메뉴 건너뛰기




Volumn 9781118315231, Issue , 2014, Pages 1-357

Combining Pattern Classifiers: Methods and Algorithms: Second Edition

Author keywords

[No Author keywords available]

Indexed keywords

CELLULAR TELEPHONE SYSTEMS; DATA MINING; LEARNING SYSTEMS; MAGNETIC RESONANCE IMAGING;

EID: 84926402173     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781118914564     Document Type: Book
Times cited : (742)

References (443)
  • 1
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, and Y. Saeys. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics (Oxford, England), 26(3):392-398, 2010.
    • (2010) Bioinformatics (Oxford, England) , vol.26 , Issue.3 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    Van de Peer, Y.3    Dupont, P.4    Saeys, Y.5
  • 6
    • 35248893424 scopus 로고    scopus 로고
    • Comparison of classifier selection methods for improving committee performance
    • T.Windeatt and F. Roli, editors, Guildford, UK, Lecture Notes in Computer Science, Springer
    • M. Aksela. Comparison of classifier selection methods for improving committee performance. In: T.Windeatt and F. Roli, editors, Proc. 4rd Int.Workshop on Multiple Classifier Systems (MCS 2003), Guildford, UK. Volume 2709: Lecture Notes in Computer Science, pp. 84-93. Springer, 2003.
    • (2003) Proc. 4rd Int.Workshop on Multiple Classifier Systems (MCS 2003) , vol.2709 , pp. 84-93
    • Aksela, M.1
  • 8
    • 0034875843 scopus 로고    scopus 로고
    • On combining classifiers using sum and product rules
    • L. A. Alexandre, A. C. Campilho, and M. Kamel. On combining classifiers using sum and product rules. Pattern Recognition Letters, 22(12):1283-1289, 2001.
    • (2001) Pattern Recognition Letters , vol.22 , Issue.12 , pp. 1283-1289
    • Alexandre, L.A.1    Campilho, A.C.2    Kamel, M.3
  • 9
    • 0033220742 scopus 로고    scopus 로고
    • Experimental evaluation of expert fusion strategies
    • F. M. Alkoot and J. Kittler. Experimental evaluation of expert fusion strategies. Pattern Recognition Letters, 20:1361-1369, 1999.
    • (1999) Pattern Recognition Letters , vol.20 , pp. 1361-1369
    • Alkoot, F.M.1    Kittler, J.2
  • 10
  • 11
    • 0345213569 scopus 로고    scopus 로고
    • Comparison of statistical and neural classifiers and their applications to optical character recognition and speech classification
    • C. T. Leondes, editor, Neural Network Systems, Academic Press
    • E. Alpaydin. Comparison of statistical and neural classifiers and their applications to optical character recognition and speech classification. In: C. T. Leondes, editor, Image Processing and Pattern Recognition, Volume 5: Neural Network Systems, pp. 61-88. Academic Press, 1998.
    • (1998) Image Processing and Pattern Recognition , vol.5 , pp. 61-88
    • Alpaydin, E.1
  • 13
    • 22444454855 scopus 로고    scopus 로고
    • Cascading classifiers
    • E. Alpaydin and C. Kaynak. Cascading classifiers. KYBERNETIKA, 34(4):369-374, 1998.
    • (1998) KYBERNETIKA , vol.34 , Issue.4 , pp. 369-374
    • Alpaydin, E.1    Kaynak, C.2
  • 14
    • 0033330591 scopus 로고    scopus 로고
    • Learning error-correcting output codes from data
    • MIT AI Laboratory
    • E. Alpaydin and E. Mayoraz. Learning error-correcting output codes from data. In:Proceedings of ICANN'99, pp. 743-748. MIT AI Laboratory, 1999.
    • (1999) Proceedings of ICANN'99 , pp. 743-748
    • Alpaydin, E.1    Mayoraz, E.2
  • 16
    • 25844518769 scopus 로고    scopus 로고
    • On naive Bayesian fusion of dependent classifiers
    • H. Altinçay. On naive Bayesian fusion of dependent classifiers. Pattern Recognition Letters, 26(15):2463-2473, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.15 , pp. 2463-2473
    • Altinçay, H.1
  • 19
    • 80455173720 scopus 로고    scopus 로고
    • A new gene selection method based on random subspace ensemble for microarray cancer classification
    • M. Loog, L.Wessels, M. J. T. Reinders, and D. Ridder, editors, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • G. Armano, C. Chira, and N. Hatami. A new gene selection method based on random subspace ensemble for microarray cancer classification. In: M. Loog, L.Wessels, M. J. T. Reinders, and D. Ridder, editors, Pattern Recognition in Bioinformatics, Volume 7036:Lecture Notes in Computer Science, pp. 191-201. Springer, Berlin, Heidelberg, 2011.
    • (2011) Pattern Recognition in Bioinformatics , vol.7036 , pp. 191-201
    • Armano, G.1    Chira, C.2    Hatami, N.3
  • 20
    • 0033556929 scopus 로고    scopus 로고
    • Boosted mixture of experts: an ensemble learning scheme
    • R.Avnimelech and N. Intrator. Boosted mixture of experts: an ensemble learning scheme. Neural Computation, 11(2):483-497, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 483-497
    • Avnimelech, R.1    Intrator, N.2
  • 22
    • 84886567160 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • 17 December
    • K. Bache and M. Lichman. UCI Machine Learning Repository, 17 December 2013. http://archive.ics.uci.edu/ml.
    • (2013)
    • Bache, K.1    Lichman, M.2
  • 23
    • 84878011646 scopus 로고    scopus 로고
    • A genetic-based subspace analysis method for improving error-correcting output coding
    • M. A. Bagheri, Q. Gao, and S. Escalera. A genetic-based subspace analysis method for improving error-correcting output coding. Pattern Recognition, 46(10):2830-2839, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.10 , pp. 2830-2839
    • Bagheri, M.A.1    Gao, Q.2    Escalera, S.3
  • 25
    • 35248848402 scopus 로고    scopus 로고
    • A new ensemble diversity measure applied to thinning ensembles
    • T. Windeatt and F. Roli, Guildford, UK, Lecture Notes in Computer Science, Springer
    • R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. A new ensemble diversity measure applied to thinning ensembles. In: T. Windeatt and F. Roli, Guildford, UK. Volume 2709: Lecture Notes in Computer Science, pp. 306-316. Springer, 2003.
    • (2003) , vol.2709 , pp. 306-316
    • Banfield, R.E.1    Hall, L.O.2    Bowyer, K.W.3    Kegelmeyer, W.P.4
  • 27
    • 85138482187 scopus 로고    scopus 로고
    • One-pass boosting
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
    • Z. Barutcuoglu, P. Long, and R. Servedio. One-pass boosting. In: J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems (NIPS), Volume 20, pp. 73-80. MIT Press, Cambridge, MA, 2007.
    • (2007) Advances in Neural Information Processing Systems (NIPS) , vol.20 , pp. 73-80
    • Barutcuoglu, Z.1    Long, P.2    Servedio, R.3
  • 28
    • 0028257732 scopus 로고
    • Democracy in neural nets: voting schemes for classification
    • R. Battiti and A. M. Colla. Democracy in neural nets: voting schemes for classification. Neural Networks, 7:691-707, 1994.
    • (1994) Neural Networks , vol.7 , pp. 691-707
    • Battiti, R.1    Colla, A.M.2
  • 29
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms:bagging, boosting, and variants
    • E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms:bagging, boosting, and variants. Machine Learning, 36:105-142, 1999.
    • (1999) Machine Learning , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 32
    • 84943264962 scopus 로고    scopus 로고
    • Agnostic boosting
    • David Helmbold and BobWilliamson, editors, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • S. Ben-David, P. M. Long, and Y. Mansour. Agnostic boosting. In: David Helmbold and BobWilliamson, editors, Computational Learning Theory. Volume 2111: Lecture Notes in Computer Science, pp. 507-516. Springer, Berlin, Heidelberg, 2001.
