.09.005     Document Type: Review
Times cited : (1478)

References (84)
  • 1
    • 34648834682 scopus 로고    scopus 로고
    • The third dimension bridges the gap between cell culture and live tissue
    • Pampaloni F., et al. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 2007, 8:839-845.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 839-845
    • Pampaloni, F.1
  • 2
    • 0034578083 scopus 로고    scopus 로고
    • Microengineering of cellular interactions
    • Folch A., Toner M. Microengineering of cellular interactions. Annu. Rev. Biomed. Eng. 2000, 2:227-256.
    • (2000) Annu. Rev. Biomed. Eng. , vol.2 , pp. 227-256
    • Folch, A.1    Toner, M.2
  • 3
    • 33644527903 scopus 로고    scopus 로고
    • Microscale technologies for tissue engineering and biology
    • Khademhosseini A., et al. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:2480-2487.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 2480-2487
    • Khademhosseini, A.1
  • 4
    • 0034802766 scopus 로고    scopus 로고
    • Soft lithography in biology and biochemistry
    • Whitesides G.M., et al. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3:335-373.
    • (2001) Annu. Rev. Biomed. Eng. , vol.3 , pp. 335-373
    • Whitesides, G.M.1
  • 5
    • 33747117373 scopus 로고    scopus 로고
    • The origins and the future of microfluidics
    • Whitesides G.M. The origins and the future of microfluidics. Nature 2006, 442:368-373.
    • (2006) Nature , vol.442 , pp. 368-373
    • Whitesides, G.M.1
  • 6
    • 0028338446 scopus 로고
    • Engineering cell shape and function
    • Singhvi R., et al. Engineering cell shape and function. Science 1994, 264:696-698.
    • (1994) Science , vol.264 , pp. 696-698
    • Singhvi, R.1
  • 7
    • 0032881990 scopus 로고    scopus 로고
    • Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates
    • Dike L.E., et al. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell. Dev. Biol. Anim. 1999, 35:441-448.
    • (1999) In Vitro Cell. Dev. Biol. Anim. , vol.35 , pp. 441-448
    • Dike, L.E.1
  • 8
    • 1442276317 scopus 로고    scopus 로고
    • Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress
    • Polte T.R., et al. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. Am. J. Physiol. Cell Physiol. 2004, 286:C518-C528.
    • (2004) Am. J. Physiol. Cell Physiol. , vol.286
    • Polte, T.R.1
  • 9
    • 0030953763 scopus 로고    scopus 로고
    • Geometric control of cell life and death
    • Chen C.S., et al. Geometric control of cell life and death. Science 1997, 276:1425-1428.
    • (1997) Science , vol.276 , pp. 1425-1428
    • Chen, C.S.1
  • 10
    • 34548694284 scopus 로고    scopus 로고
    • Muscular thin films for building actuators and powering devices
    • Feinberg A.W., et al. Muscular thin films for building actuators and powering devices. Science 2007, 317:1366-1370.
    • (2007) Science , vol.317 , pp. 1366-1370
    • Feinberg, A.W.1
  • 11
    • 77549085427 scopus 로고    scopus 로고
    • Biohybrid thin films for measuring contractility in engineered cardiovascular muscle
    • Alford P.W., et al. Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 2010, 31:3613-3621.
    • (2010) Biomaterials , vol.31 , pp. 3613-3621
    • Alford, P.W.1
  • 12
    • 0035963375 scopus 로고    scopus 로고
    • Subcellular positioning of small molecules
    • Takayama S., et al. Subcellular positioning of small molecules. Nature 2001, 411:1016.
    • (2001) Nature , vol.411 , pp. 1016
    • Takayama, S.1
  • 13
    • 0036022527 scopus 로고    scopus 로고
    • Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device
    • Li Jeon N., et al. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 2002, 20:826-830.
    • (2002) Nat. Biotechnol. , vol.20 , pp. 826-830
    • Li Jeon, N.1
  • 14
    • 79954576669 scopus 로고    scopus 로고
    • Generating nonlinear concentration gradients in microfluidic devices for cell studies
    • Selimovic S., et al. Generating nonlinear concentration gradients in microfluidic devices for cell studies. Anal. Chem. 2011, 83:2020-2028.