    • (2001) Computational Learning Theory. , vol.2111 , pp. 507-516
    • Ben-David, S.1    Long, P.M.2    Mansour, Y.3
  • 33
    • 77952766987 scopus 로고    scopus 로고
    • A user's guide to support vector machines
    • Methods in Molecular Biology, Springer
    • A. Ben-Hur and J. Weston. A user's guide to support vector machines. In: Data Mining Techniques for the Life Sciences. Volume 609: Methods in Molecular Biology, pp. 223-239. Springer, 2008.
    • (2008) Data Mining Techniques for the Life Sciences. , vol.609 , pp. 223-239
    • Ben-Hur, A.1    Weston, J.2
  • 35
    • 0022830747 scopus 로고
    • Consensus rules
    • L. N. Kanal and J. F. Lemmer, editors, Elsevier Science Publishers B.V.
    • C. Berenstein, L. N. Kanal, and D. Lavine. Consensus rules. In: L. N. Kanal and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, pp. 27-32. Elsevier Science Publishers B.V., 1986.
    • (1986) Uncertainty in Artificial Intelligence , pp. 27-32
    • Berenstein, C.1    Kanal, L.N.2    Lavine, D.3
  • 37
    • 76249114776 scopus 로고    scopus 로고
    • Feature selection combined with random subspace ensemble for gene expression based diagnosis of malignancies
    • B. Apolloni, M. Marinaro, and R. Tagliaferri, editors, Springer
    • A. Bertoni, R. Folgieri, and G. Valentini. Feature selection combined with random subspace ensemble for gene expression based diagnosis of malignancies. In: B. Apolloni, M. Marinaro, and R. Tagliaferri, editors, Biological and Artificial Intelligence Environments, pp. 29-36. Springer, 2005.
    • (2005) Biological and Artificial Intelligence Environments , pp. 29-36
    • Bertoni, A.1    Folgieri, R.2    Valentini, G.3
  • 42
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2):245-271, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 44
    • 0020192214 scopus 로고
    • A multiplicative formula for aggregating probability assessments
    • R. F. Bordley. A multiplicative formula for aggregating probability assessments. Management Science, 28:1137-1148, 1982.
    • (1982) Management Science , vol.28 , pp. 1137-1148
    • Bordley, R.F.1
  • 46
    • 0003495934 scopus 로고
    • Bagging predictors
    • Technical Report 421, Department of Statistics, University of California, Berkeley, CA,
    • L. Breiman. Bagging predictors. Technical Report 421, Department of Statistics, University of California, Berkeley, CA, 1994.
    • (1994)
    • Breiman, L.1
  • 47
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 26(2):123-140, 1996.
    • (1996) Machine Learning , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 48
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801-849, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 49
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • L. Breiman. Pasting small votes for classification in large databases and on-line. Machine Learning, 36:85-103, 1999.
    • (1999) Machine Learning , vol.36 , pp. 85-103
    • Breiman, L.1
  • 50
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 53
    • 77952072972 scopus 로고    scopus 로고
    • Ensemble learning
    • C. Sammut and G. Webb, editors, Springer
    • G. Brown. Ensemble learning. In: C. Sammut and G. Webb, editors, Encyclopedia of Machine Learning. Springer, 2010.
    • (2010) Encyclopedia of Machine Learning.
    • Brown, G.1
  • 54
    • 77952046540 scopus 로고    scopus 로고
    • GOOD and BAD diversity in majority vote ensembles
    • Cairo, Egypt, Lecture Notes in Computer Science, Springer
    • G. Brown and L. I. Kuncheva. GOOD and BAD diversity in majority vote ensembles. In: Proc. 9th International Workshop on Multiple Classifier Systems (MCS'10), Cairo, Egypt. Volume 5997: Lecture Notes in Computer Science, pp. 124-133. Springer, 2010.
    • (2010) Proc. 9th International Workshop on Multiple Classifier Systems (MCS'10) , vol.5997 , pp. 124-133
    • Brown, G.1    Kuncheva, L.I.2
  • 55
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation:a unifying framework for information theoretic feature selection
    • G. Brown, A. Pocock, M. Zhao, and M. Lujan. Conditional likelihood maximisation:a unifying framework for information theoretic feature selection. Journal of Machine Learning Research, 13:27-66, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.3    Lujan, M.4
  • 56
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: a survey and categorisation
    • G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: a survey and categorisation. Information Fusion, 6(1):5-20, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 57
    • 0036762743 scopus 로고    scopus 로고
    • A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps
    • L. Bruzzone and R. Cossu. A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps. IEEE Transactions on Geoscience and Remote Sensing, 40(9):1984-1996, 2002.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 1984-1996
    • Bruzzone, L.1    Cossu, R.2
  • 58
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
    • R. Bryll, R. Gutierrez-Osuna, and F. Quek. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition, 36(6):1291-1302, 2003.
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 60
    • 77953318018 scopus 로고    scopus 로고
    • Twin boosting: improved feature selection and prediction
    • P. Bühlmann and T. Hothorn. Twin boosting: improved feature selection and prediction. Statistics and Computing, 20(2):119-138, 2010.
    • (2010) Statistics and Computing , vol.20 , Issue.2 , pp. 119-138
    • Bühlmann, P.1    Hothorn, T.2
  • 61
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 62
    • 33746791981 scopus 로고    scopus 로고
    • On the impact of fusion strategies on classification errors for large ensembles of classifiers
    • J. B. D. Cabrera. On the impact of fusion strategies on classification errors for large ensembles of classifiers. Pattern Recognition, 39:1963-1978, 2006.
    • (2006) Pattern Recognition , vol.39 , pp. 1963-1978
    • Cabrera, J.B.D.1
  • 63
    • 79953822842 scopus 로고    scopus 로고
    • Affect detection: an interdisciplinary review of models, methods, and their applications
    • R. A. Calvo and S. D'Mello. Affect detection: an interdisciplinary review of models, methods, and their applications. IEEE Transactions on Affective Computing, 1(1):18-37, 2010.
    • (2010) IEEE Transactions on Affective Computing , vol.1 , Issue.1 , pp. 18-37
    • Calvo, R.A.1    D'Mello, S.2
  • 64
    • 33845506212 scopus 로고    scopus 로고
    • Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles
    • A. M. P. Canuto, M. C. C. Abreu, L. M. Oliveira, J. C. Xavier Jr., and A. de M. Santos. Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles. Pattern Recognition Letters, 28(4):472-486, 2007.
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 472-486
    • Canuto, A.M.P.1    Abreu, M.C.C.2    Oliveira, L.M.3    Xavier, J.C.4    de, A.5    Santos, M.6
  • 67
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 69
    • 9444297357 scopus 로고    scopus 로고
    • SMOTEBoost: improving prediction of the minority class in boosting
    • Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. SMOTEBoost: improving prediction of the minority class in boosting. In: Knowledge Discovery in Databases:PKDD 2003. Volume 2838: Lecture Notes in Computer Science, pp. 107-119. Springer, Berlin, Heidelberg, 2003.
    • (2003) Knowledge Discovery in Databases:PKDD 2003. , vol.2838 , pp. 107-119
    • Chawla, N.V.1    Lazarevic, A.2    Hall, L.O.3    Bowyer, K.W.4
  • 71
    • 0035368916 scopus 로고    scopus 로고
    • An asymptotic analysis of some expert fusion methods
    • D. Chen and X. Cheng. An asymptotic analysis of some expert fusion methods. Pattern Recognition Letters, 22:901-904, 2001.
    • (2001) Pattern Recognition Letters , vol.22 , pp. 901-904
    • Chen, D.1    Cheng, X.2
  • 72
    • 0000291808 scopus 로고    scopus 로고
    • Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification
    • K. Chen, L. Wang, and H. Chi. Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification. International Journal on Pattern Recognition and Artificial Intelligence, 11(3):417-445, 1997.
    • (1997) International Journal on Pattern Recognition and Artificial Intelligence , vol.11 , Issue.3 , pp. 417-445
    • Chen, K.1    Wang, L.2    Chi, H.3
  • 73
    • 0033115883 scopus 로고    scopus 로고
    • Pattern recognition with neural networks combined by genetic algorithm
    • S. B. Cho. Pattern recognition with neural networks combined by genetic algorithm. Fuzzy Sets and Systems, 103:339-347, 1999.