    • (2011) Anal. Chem. , vol.83 , pp. 2020-2028
    • Selimovic, S.1
  • 15
    • 17144398875 scopus 로고    scopus 로고
    • Human neural stem cell growth and differentiation in a gradient-generating microfluidic device
    • Chung B.G., et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab. Chip 2005, 5:401-406.
    • (2005) Lab. Chip , vol.5 , pp. 401-406
    • Chung, B.G.1
  • 16
    • 36349021851 scopus 로고    scopus 로고
    • Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient
    • Park J.Y., et al. Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient. Lab. Chip 2007, 7:1673-1680.
    • (2007) Lab. Chip , vol.7 , pp. 1673-1680
    • Park, J.Y.1
  • 17
    • 67649396057 scopus 로고    scopus 로고
    • Microfluidic culture of single human embryonic stem cell colonies
    • Villa-Diaz L.G., et al. Microfluidic culture of single human embryonic stem cell colonies. Lab. Chip 2009, 9:1749-1755.
    • (2009) Lab. Chip , vol.9 , pp. 1749-1755
    • Villa-Diaz, L.G.1
  • 18
    • 38349037603 scopus 로고    scopus 로고
    • Growth cone response to ephrin gradients produced by microfluidic networks
    • Lang S., et al. Growth cone response to ephrin gradients produced by microfluidic networks. Anal. Bioanal. Chem. 2008, 390:809-816.
    • (2008) Anal. Bioanal. Chem. , vol.390 , pp. 809-816
    • Lang, S.1
  • 19
    • 0036696824 scopus 로고    scopus 로고
    • Lateral propagation of EGF signaling after local stimulation is dependent on receptor density
    • Sawano A., et al. Lateral propagation of EGF signaling after local stimulation is dependent on receptor density. Dev. Cell 2002, 3:245-257.
    • (2002) Dev. Cell , vol.3 , pp. 245-257
    • Sawano, A.1
  • 20
    • 80054744142 scopus 로고    scopus 로고
    • Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation
    • Mammoto T., et al. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev. Cell 2011, 21:758-769.
    • (2011) Dev. Cell , vol.21 , pp. 758-769
    • Mammoto, T.1
  • 21
    • 17844376743 scopus 로고    scopus 로고
    • Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics
    • Lucchetta E.M., et al. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 2005, 434:1134-1138.
    • (2005) Nature , vol.434 , pp. 1134-1138
    • Lucchetta, E.M.1
  • 22
    • 79959884176 scopus 로고    scopus 로고
    • A microfluidic-based neurotoxin concentration gradient for the generation of an in vitro model of Parkinson's disease
    • Seidi A., et al. A microfluidic-based neurotoxin concentration gradient for the generation of an in vitro model of Parkinson's disease. Biomicrofluidics 2011, 5:22214.
    • (2011) Biomicrofluidics , vol.5 , pp. 22214
    • Seidi, A.1
  • 23
    • 35748941950 scopus 로고    scopus 로고
    • Microfluidic scaffolds for tissue engineering
    • Choi N.W., et al. Microfluidic scaffolds for tissue engineering. Nat. Mater. 2007, 6:908-915.
    • (2007) Nat. Mater. , vol.6 , pp. 908-915
    • Choi, N.W.1
  • 24
    • 34249794264 scopus 로고    scopus 로고
    • A cell-laden microfluidic hydrogel
    • Ling Y., et al. A cell-laden microfluidic hydrogel. Lab. Chip 2007, 7:756-762.
    • (2007) Lab. Chip , vol.7 , pp. 756-762
    • Ling, Y.1
  • 25
    • 33644636333 scopus 로고    scopus 로고
    • Gelatin based microfluidic devices for cell culture
    • Paguirigan A., Beebe D.J. Gelatin based microfluidic devices for cell culture. Lab. Chip 2006, 6:407-413.
    • (2006) Lab. Chip , vol.6 , pp. 407-413
    • Paguirigan, A.1    Beebe, D.J.2
  • 26
    • 79956065316 scopus 로고    scopus 로고
    • Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels
    • Du Y., et al. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol. Bioeng. 2011, 108:1693-1703.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 1693-1703
    • Du, Y.1
  • 27
    • 73249131798 scopus 로고    scopus 로고
    • Paper-supported 3D cell culture for tissue-based bioassays
    • Derda R., et al. Paper-supported 3D cell culture for tissue-based bioassays. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:18457-18462.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 18457-18462
    • Derda, R.1
  • 28
    • 79955856918 scopus 로고    scopus 로고
    • Multizone paper platform for 3D cell cultures
    • Derda R., et al. Multizone paper platform for 3D cell cultures. PLoS ONE 2011, 6:e18940.