    • (1999) Fuzzy Sets and Systems , vol.103 , pp. 339-347
    • Cho, S.B.1
  • 75
    • 78649669320 scopus 로고    scopus 로고
    • Deep big simple neural nets excel on handwritten digit recognition
    • Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. Deep big simple neural nets excel on handwritten digit recognition. Neural Computation, 22:3207-3220, 2010.
    • (2010) Neural Computation , vol.22 , pp. 3207-3220
    • Ciresan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 78
    • 0003954942 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • Technical Report TCD-CS-2000-02, Department of Computer Science, Trinity College, Dublin
    • P. Cunningham and J. Carney. Diversity versus quality in classification ensembles based on feature selection. Technical Report TCD-CS-2000-02, Department of Computer Science, Trinity College, Dublin, 2000.
    • (2000)
    • Cunningham, P.1    Carney, J.2
  • 80
    • 35248857943 scopus 로고    scopus 로고
    • Polychotomous classification with pairwise classifiers: a new voting principle
    • Guildford, UK, Lecture Notes in Computer Science, Springer
    • F. Cutzu. Polychotomous classification with pairwise classifiers: a new voting principle. In: Proc. 4th International Workshop on Multiple Classifier Systems (MCS 2003), Guildford, UK. Volume 2709: Lecture Notes in Computer Science, pp. 115-124. Springer, 2003.
    • (2003) Proc. 4th International Workshop on Multiple Classifier Systems (MCS 2003) , vol.2709 , pp. 115-124
    • Cutzu, F.1
  • 82
    • 0018465664 scopus 로고
    • A composite classifier system design: concepts and methodology
    • B. V. Dasarathy and B. V. Sheela. A composite classifier system design: concepts and methodology. Proceedings of IEEE, 67:708-713, 1979.
    • (1979) Proceedings of IEEE , vol.67 , pp. 708-713
    • Dasarathy, B.V.1    Sheela, B.V.2
  • 83
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis, 1:131-156, 1997.
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 84
    • 0003144188 scopus 로고
    • Consensus methods as tools for data analysis
    • H. H. Bock, editor, Elsevier Science Publishers B.V. (North Holland)
    • W. H. E. Day. Consensus methods as tools for data analysis. In: H. H. Bock, editor, Classification and Related Methods for Data Analysis, pp. 317-324. Elsevier Science Publishers B.V. (North Holland), 1988.
    • (1988) Classification and Related Methods for Data Analysis , pp. 317-324
    • Day, W.H.E.1
  • 85
    • 79958004813 scopus 로고    scopus 로고
    • An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction
    • K. W. De Bock and D. Van den Poel. An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction. Expert Systems with Applications, 38(10):12293-12301, 2011.
    • (2011) Expert Systems with Applications , vol.38 , Issue.10 , pp. 12293-12301
    • De Bock, K.W.1    Van den Poel, D.2
  • 86
    • 52049116700 scopus 로고    scopus 로고
    • Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns
    • F. De Martino, G. Valente, N. Staeren, J. Ashburner, and R. Goebel a E. Formisano. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage, 43(1):44-58, 2008.
    • (2008) NeuroImage , vol.43 , Issue.1 , pp. 44-58
    • De Martino, F.1    Valente, G.2    Staeren, N.3    Ashburner, J.4    Goebel, R.5    Formisano, E.6
  • 87
    • 0036833267 scopus 로고    scopus 로고
    • Plurality voting-based multiple classifier systems: statistically independent with respect to dependent classifiers sets
    • M. Demirekler and H. Altincay. Plurality voting-based multiple classifier systems: statistically independent with respect to dependent classifiers sets. Pattern Recognition, 35:2365-2379, 2002.
    • (2002) Pattern Recognition , vol.35 , pp. 2365-2379
    • Demirekler, M.1    Altincay, H.2
  • 88
    • 0036161257 scopus 로고    scopus 로고
    • Linear programming boosting via column generation
    • A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column generation. Machine Learning, 46:225-254, 2002.
    • (2002) Machine Learning , vol.46 , pp. 225-254
    • Demiriz, A.1    Bennett, K.P.2    Shawe-Taylor, J.3
  • 89
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparison of classifiers over multiple data sets
    • J.Demšar. Statistical comparison of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 91
    • 35048842229 scopus 로고    scopus 로고
    • Dynamic classifier selection by adaptive k-nearestneighbourhood rule
    • Cambridge, UK, Lecture Notes in Computer Science, Springer
    • L. Didaci and G. Giacinto. Dynamic classifier selection by adaptive k-nearestneighbourhood rule. In: Proceedings of the 5th International Workshop on Multiple Classifier Systems. (MCS'04), Cambridge, UK. Volume 3077: Lecture Notes in Computer Science, pp. 174-183. Springer, 2004.
    • (2004) Proceedings of the 5th International Workshop on Multiple Classifier Systems. (MCS'04) , vol.3077 , pp. 174-183
    • Didaci, L.1    Giacinto, G.2
  • 92
    • 24044449939 scopus 로고    scopus 로고
    • A study on the performances of dynamic classifier selection based on local accuracy estimation
    • L. Didaci, G. Giacinto, F. Roli, and G. L. Marcialis. A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recognition, 38(11):2188-2191, 2005.
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 2188-2191
    • Didaci, L.1    Giacinto, G.2    Roli, F.3    Marcialis, G.L.4
  • 93
    • 0038137313 scopus 로고    scopus 로고
    • Decision templates for the classification of bioacoustic time series
    • C. Dietrich, G. Palm, and F. Schwenker. Decision templates for the classification of bioacoustic time series. Information Fusion, 4:101-109, 2003.
    • (2003) Information Fusion , vol.4 , pp. 101-109
    • Dietrich, C.1    Palm, G.2    Schwenker, F.3
  • 94
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization
    • T. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization. Machine Learning, 40(2):139-157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.1
  • 95
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
    • T. G. Dietterich. Ensemble methods in machine learning. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 1-15. Springer, 2000.
    • (2000) Multiple Classifier Systems , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 97
    • 69549123046 scopus 로고
    • Error-correcting output codes: a general method for improving multiclass inductive learning programs
    • AAAI Press
    • T. G. Dietterich and G. Bakiri. Error-correcting output codes: a general method for improving multiclass inductive learning programs. In: Proc. 9th National Conference on Artificial Intelligence, AAAI-91, pp. 572-577. AAAI Press, 1991.
    • (1991) Proc. 9th National Conference on Artificial Intelligence, AAAI-91 , pp. 572-577
    • Dietterich, T.G.1    Bakiri, G.2
  • 98
  • 99
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 7(10):1895-1924, 1998.
    • (1998) Neural Computation , vol.7 , Issue.10 , pp. 1895-1924
    • Dietterich, T.G.1
  • 101
    • 85172419807 scopus 로고    scopus 로고
    • Why does bagging work? A Bayesian account and its implications
    • AAAI Press
    • P. Domingos. Why does bagging work? A Bayesian account and its implications. In:Knowledge Discovery and Data Mining, pp. 155-158. AAAI Press, 1997.
    • (1997) Knowledge Discovery and Data Mining , pp. 155-158
    • Domingos, P.1
  • 102
    • 0012937288 scopus 로고    scopus 로고
    • A unified bias-variance decomposition and its applications
    • Stanford, CA, Morgan Kaufmann
    • P. Domingos. A unified bias-variance decomposition and its applications. In: Proc. 7th International Conference on Machine Learning, Stanford, CA, pp. 231-238. Morgan Kaufmann, 2000.
    • (2000) Proc. 7th International Conference on Machine Learning , pp. 231-238
    • Domingos, P.1
  • 103
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29:103-130, 1997.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 105
    • 0022101320 scopus 로고
    • A review of fuzzy set aggregation connectives
    • D. Dubois and H. Prade. A review of fuzzy set aggregation connectives. Information Sciences, 36:85-121, 1985.
    • (1985) Information Sciences , vol.36 , pp. 85-121
    • Dubois, D.1    Prade, H.2
  • 109
    • 84867038939 scopus 로고    scopus 로고
    • Experiments with classifier combination rules
    • J. Kittler and F. Roli, editors, Cagliari, Italy, Springer
    • R. P. W. Duin and D. M. J. Tax. Experiments with classifier combination rules. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857:Lecture Notes in Computer Science, pp. 16-29, Springer, 2000.
    • (2000) Multiple Classifier Systems , pp. 16-29
    • Duin, R.P.W.1    Tax, D.M.J.2
  • 110
    • 0030145401 scopus 로고    scopus 로고
    • A note on comparing classifiers
    • R. P. W. Duin. A note on comparing classifiers. Pattern Recognition Letters, 17:529-536, 1996.
    • (1996) Pattern Recognition Letters , vol.17 , pp. 529-536
    • Duin, R.P.W.1
  • 111
    • 38149049450 scopus 로고    scopus 로고
    • Solution to instability problems with sequential wrapper-based approaches to feature selection
    • Technical Report TCD-CS-2002-28, Department of Computer Science, Trinity College, Dublin
    • K. Dunne, P. Cunningham, and F. Azuaje. Solution to instability problems with sequential wrapper-based approaches to feature selection. Technical Report TCD-CS-2002-28, Department of Computer Science, Trinity College, Dublin, 2002.
    • (2002)
    • Dunne, K.1    Cunningham, P.2    Azuaje, F.3
  • 112
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • S. Džeroski and B. Ženko. Is combining classifiers with stacking better than selecting the best one? Machine Learning, 54(3):255-273, 2004.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Džeroski, S.1    Ženko, B.2
  • 113
    • 0022232712 scopus 로고
    • A theoretical basis for the analysis of multiversion software subject to coincident errors
    • D. E. Eckhardt and L. D. Lee. A theoretical basis for the analysis of multiversion software subject to coincident errors. IEEE Transactions on Software Engineering, 11(12):1511-1517, 1985.
    • (1985) IEEE Transactions on Software Engineering , vol.11 , Issue.12 , pp. 1511-1517
    • Eckhardt, D.E.1    Lee, L.D.2
  • 116
    • 0033220785 scopus 로고    scopus 로고
    • Sequential selection of discrete features for neural networks-a Bayesian approach to building a cascade
    • M. Egmont-Petersen, W. R. M. Dassen, and J. H. C. Reiber. Sequential selection of discrete features for neural networks-a Bayesian approach to building a cascade. Pattern Recognition Letters, 20(11-13):1439-1448, 1999.
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1439-1448
    • Egmont-Petersen, M.1    Dassen, W.R.M.2    Reiber, J.H.C.3
  • 117
    • 84945260284 scopus 로고    scopus 로고
    • How to make AdaBoost.M1 work for weak base classifiers by changing only one line of the code
    • Springer, Lecture Notes in Computer Science
    • G. Eibl and K. P. Pfeiffer. How to make AdaBoost.M1 work for weak base classifiers by changing only one line of the code. In: Proceedings of the 13th European Conference on Machine Learning, ECML '02, pp. 72-83. Springer, Lecture Notes in Computer Science, 2002.
    • (2002) Proceedings of the 13th European Conference on Machine Learning, ECML '02 , pp. 72-83
    • Eibl, G.1    Pfeiffer, K.P.2
  • 119
    • 80053634784 scopus 로고    scopus 로고
    • Incremental learning of concept drift in nonstationary environments
    • R. Elwell and R. Polikar. Incremental learning of concept drift in nonstationary environments. IEEE Transactions on Neural Networks, 22(10):1517-1531, 2011.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.10 , pp. 1517-1531
    • Elwell, R.1    Polikar, R.2
  • 125
    • 33750291885 scopus 로고    scopus 로고
    • MP-Boost: a multiple-pivot boosting algorithm and its application to text categorization
    • Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • A. Esuli, T. Fagni, and F. Sebastiani. MP-Boost: a multiple-pivot boosting algorithm and its application to text categorization. In: String Processing and Information Retrieval. Volume 4209: Lecture Notes in Computer Science, pp. 1-12. Springer, Berlin, Heidelberg, 2006.
    • (2006) String Processing and Information Retrieval. , vol.4209 , pp. 1-12
    • Esuli, A.1    Fagni, T.2    Sebastiani, F.3
  • 126
  • 127
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 129
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • G. Forman. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3:1289-1305, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 131
    • 0035371148 scopus 로고    scopus 로고
    • An adaptive version of the boost by majority algorithm
    • Y. Freund. An adaptive version of the boost by majority algorithm. Machine Learning, 43(3):293-318, 2001.
    • (2001) Machine Learning , vol.43 , Issue.3 , pp. 293-318
    • Freund, Y.1
  • 132
    • 77957197521 scopus 로고    scopus 로고
    • A more robust boosting algorithm
    • eprint arXiv:0905.2138, Statistics -Machine Learning
    • Y. Freund. A more robust boosting algorithm, eprint arXiv:0905.2138, Statistics -Machine Learning, 2009.
    • (2009)
    • Freund, Y.1
  • 134
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 135
    • 0001408126 scopus 로고    scopus 로고
    • Discussion of the paper "Arcing Classifiers" by Leo Breiman
    • Y. Freund and R. E. Schapire. Discussion of the paper "Arcing Classifiers" by Leo Breiman. The Annals of Statistics, 26(3):824-832, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 824-832
    • Freund, Y.1    Schapire, R.E.2
  • 136
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28(2):337-374, 2000.
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 142
    • 0016758101 scopus 로고
    • Cognitron: a self-organizing multilayered neural network
    • K. Fukushima. Cognitron: a self-organizing multilayered neural network. Biological Cybernetics, 20:121-136, 1975.
    • (1975) Biological Cybernetics , vol.20 , pp. 121-136
    • Fukushima, K.1
  • 143
    • 84926401292 scopus 로고    scopus 로고
    • Performance analysis and comparison of linear combiners for classifier fusion
    • IEEE Computer Society
    • G. Fumera and F. Roli. Performance analysis and comparison of linear combiners for classifier fusion. In: Proc. 16th International Conference on Pattern Recognition. IEEE Computer Society, 2002.
    • (2002) Proc. 16th International Conference on Pattern Recognition.
    • Fumera, G.1    Roli, F.2
  • 144
    • 35248892506 scopus 로고    scopus 로고
    • Linear combiners for classifier fusion: some theoretical and experimental results
    • T. Windeatt and F. Roli, editors, Guildford, UK, Lecture Notes in Computer Science, Springer
    • G. Fumera and F. Roli. Linear combiners for classifier fusion: some theoretical and experimental results. In: T. Windeatt and F. Roli, editors, Proc. 4rd Int. Workshop on Multiple Classifier Systems (MCS 2003), Guildford, UK. Volume 2709: Lecture Notes in Computer Science, pp. 74-83. Springer, 2003.
    • (2003) Proc. 4rd Int. Workshop on Multiple Classifier Systems (MCS 2003) , vol.2709 , pp. 74-83
    • Fumera, G.1    Roli, F.2
  • 145
    • 21244501361 scopus 로고    scopus 로고
    • A theoretical and experimental analysis of linear combiners for multiple classifier systems
    • G. Fumera and F. Roli. A theoretical and experimental analysis of linear combiners for multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:942-956, 2005.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , pp. 942-956
    • Fumera, G.1    Roli, F.2
  • 146
    • 0034541162 scopus 로고    scopus 로고
    • Cascade generalization
    • J. Gamma and P. Brazdil. Cascade generalization. Machine Learning, 41(3):315-343, 2000.
    • (2000) Machine Learning , vol.41 , Issue.3 , pp. 315-343
    • Gamma, J.1    Brazdil, P.2
  • 147
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all pairwise comparisons
    • S. García and F. Herrera. An extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all pairwise comparisons. Journal of Machine Learning Research, 9:2677-2694, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 150
  • 151
    • 84925487039 scopus 로고    scopus 로고
    • Multiclassifier systems: back to the future
    • F. Roli and J. Kittler, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
    • J. Ghosh. Multiclassifier systems: back to the future. In: F. Roli and J. Kittler, editors, Proc. 3d InternationalWorkshop on Multiple Classifier Systems, MCS'02, Cagliari, Italy. Volume 2364: Lecture Notes in Computer Science, pp. 1-15. Springer, 2002.