    • (2011) PLoS ONE , vol.6
    • Derda, R.1
  • 29
    • 18444370256 scopus 로고    scopus 로고
    • A microfabricated array bioreactor for perfused 3D liver culture
    • Powers M.J., et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol. Bioeng. 2002, 78:257-269.
    • (2002) Biotechnol. Bioeng. , vol.78 , pp. 257-269
    • Powers, M.J.1
  • 30
    • 0036019367 scopus 로고    scopus 로고
    • Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor
    • Powers M.J., et al. Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng. 2002, 8:499-513.
    • (2002) Tissue Eng. , vol.8 , pp. 499-513
    • Powers, M.J.1
  • 31
    • 2942709867 scopus 로고    scopus 로고
    • Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes
    • Leclerc E., et al. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Biotechnol. Prog. 2004, 20:750-755.
    • (2004) Biotechnol. Prog. , vol.20 , pp. 750-755
    • Leclerc, E.1
  • 32
    • 35348827791 scopus 로고    scopus 로고
    • Development of a renal microchip for in vitro distal tubule models
    • Baudoin R., et al. Development of a renal microchip for in vitro distal tubule models. Biotechnol. Prog. 2007, 23:1245-1253.
    • (2007) Biotechnol. Prog. , vol.23 , pp. 1245-1253
    • Baudoin, R.1
  • 33
    • 46649087122 scopus 로고    scopus 로고
    • Characterization of microfluidic human epidermal keratinocyte culture
    • O'Neill A.T., et al. Characterization of microfluidic human epidermal keratinocyte culture. Cytotechnology 2008, 56:197-207.
    • (2008) Cytotechnology , vol.56 , pp. 197-207
    • O'Neill, A.T.1
  • 34
    • 38349063305 scopus 로고    scopus 로고
    • Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening
    • Jang K., et al. Development of an osteoblast-based 3D continuous-perfusion microfluidic system for drug screening. Anal. Bioanal. Chem. 2008, 390:825-832.
    • (2008) Anal. Bioanal. Chem. , vol.390 , pp. 825-832
    • Jang, K.1
  • 35
    • 26844433558 scopus 로고    scopus 로고
    • Study of osteoblastic cells in a microfluidic environment
    • Leclerc E., et al. Study of osteoblastic cells in a microfluidic environment. Biomaterials 2006, 27:586-595.
    • (2006) Biomaterials , vol.27 , pp. 586-595
    • Leclerc, E.1
  • 36
    • 18044374251 scopus 로고    scopus 로고
    • Dynamic osmotic loading of chondrocytes using a novel microfluidic device
    • Chao P.G., et al. Dynamic osmotic loading of chondrocytes using a novel microfluidic device. J. Biomech. 2005, 38:1273-1281.
    • (2005) J. Biomech. , vol.38 , pp. 1273-1281
    • Chao, P.G.1
  • 37
    • 33646582959 scopus 로고    scopus 로고
    • Fluorescence monitoring of ATP-stimulated, endothelium-derived nitric oxide production in channels of a poly(dimethylsiloxane)-based microfluidic device
    • D'Amico Oblak T., et al. Fluorescence monitoring of ATP-stimulated, endothelium-derived nitric oxide production in channels of a poly(dimethylsiloxane)-based microfluidic device. Anal. Chem. 2006, 78:3193-3197.
    • (2006) Anal. Chem. , vol.78 , pp. 3193-3197
    • D'Amico Oblak, T.1
  • 38
    • 64649092134 scopus 로고    scopus 로고
    • An easy to assemble microfluidic perfusion device with a magnetic clamp
    • Tkachenko E., et al. An easy to assemble microfluidic perfusion device with a magnetic clamp. Lab. Chip 2009, 9:1085-1095.