    • (2002) Proc. 3d InternationalWorkshop on Multiple Classifier Systems, MCS'02 , vol.2364 , pp. 1-15
    • Ghosh, J.1
  • 152
    • 78651434307 scopus 로고    scopus 로고
    • Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods
    • K. Ghosh, Y. S. Ng, and R. Srinivasan. Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods. Computers & Chemical Engineering, 35(2):342-355, 2011.
    • (2011) Computers & Chemical Engineering , vol.35 , Issue.2 , pp. 342-355
    • Ghosh, K.1    Ng, Y.S.2    Srinivasan, R.3
  • 154
    • 0035202645 scopus 로고    scopus 로고
    • An approach to the automatic design of multiple classifier systems
    • G. Giacinto and F. Roli. An approach to the automatic design of multiple classifier systems. Pattern Recognition Letters, 22:25-33, 2001.
    • (2001) Pattern Recognition Letters , vol.22 , pp. 25-33
    • Giacinto, G.1    Roli, F.2
  • 155
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification processes
    • G. Giacinto and F. Roli. Design of effective neural network ensembles for image classification processes. Image Vision and Computing Journal, 19(9-10):699-707, 2001.
    • (2001) Image Vision and Computing Journal , vol.19 , Issue.9-10 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 156
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behaviour
    • G. Giacinto and F. Roli. Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognition, 34(9):1879-1881, 2001.
    • (2001) Pattern Recognition , vol.34 , Issue.9 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 158
    • 0004241258 scopus 로고    scopus 로고
    • Chapman & Hall /CRC, Boca Raton, FL
    • A. D. Gordon. Classification. Chapman & Hall /CRC, Boca Raton, FL, 1999.
    • (1999) Classification.
    • Gordon, A.D.1
  • 159
    • 0000721263 scopus 로고
    • Thirteen theorems in search of the truth
    • B. Grofman, G. Owen, and S. L. Feld. Thirteen theorems in search of the truth. Theory and Decisions, 15:261-278, 1983.
    • (1983) Theory and Decisions , vol.15 , pp. 261-278
    • Grofman, B.1    Owen, G.2    Feld, S.L.3
  • 160
    • 84855599605 scopus 로고    scopus 로고
    • Stream mining: a novel architecture for ensemble-based classification
    • V. Grossi and F. Turini. Stream mining: a novel architecture for ensemble-based classification. Knowledge and Information Systems, 30:247-281, 2012.
    • (2012) Knowledge and Information Systems , vol.30 , pp. 247-281
    • Grossi, V.1    Turini, F.2
  • 161
    • 0036088194 scopus 로고    scopus 로고
    • Combining discriminant models with new multi-class SVMs
    • Y. Guermeur. Combining discriminant models with new multi-class SVMs. Pattern Analysis & Applications, 5(2):168-179, 2002.
    • (2002) Pattern Analysis & Applications , vol.5 , Issue.2 , pp. 168-179
    • Guermeur, Y.1
  • 165
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 166
    • 80053576495 scopus 로고    scopus 로고
    • Creating and measuring diversity in multiple classifier systems using support vector data description
    • M. S. Haghighi, A. Vahedian, and H. S. Yazdi. Creating and measuring diversity in multiple classifier systems using support vector data description. Applied Soft Computing, 11(8):4931-4942, 2011.
    • (2011) Applied Soft Computing , vol.11 , Issue.8 , pp. 4931-4942
    • Haghighi, M.S.1    Vahedian, A.2    Yazdi, H.S.3
  • 169
    • 82655173888 scopus 로고    scopus 로고
    • Remote sensing image classification based on neural network ensemble algorithm
    • M. Han, X. Zhu, and W. Yao. Remote sensing image classification based on neural network ensemble algorithm. Neurocomputing, 78:133-138, 2012.
    • (2012) Neurocomputing , vol.78 , pp. 133-138
    • Han, M.1    Zhu, X.2    Yao, W.3
  • 172
  • 173
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress (with discussion)
    • D. J. Hand. Classifier technology and the illusion of progress (with discussion). Statistical Science, 21:1-34, 2006.
    • (2006) Statistical Science , vol.21 , pp. 1-34
    • Hand, D.J.1
  • 175
    • 0031171679 scopus 로고    scopus 로고
    • Optimal linear combinations of neural networks
    • S. Hashem. Optimal linear combinations of neural networks. Neural Networks, 10(4):599-614, 1997.
    • (1997) Neural Networks , vol.10 , Issue.4 , pp. 599-614
    • Hashem, S.1
  • 176
    • 0001122278 scopus 로고    scopus 로고
    • Treating harmful collinearity in neural network ensembles
    • A. J. C. Sharkey, editor, Springer, London
    • S. Hashem. Treating harmful collinearity in neural network ensembles. In: A. J. C. Sharkey, editor, Combining Artificial Neural Nets, pp. 101-125. Springer, London, 1999.
    • (1999) Combining Artificial Neural Nets , pp. 101-125
    • Hashem, S.1
  • 183
    • 0011187879 scopus 로고    scopus 로고
    • Multiple classifier combination: lessons and the next steps
    • A. Kandel and H. Bunke, editors, World Scientific
    • T. K. Ho. Multiple classifier combination: lessons and the next steps. In: A. Kandel and H. Bunke, editors, Hybrid Methods in Pattern Recognition, pp. 171-198. World Scientific, 2002.
    • (2002) Hybrid Methods in Pattern Recognition , pp. 171-198
    • Ho, T.K.1
  • 185
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R. C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1):63-91, 1993.
    • (1993) Machine Learning , vol.11 , Issue.1 , pp. 63-91
    • Holte, R.C.1
  • 186
    • 0037410515 scopus 로고    scopus 로고
    • Double-bagging: combining classifiers by bootstrap aggregation
    • T. Hothorn and B. Lausen. Double-bagging: combining classifiers by bootstrap aggregation. Pattern Recognition, 36(6):1303-1309, 2003.
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1303-1309
    • Hothorn, T.1    Lausen, B.2
  • 188
    • 33646142788 scopus 로고    scopus 로고
    • Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
    • Y.-M. Huang, C.-M. Hung, and H. C. Jiau. Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem. Nonlinear Analysis:Real World Applications, 7:720-747, 2006.
    • (2006) Nonlinear Analysis:Real World Applications , vol.7 , pp. 720-747
    • Huang, Y.-M.1    Hung, C.-M.2    Jiau, H.C.3
  • 189
    • 85115215265 scopus 로고
    • A method of combining multiple classifiers-a neural network approach
    • Jerusalem, Israel, IEEE Computer Society
    • Y. S. Huang and C. Y. Suen. A method of combining multiple classifiers-a neural network approach. In: 12th International Conference on Pattern Recognition, Jerusalem, Israel, pp. 473-475. IEEE Computer Society, 1994.
    • (1994) 12th International Conference on Pattern Recognition , pp. 473-475
    • Huang, Y.S.1    Suen, C.Y.2
  • 190
    • 0029230267 scopus 로고
    • A method of combining multiple experts for the recognition of unconstrained handwritten numerals
    • Y. S. Huang and C. Y. Suen. A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:90-93, 1995.
    • (1995) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.17 , pp. 90-93
    • Huang, Y.S.1    Suen, C.Y.2
  • 192
    • 77951774214 scopus 로고    scopus 로고
    • Method of classifier selection using the genetic approach
    • K. Jackowski and M.Wozniak. Method of classifier selection using the genetic approach. Expert Systems, 27(2):114-128, 2010.
    • (2010) Expert Systems , vol.27 , Issue.2 , pp. 114-128
    • Jackowski, K.1    Wozniak, M.2
  • 193
    • 0029372769 scopus 로고
    • Methods for combining experts' probability assessments
    • R. A. Jacobs. Methods for combining experts' probability assessments. Neural Computation, 7:867-888, 1995.
    • (1995) Neural Computation , vol.7 , pp. 867-888
    • Jacobs, R.A.1
  • 196
    • 0002970573 scopus 로고    scopus 로고
    • Guest editorial: special issue on artificial neural networks and statistical pattern recognition
    • A. K. Jain and J. Mao. Guest editorial: special issue on artificial neural networks and statistical pattern recognition. IEEE Transactions on Neural Networks, 8(1):1-3, 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.1 , pp. 1-3
    • Jain, A.K.1    Mao, J.2
  • 199
    • 0029617280 scopus 로고
    • Convergence results for the EM approach to mixtures of experts architectures
    • M. I. Jordan and L. Xu. Convergence results for the EM approach to mixtures of experts architectures. Neural Networks, 8:1409-1431, 1995.
    • (1995) Neural Networks , vol.8 , pp. 1409-1431
    • Jordan, M.I.1    Xu, L.2
  • 202
    • 84867287964 scopus 로고    scopus 로고
    • Effective diagnosis of coronary artery disease using the rotation forest ensemble method
    • E. M. Karabulut and T. Ibrikci. Effective diagnosis of coronary artery disease using the rotation forest ensemble method. Journal of Medical systems, 36(5):3011-3018, 2012.
    • (2012) Journal of Medical systems , vol.36 , Issue.5 , pp. 3011-3018
    • Karabulut, E.M.1    Ibrikci, T.2
  • 203
    • 84875922650 scopus 로고    scopus 로고
    • An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping
    • T. Kavzoglu and I. Colkesen. An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping. International Journal of Remote Sensing, 34(12):4224-4241, 2013.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.12 , pp. 4224-4241
    • Kavzoglu, T.1    Colkesen, I.2
  • 204
    • 82855178868 scopus 로고    scopus 로고
    • Aweight-adjusted voting algorithm for ensembles of classifiers
    • H. Kim, H. Kim, H. Moon, and H. Ahn. Aweight-adjusted voting algorithm for ensembles of classifiers. Journal of the Korean Statistical Society, 40(4):437-449, 2011.
    • (2011) Journal of the Korean Statistical Society , vol.40 , Issue.4 , pp. 437-449
    • Kim, H.1    Kim, H.2    Moon, H.3    Ahn, H.4
  • 206
    • 84957023641 scopus 로고    scopus 로고
    • Relationship of sum and vote fusion strategies
    • F. Roli and J. Kittler, editors, Cambridge, UK, Lecture Notes in Computer Science, Springer
    • J. Kittler and F. M. Alkoot. Relationship of sum and vote fusion strategies. In: F. Roli and J. Kittler, editors, Proc. Second International Workshop on Multiple Classifier Systems, MCS'01, Cambridge, UK. Volume 2096: Lecture Notes in Computer Science, pp. 339-348. Springer, 2001.
    • (2001) Proc. Second International Workshop on Multiple Classifier Systems, MCS'01 , vol.2096 , pp. 339-348
    • Kittler, J.1    Alkoot, F.M.2
  • 208
    • 0031271160 scopus 로고    scopus 로고
    • Strategies for combining classifiers employing shared and distinct representations
    • J. Kittler, A. Hojjatoleslami, and T.Windeatt. Strategies for combining classifiers employing shared and distinct representations. Pattern Recognition Letters, 18:1373-1377, 1997.
    • (1997) Pattern Recognition Letters , vol.18 , pp. 1373-1377
    • Kittler, J.1    Hojjatoleslami, A.2    Windeatt, T.3
  • 209
    • 2342463050 scopus 로고    scopus 로고
    • On nearest-neighbor error-correcting output codes with application to all-pairs multiclass support vector machines
    • A. Klautau, N. Jevtić, and A. Orlitsky. On nearest-neighbor error-correcting output codes with application to all-pairs multiclass support vector machines. Journal of Machine Learning Research, 4:1-15, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 1-15
    • Klautau, A.1    Jevtić, N.2    Orlitsky, A.3
  • 213
    • 0012307201 scopus 로고    scopus 로고
    • Improving simple Bayes
    • Technical report, Data Mining and Visualization Group, Silicon Graphics Inc, California
    • R. Kohavi, B. Becker, and D. Sommerfield. Improving simple Bayes. Technical report, Data Mining and Visualization Group, Silicon Graphics Inc, California, 1997.
    • (1997)
    • Kohavi, R.1    Becker, B.2    Sommerfield, D.3
  • 215
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • L. Saitta, editor, Morgan Kaufmann
    • R. Kohavi and D. H. Wolpert. Bias plus variance decomposition for zero-one loss functions. In: L. Saitta, editor, Machine Learning: Proc. 13th International Conference, pp. 275-283. Morgan Kaufmann, 1996.
    • (1996) Machine Learning: Proc. 13th International Conference , pp. 275-283
    • Kohavi, R.1    Wolpert, D.H.2
  • 216
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • IJCAI'95, Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
    • R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI'95, pp. 1137-1143. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1995.
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2 , pp. 1137-1143
    • Kohavi, R.1
  • 218
    • 0027682531 scopus 로고
    • Inductive and Bayesian learning in medical diagnosis
    • I. Kononenko. Inductive and Bayesian learning in medical diagnosis. Applied Artificial Intelligence, 7:317-337, 1993.
    • (1993) Applied Artificial Intelligence , vol.7 , pp. 317-337
    • Kononenko, I.1
  • 220
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation and active learning
    • G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, MIT Press, Cambridge, MA
    • A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and active learning. In: G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems. Volume 7, pp. 231-238. MIT Press, Cambridge, MA, 1995.
    • (1995) Advances in Neural Information Processing Systems. , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 221
    • 0036080105 scopus 로고    scopus 로고
    • Hierarchical fusion of multiple classifiers for hyperspectral data analysis
    • S. Kumar, J. Ghosh, and M. M. Crawford. Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Analysis & Applications, 5(2):210-220, 2002.
    • (2002) Pattern Analysis & Applications , vol.5 , Issue.2 , pp. 210-220
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 222
    • 0346076780 scopus 로고    scopus 로고
    • 'fuzzy' vs 'non-fuzzy' in combining classifiers designed by boosting
    • L. I. Kuncheva. 'fuzzy' vs 'non-fuzzy' in combining classifiers designed by boosting. IEEE Transactions on Fuzzy Systems, 11(6):729-741, 2003.
    • (2003) IEEE Transactions on Fuzzy Systems , vol.11 , Issue.6 , pp. 729-741
    • Kuncheva, L.I.1
  • 224
    • 9644281038 scopus 로고    scopus 로고
    • Using diversity measures for generating error-correcting output codes in classifier ensembles
    • L. I. Kuncheva. Using diversity measures for generating error-correcting output codes in classifier ensembles. Pattern Recognition Letters, 26:83-90, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , pp. 83-90
    • Kuncheva, L.I.1
  • 225
    • 84926396344 scopus 로고    scopus 로고
    • Choosing parameters for random subspace ensembles for fMRI classification
    • Cairo, Egypt, Springer
    • L. I.Kuncheva and C. O. Plumpton. Choosing parameters for random subspace ensembles for fMRI classification. In: Proc. Proc. Multiple Classifier Systems (MCS'10), Cairo, Egypt, pp. 124-133. Springer, 2010.
    • (2010) Proc. Proc. Multiple Classifier Systems (MCS'10) , pp. 124-133
    • Kuncheva, L.I.1    Plumpton, C.O.2
  • 227
    • 77952293118 scopus 로고    scopus 로고
    • Classifier ensembles for fMRI data analysis: an experiment
    • L. I. Kuncheva and J. J. Rodríguez. Classifier ensembles for fMRI data analysis: an experiment. Magnetic Resonance Imaging, 28(4):583-593, 2010.
    • (2010) Magnetic Resonance Imaging , vol.28 , Issue.4 , pp. 583-593
    • Kuncheva, L.I.1    Rodríguez, J.J.2
  • 230
    • 38249003590 scopus 로고
    • Change-glasses approach in pattern recognition
    • L. I. Kuncheva. Change-glasses approach in pattern recognition. Pattern Recognition Letters, 14:619-623, 1993.
    • (1993) Pattern Recognition Letters , vol.14 , pp. 619-623
    • Kuncheva, L.I.1
  • 233
    • 0035899791 scopus 로고    scopus 로고
    • Using measures of similarity and inclusion for multiple classifier fusion by decision templates
    • L. I. Kuncheva. Using measures of similarity and inclusion for multiple classifier fusion by decision templates. Fuzzy Sets and Systems, 122(3):401-407, 2001.