    • (2009) Lab. Chip , vol.9 , pp. 1085-1095
    • Tkachenko, E.1
  • 39
    • 79551572775 scopus 로고    scopus 로고
    • A microfluidic array for large-scale ordering and orientation of embryos
    • Chung K., et al. A microfluidic array for large-scale ordering and orientation of embryos. Nat. Methods 2011, 8:171-176.
    • (2011) Nat. Methods , vol.8 , pp. 171-176
    • Chung, K.1
  • 40
    • 21644489338 scopus 로고    scopus 로고
    • Computer-controlled microcirculatory support system for endothelial cell culture and shearing
    • Song J.W., et al. Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal. Chem. 2005, 77:3993-3999.
    • (2005) Anal. Chem. , vol.77 , pp. 3993-3999
    • Song, J.W.1
  • 41
    • 8644241679 scopus 로고    scopus 로고
    • Computerized microfluidic cell culture using elastomeric channels and Braille displays
    • Gu W., et al. Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15861-15866.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 15861-15866
    • Gu, W.1
  • 42
    • 33644841800 scopus 로고    scopus 로고
    • Handheld recirculation system and customized media for microfluidic cell culture
    • Futai N., et al. Handheld recirculation system and customized media for microfluidic cell culture. Lab. Chip 2006, 6:149-154.
    • (2006) Lab. Chip , vol.6 , pp. 149-154
    • Futai, N.1
  • 43
    • 9144257910 scopus 로고    scopus 로고
    • Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane)
    • Shin M., et al. Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed. Microdevices 2004, 6:269-278.
    • (2004) Biomed. Microdevices , vol.6 , pp. 269-278
    • Shin, M.1
  • 44
    • 78650471924 scopus 로고    scopus 로고
    • Directed assembly of cell-laden hydrogels for engineering functional tissues
    • Kachouie N.N., et al. Directed assembly of cell-laden hydrogels for engineering functional tissues. Organogenesis 2010, 6:234-244.
    • (2010) Organogenesis , vol.6 , pp. 234-244
    • Kachouie, N.N.1
  • 45
    • 33747116681 scopus 로고    scopus 로고
    • Cells on chips
    • El-Ali J., et al. Cells on chips. Nature 2006, 442:403-411.
    • (2006) Nature , vol.442 , pp. 403-411
    • El-Ali, J.1
  • 47
    • 72249109147 scopus 로고    scopus 로고
    • A microfluidic system to evaluate intestinal absorption
    • Imura Y., et al. A microfluidic system to evaluate intestinal absorption. Anal. Sci. 2009, 25:1403-1407.
    • (2009) Anal. Sci. , vol.25 , pp. 1403-1407
    • Imura, Y.1
  • 48
    • 42549115139 scopus 로고    scopus 로고
    • An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models
    • Kimura H., et al. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab. Chip 2008, 8:741-746.
    • (2008) Lab. Chip , vol.8 , pp. 741-746
    • Kimura, H.1
  • 49
    • 70549099703 scopus 로고    scopus 로고
    • An open-access microfluidic model for lung-specific functional studies at an air-liquid interface
    • Nalayanda D.D., et al. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed. Microdevices 2009, 11:1081-1089.
    • (2009) Biomed. Microdevices , vol.11 , pp. 1081-1089
    • Nalayanda, D.D.1
  • 50
    • 79951474125 scopus 로고    scopus 로고
    • Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells
    • Jang K.J., et al. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr. Biol. (Camb) 2011, 3:134-141.
    • (2011) Integr. Biol. (Camb) , vol.3 , pp. 134-141
    • Jang, K.J.1
  • 51
    • 77951884924 scopus 로고    scopus 로고
    • A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells
    • Jang K.J., Suh K.Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab. Chip 2010, 10:36-42.
    • (2010) Lab. Chip , vol.10 , pp. 36-42
    • Jang, K.J.1    Suh, K.Y.2
  • 52
    • 72049098211 scopus 로고    scopus 로고
    • Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture
    • Puleo C.M., et al. Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture. Lab. Chip 2009, 9:3221-3227.
    • (2009) Lab. Chip , vol.9 , pp. 3221-3227
    • Puleo, C.M.1
  • 53
    • 52449122645 scopus 로고    scopus 로고
    • In vitro analysis of a hepatic device with intrinsic microvascular-based channels
    • Carraro A., et al. In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed. Microdevices 2008, 10:795-805.
    • (2008) Biomed. Microdevices , vol.10 , pp. 795-805
    • Carraro, A.1
  • 54
    • 33745686447 scopus 로고    scopus 로고
    • Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes
    • Kane B.J., et al. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal. Chem. 2006, 78:4291-4298.
    • (2006) Anal. Chem. , vol.78 , pp. 4291-4298
    • Kane, B.J.1
  • 55
    • 34547581758 scopus 로고    scopus 로고
    • An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture
    • Lee P.J., et al. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 2007, 97:1340-1346.
    • (2007) Biotechnol. Bioeng. , vol.97 , pp. 1340-1346
    • Lee, P.J.1
  • 56
    • 79959866368 scopus 로고    scopus 로고
    • Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device
    • Nakao Y., et al. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics 2011, 5:22212.
    • (2011) Biomicrofluidics , vol.5 , pp. 22212
    • Nakao, Y.1
  • 57
    • 37449027378 scopus 로고    scopus 로고
    • Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading
    • You L., et al. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone 2008, 42:172-179.
    • (2008) Bone , vol.42 , pp. 172-179
    • You, L.1
  • 58
    • 70549105100 scopus 로고    scopus 로고
    • Microfluidic compartmentalized co-culture platform for CNS axon myelination research
    • Park J., et al. Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed. Microdevices 2009, 11:1145-1153.
    • (2009) Biomed. Microdevices , vol.11 , pp. 1145-1153
    • Park, J.1
  • 59
    • 68549115534 scopus 로고    scopus 로고
    • Transport-mediated angiogenesis in 3D epithelial coculture
    • Sudo R., et al. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 2009, 23:2155-2164.
    • (2009) FASEB J. , vol.23 , pp. 2155-2164
    • Sudo, R.1
  • 60
    • 62749175785 scopus 로고    scopus 로고
    • Cell migration into scaffolds under co-culture conditions in a microfluidic platform
    • Chung S., et al. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab. Chip 2009, 9:269-275.
    • (2009) Lab. Chip , vol.9 , pp. 269-275
    • Chung, S.1
  • 61
    • 79953270125 scopus 로고    scopus 로고
    • Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments
    • Zervantonakis I.K., et al. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics 2011, 5:13406.
    • (2011) Biomicrofluidics , vol.5 , pp. 13406
    • Zervantonakis, I.K.1
  • 62
    • 79953731991 scopus 로고    scopus 로고
    • Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects
    • Sung K.E., et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr. Biol. (Camb) 2011, 3:439-450.
    • (2011) Integr. Biol. (Camb) , vol.3 , pp. 439-450
    • Sung, K.E.1
  • 63
    • 34249809408 scopus 로고    scopus 로고
    • Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device
    • Torisawa Y.S., et al. Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab. Chip 2007, 7:770-776.
    • (2007) Lab. Chip , vol.7 , pp. 770-776
    • Torisawa, Y.S.1
  • 64
    • 77649211191 scopus 로고    scopus 로고
    • Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids
    • Torisawa Y.S., et al. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr. Biol. (Camb) 2009, 1:649-654.
    • (2009) Integr. Biol. (Camb) , vol.1 , pp. 649-654
    • Torisawa, Y.S.1
  • 65
    • 63649097667 scopus 로고    scopus 로고
    • Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids
    • Hsiao A.Y., et al. Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 2009, 30:3020-3027.
    • (2009) Biomaterials , vol.30 , pp. 3020-3027
    • Hsiao, A.Y.1
  • 66
    • 66849138510 scopus 로고    scopus 로고
    • Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells
    • Song J.W., et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS ONE 2009, 4:e5756.
    • (2009) PLoS ONE , vol.4
    • Song, J.W.1
  • 67
    • 14844320510 scopus 로고    scopus 로고
    • In vitro zonation and toxicity in a hepatocyte bioreactor
    • Allen J.W., et al. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol. Sci. 2005, 84:110-119.
    • (2005) Toxicol. Sci. , vol.84 , pp. 110-119
    • Allen, J.W.1
  • 68
    • 78149278006 scopus 로고    scopus 로고
    • Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells
    • Torisawa Y.S., et al. Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells. Integr. Biol. (Camb) 2010, 2:680-686.