    • (2001) Fuzzy Sets and Systems , vol.122 , Issue.3 , pp. 401-407
    • Kuncheva, L.I.1
  • 234
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers: an experiment
    • L. I. Kuncheva. Switching between selection and fusion in combining classifiers: an experiment. IEEE Transactions on Systems, Man, and Cybernetics, 32(2):146-156, 2002.
    • (2002) IEEE Transactions on Systems, Man, and Cybernetics , vol.32 , Issue.2 , pp. 146-156
    • Kuncheva, L.I.1
  • 237
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: an experimental comparison
    • L. I.Kuncheva, J. C. Bezdek, and R. P.W. Duin. Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition, 34(2):299-314, 2001.
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.W.3
  • 242
    • 0027610524 scopus 로고
    • Genetic algorithm for feature selection for parallel classifiers
    • L. I.Kuncheva. Genetic algorithm for feature selection for parallel classifiers. Information Processing Letters, 46(4):163-168, 1993.
    • (1993) Information Processing Letters , vol.46 , Issue.4 , pp. 163-168
    • Kuncheva, L.I.1
  • 243
    • 84873302224 scopus 로고    scopus 로고
    • A bound on kappa-error diagrams for analysis of classifier ensembles
    • L. I. Kuncheva. A bound on kappa-error diagrams for analysis of classifier ensembles. IEEE Transactions on Knowledge and Data Engineering, 25(3):494-501, 2013.
    • (2013) IEEE Transactions on Knowledge and Data Engineering , vol.25 , Issue.3 , pp. 494-501
    • Kuncheva, L.I.1
  • 245
    • 0023911719 scopus 로고
    • Multiple reading procedures: the performance of diagnostic tests
    • P. A. Lachenbruch. Multiple reading procedures: the performance of diagnostic tests. Statistics in Medicine, 7:549-557, 1988.
    • (1988) Statistics in Medicine , vol.7 , pp. 549-557
    • Lachenbruch, P.A.1
  • 246
    • 33646258047 scopus 로고    scopus 로고
    • Random subspace method for multivariate feature selection
    • C. Lai, M. J. T. Reinders, and L. Wessels. Random subspace method for multivariate feature selection. Pattern Recognition Letters, 27(10):1067-1076, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.10 , pp. 1067-1076
    • Lai, C.1    Reinders, M.J.T.2    Wessels, L.3
  • 247
    • 84867038166 scopus 로고    scopus 로고
    • Classifier combinations: implementations and theoretical issues
    • J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
    • L. Lam. Classifier combinations: implementations and theoretical issues. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 78-86. Springer, 2000.
    • (2000) Multiple Classifier Systems , vol.1857 , pp. 78-86
    • Lam, L.1
  • 248
    • 85115251311 scopus 로고
    • A theoretical analysis of the application of majority voting to pattern recognition
    • Jerusalem, Israel, IEEE Computer Society
    • L. Lam and A. Krzyzak. A theoretical analysis of the application of majority voting to pattern recognition. In: 12th International Conference on Pattern Recognition, Jerusalem, Israel, pp. 418-420. IEEE Computer Society, 1994.
    • (1994) 12th International Conference on Pattern Recognition , pp. 418-420
    • Lam, L.1    Krzyzak, A.2
  • 249
    • 0029373189 scopus 로고
    • Optimal combination of pattern classifiers
    • L. Lam and C. Y. Suen. Optimal combination of pattern classifiers. Pattern Recognition Letters, 16:945-954, 1995.
    • (1995) Pattern Recognition Letters , vol.16 , pp. 945-954
    • Lam, L.1    Suen, C.Y.2
  • 250
    • 0031238275 scopus 로고    scopus 로고
    • Application of majority voting to pattern recognition: an analysis of its behavior and performance
    • L. Lam and C. Y. Suen. Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics, 27(5):553-568, 1997.
    • (1997) IEEE Transactions on Systems, Man, and Cybernetics , vol.27 , Issue.5 , pp. 553-568
    • Lam, L.1    Suen, C.Y.2
  • 251
    • 85061066913 scopus 로고
    • Selection of relevant features in machine learning
    • P. Langley. Selection of relevant features in machine learning. In: Proc. AAAI Fall Symposium on Relevance, pp. 140-144, 1994.
    • (1994) Proc. AAAI Fall Symposium on Relevance , pp. 140-144
    • Langley, P.1
  • 252
    • 79959753092 scopus 로고    scopus 로고
    • The changing science of machine learning
    • P. Langley. The changing science of machine learning. Machine Learning, 82:275-279, 2011.
    • (2011) Machine Learning , vol.82 , pp. 275-279
    • Langley, P.1
  • 254
    • 84867057507 scopus 로고    scopus 로고
    • Different ways of weakening decision trees and their impact on classification accuracy of DT combination
    • J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
    • P. Latinne, O. Debeir, and C. Decaestecker. Different ways of weakening decision trees and their impact on classification accuracy of DT combination. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 200-209. Springer, 2000.
    • (2000) Multiple Classifier Systems , vol.1857 , pp. 200-209
    • Latinne, P.1    Debeir, O.2    Decaestecker, C.3
  • 255
    • 21244433737 scopus 로고    scopus 로고
    • Adaptive boosting techniques in heterogeneous and spatial databases
    • A. Lazarevic and Z. Obradovic. Adaptive boosting techniques in heterogeneous and spatial databases. Intelligent Data Analysis, 5:1-24, 2001.
    • (2001) Intelligent Data Analysis , vol.5 , pp. 1-24
    • Lazarevic, A.1    Obradovic, Z.2
  • 258
    • 28244495034 scopus 로고    scopus 로고
    • Classifiability-based omnivariate decision trees
    • Y. Li, M. Dong, and R. Kothari. Classifiability-based omnivariate decision trees. IEEE Transactions on Neural Networks, 16(6):1547-1560, 2005.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1547-1560
    • Li, Y.1    Dong, M.2    Kothari, R.3
  • 259
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • A. Liawand M.Wiener. Classification and regression by randomForest.RNews, 2(3):18-22, 2002.
    • (2002) RNews , vol.2 , Issue.3 , pp. 18-22
    • Liawand, A.1    Wiener, M.2
  • 260
    • 0038667775 scopus 로고    scopus 로고
    • Performance analysis of pattern classifier combination by plurality voting
    • X. Lin, S. Yacoub, J. Burns, and S. Simske. Performance analysis of pattern classifier combination by plurality voting. Pattern Recognition Letters, 24(12):1795-1969, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1795-1969
    • Lin, X.1    Yacoub, S.2    Burns, J.3    Simske, S.4
  • 262
    • 0024884032 scopus 로고
    • Conceptual modeling of coincident failures in multiversion software
    • B. Littlewood and D. R. Miller. Conceptual modeling of coincident failures in multiversion software. IEEE Transactions on Software Engineering, 15(12):1596-1614, 1989.
    • (1989) IEEE Transactions on Software Engineering , vol.15 , Issue.12 , pp. 1596-1614
    • Littlewood, B.1    Miller, D.R.2
  • 264
    • 42749094856 scopus 로고    scopus 로고
    • Cancer classification using Rotation Forest
    • K.-H. Liu and D.-S. Huang. Cancer classification using Rotation Forest. Computers in Biology and Medicine, 38(5):601-610, 2008.
    • (2008) Computers in Biology and Medicine , vol.38 , Issue.5 , pp. 601-610
    • Liu, K.-H.1    Huang, D.-S.2
  • 265
    • 84926401288 scopus 로고    scopus 로고
    • Estimating, optimizing and combining diversity and performance measures in ensemble creation
    • PhD thesis, Department of Technology, Orebro University
    • T. Löfström. Estimating, optimizing and combining diversity and performance measures in ensemble creation. PhD thesis, Department of Technology, Orebro University, 2008.
    • (2008)
    • Löfström, T.1
  • 267
    • 0038724544 scopus 로고    scopus 로고
    • Boosting and microarray data
    • P. M. Long and V. B. Vega. Boosting and microarray data. Machine Learning, 52:31-44, 2003.