    • (2010) Integr. Biol. (Camb) , vol.2 , pp. 680-686
    • Torisawa, Y.S.1
  • 69
    • 37649009647 scopus 로고    scopus 로고
    • Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems
    • Huh D., et al. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:18886-18891.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 18886-18891
    • Huh, D.1
  • 70
    • 79551635268 scopus 로고    scopus 로고
    • Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model
    • Douville N.J., et al. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab. Chip 2011, 11:609-619.
    • (2011) Lab. Chip , vol.11 , pp. 609-619
    • Douville, N.J.1
  • 71
    • 77954038080 scopus 로고    scopus 로고
    • Reconstituting organ-level lung functions on a chip
    • Huh D., et al. Reconstituting organ-level lung functions on a chip. Science 2010, 328:1662-1668.
    • (2010) Science , vol.328 , pp. 1662-1668
    • Huh, D.1
  • 72
    • 79960527448 scopus 로고    scopus 로고
    • The role of body-on-a-chip devices in drug and toxicity studies
    • Esch M.B., et al. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 2011, 13:55-72.
    • (2011) Annu. Rev. Biomed. Eng. , vol.13 , pp. 55-72
    • Esch, M.B.1
  • 73
    • 1142293800 scopus 로고    scopus 로고
    • The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors
    • Sin A., et al. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 2004, 20:338-345.
    • (2004) Biotechnol. Prog. , vol.20 , pp. 338-345
    • Sin, A.1
  • 74
    • 1142305959 scopus 로고    scopus 로고
    • Development of a microscale cell culture analog to probe naphthalene toxicity
    • Viravaidya K., et al. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol. Prog. 2004, 20:316-323.
    • (2004) Biotechnol. Prog. , vol.20 , pp. 316-323
    • Viravaidya, K.1
  • 75
    • 75749153235 scopus 로고    scopus 로고
    • A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip
    • Sung J.H., et al. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab. Chip 2010, 10:446-455.
    • (2010) Lab. Chip , vol.10 , pp. 446-455
    • Sung, J.H.1
  • 76
    • 65649133932 scopus 로고    scopus 로고
    • A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs
    • Sung J.H., Shuler M.L. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab. Chip 2009, 9:1385-1394.
    • (2009) Lab. Chip , vol.9 , pp. 1385-1394
    • Sung, J.H.1    Shuler, M.L.2
  • 77
    • 1842814047 scopus 로고    scopus 로고
    • Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies
    • Viravaidya K., Shuler M.L. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Prog. 2004, 20:590-597.
    • (2004) Biotechnol. Prog. , vol.20 , pp. 590-597
    • Viravaidya, K.1    Shuler, M.L.2
  • 78
    • 78650330307 scopus 로고    scopus 로고
    • Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity
    • Imura Y., et al. Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity. Anal. Chem. 2010, 82:9983-9988.
    • (2010) Anal. Chem. , vol.82 , pp. 9983-9988
    • Imura, Y.1
  • 80
    • 77953131021 scopus 로고    scopus 로고
    • Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices
    • Mosadegh B., et al. Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. Nat. Phys. 2010, 6:433-437.
    • (2010) Nat. Phys. , vol.6 , pp. 433-437
    • Mosadegh, B.1
  • 81
    • 0034615958 scopus 로고    scopus 로고
    • Monolithic microfabricated valves and pumps by multilayer soft lithography
    • Unger M.A., et al. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000, 288:113-116.
    • (2000) Science , vol.288 , pp. 113-116
    • Unger, M.A.1
  • 82
    • 0037131390 scopus 로고    scopus 로고
    • Microfluidic large-scale integration
    • Thorsen T., et al. Microfluidic large-scale integration. Science 2002, 298:580-584.
    • (2002) Science , vol.298 , pp. 580-584
    • Thorsen, T.1
  • 83
    • 33745685151 scopus 로고    scopus 로고
    • Development and multiplexed control of latching pneumatic valves using microfluidic logical structures
    • Grover W.H., et al. Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab. Chip 2006, 6:623-631.
    • (2006) Lab. Chip , vol.6 , pp. 623-631
    • Grover, W.H.1
  • 84
    • 0038545277 scopus 로고    scopus 로고
    • Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly
    • Therriault D., et al. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2003, 2:265-271.
    • (2003) Nat. Mater. , vol.2 , pp. 265-271
    • Therriault, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.