    • (2003) Machine Learning , vol.52 , pp. 31-44
    • Long, P.M.1    Vega, V.B.2
  • 269
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • W. S. MacCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • MacCulloch, W.S.1    Pitts, W.2
  • 270
    • 79551523991 scopus 로고    scopus 로고
    • Greedy optimization classifiers ensemble based on diversity
    • S. Mao, L. C. Jiao, L. Xiong, and S. Gou. Greedy optimization classifiers ensemble based on diversity. Pattern Recognition, 44(6):1245-1261, 2011.
    • (2011) Pattern Recognition , vol.44 , Issue.6 , pp. 1245-1261
    • Mao, S.1    Jiao, L.C.2    Xiong, L.3    Gou, S.4
  • 272
    • 84861183555 scopus 로고    scopus 로고
    • Two-level classifier ensembles for credit risk assessment
    • A. I. Marques, V. Garcia, and J. S. Sanchez. Two-level classifier ensembles for credit risk assessment. Expert Systems with Applications, 39(12):10916-10922, 2012.
    • (2012) Expert Systems with Applications , vol.39 , Issue.12 , pp. 10916-10922
    • Marques, A.I.1    Garcia, V.2    Sanchez, J.S.3
  • 274
    • 0033870982 scopus 로고    scopus 로고
    • Improved generalization through explicit optimization of margins
    • L. Mason, P. L. Bartlet, and J. Baxter. Improved generalization through explicit optimization of margins. Machine Learning, 38(3):243-255, 2000.
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 243-255
    • Mason, L.1    Bartlet, P.L.2    Baxter, J.3
  • 276
    • 84867071286 scopus 로고    scopus 로고
    • Effectiveness of error-correcting output codes in multiclass learning problems
    • J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
    • F. Masulli and G. Valentini. Effectiveness of error-correcting output codes in multiclass learning problems. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 107-116. Springer, 2000.
    • (2000) Multiple Classifier Systems , vol.1857 , pp. 107-116
    • Masulli, F.1    Valentini, G.2
  • 279
    • 77953650340 scopus 로고    scopus 로고
    • Information theoretic combination of pattern classifiers
    • J. Meynet and J.-P. Thiran. Information theoretic combination of pattern classifiers. Pattern Recognition, 43(10):3412-3421, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.10 , pp. 3412-3421
    • Meynet, J.1    Thiran, J.-P.2
  • 283
    • 0011763906 scopus 로고    scopus 로고
    • Dynaboost: combining boosted hypotheses in a dynamic way
    • Technical Report IDIAP-RR99-09, IDIAP (Dalle Molle Institute for Perceptual Artificial Intelligence)
    • P. Moerland and E. Mayoraz. Dynaboost: combining boosted hypotheses in a dynamic way. Technical Report IDIAP-RR99-09, IDIAP (Dalle Molle Institute for Perceptual Artificial Intelligence), 1999.
    • (1999)
    • Moerland, P.1    Mayoraz, E.2
  • 286
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • C. Nadeau and Y. Bengio. Inference for the generalization error. Machine Learning, 62:239-281, 2003.
    • (2003) Machine Learning , vol.62 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 288
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • L. Nanni and A. Lumini. An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 36(2, Part 2):3028-3033, 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 291
    • 0010069683 scopus 로고
    • Evaluation of adaptive mixtures of competing experts
    • R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Morgan Kaufmann
    • S. J. Nowlan and G. E. Hinton. Evaluation of adaptive mixtures of competing experts. In: R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3, pp. 774-780. Morgan Kaufmann, 1991.
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 774-780
    • Nowlan, S.J.1    Hinton, G.E.2
  • 292
    • 0037235971 scopus 로고    scopus 로고
    • On the relationship between majority vote accuracy and dependency in multiple classifier systems
    • S.-B. Oh. On the relationship between majority vote accuracy and dependency in multiple classifier systems. Pattern Recognition Letters, 24:359-363, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , pp. 359-363
    • Oh, S.-B.1
  • 293
    • 0012987265 scopus 로고    scopus 로고
    • A genetic algorithm approach for creating neural network ensembles
    • A. J. C. Sharkey, editor, Springer, London
    • D. Opitz and J. Shavlik. A genetic algorithm approach for creating neural network ensembles. In: A. J. C. Sharkey, editor, Combining Artificial Neural Nets, pp. 79-99. Springer, London, 1999.
    • (1999) Combining Artificial Neural Nets , pp. 79-99
    • Opitz, D.1    Shavlik, J.2
  • 295
    • 84944215019 scopus 로고    scopus 로고
    • Input decimation ensembles: decorrelation through dimensionality reduction
    • Cambridge, UK, Lecture Notes in Computer Science, Springer
    • N. Oza and K. Tumer. Input decimation ensembles: decorrelation through dimensionality reduction. In: Proc. 12nd International Workshop on Multiple Classifier Systems, MCS'01, Cambridge, UK. Volume 2096: Lecture Notes in Computer Science, pp. 238-247. Springer, 2001.
    • (2001) Proc. 12nd International Workshop on Multiple Classifier Systems, MCS'01 , vol.2096 , pp. 238-247
    • Oza, N.1    Tumer, K.2
  • 296
    • 35248871180 scopus 로고    scopus 로고
    • Boosting with averaged weight vectors
    • T. Windeatt and F. Roli, editors, Guildford, UK, Lecture Notes in Computer Science, Springer
    • N. C. Oza. Boosting with averaged weight vectors. In: T. Windeatt and F. Roli, editors, Proc. 4rd Int. Workshop on Multiple Classifier Systems (MCS 2003), Guildford, UK. Volume 2709: Lecture Notes in Computer Science, pp. 15-24. Springer, 2003.
    • (2003) Proc. 4rd Int. Workshop on Multiple Classifier Systems (MCS 2003) , vol.2709 , pp. 15-24
    • Oza, N.C.1
  • 297
    • 35348915328 scopus 로고    scopus 로고
    • Classifier ensembles: select real-world applications
    • N. C. Oza and K. Tumer. Classifier ensembles: select real-world applications. Information Fusion, 9(1):4-20, 2008.
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 4-20
    • Oza, N.C.1    Tumer, K.2
  • 298
    • 84873048938 scopus 로고    scopus 로고
    • SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease
    • A. Ozcift. SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease. Journal of Medical Systems, 36(4):2141-2147, 2012.
    • (2012) Journal of Medical Systems , vol.36 , Issue.4 , pp. 2141-2147
    • Ozcift, A.1
  • 299
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • M. Pal. Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1):217-222, 2005.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 300
    • 61849098236 scopus 로고    scopus 로고
    • Pruning an ensemble of classifiers via reinforcement learning
    • I. Partalas, G. Tsoumakas, and I. Vlahavas. Pruning an ensemble of classifiers via reinforcement learning. Neurocomputing, 72:1900-1909, 2009.
    • (2009) Neurocomputing , vol.72 , pp. 1900-1909
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 301
    • 78049528785 scopus 로고    scopus 로고
    • An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
    • I. Partalas, G. Tsoumakas, and I. Vlahavas. An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Machine Learning, 81(3):257-282, 2010.
    • (2010) Machine Learning , vol.81 , Issue.3 , pp. 257-282
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 302
    • 37249057720 scopus 로고    scopus 로고
    • Refining multiple classifier system diversity
    • Technical Report 348, Computer Science Department, University of Exeter, UK
    • D. Partridge andW. Krzanowski. Refining multiple classifier system diversity. Technical Report 348, Computer Science Department, University of Exeter, UK, 2003.
    • (2003)
    • Partridge, D.1    Krzanowski, W.2
  • 303
    • 0031244715 scopus 로고    scopus 로고
    • Software diversity: practical statistics for its measurement and exploitation
    • D. Partridge and W. J. Krzanowski. Software diversity: practical statistics for its measurement and exploitation. Information & Software Technology, 39:707-717, 1997.
    • (1997) Information & Software Technology , vol.39 , pp. 707-717
    • Partridge, D.1    Krzanowski, W.J.2
  • 306
    • 84947609791 scopus 로고    scopus 로고
    • A discussion on the classifier projection space for classifier combining
    • F. Roli and J. Kittler, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
    • E. Pȩkalska, R. P. W. Duin, and M. Skurichina. A discussion on the classifier projection space for classifier combining. In: F. Roli and J. Kittler, editors, Proc. 3rd International Workshop on Multiple Classifier Systems, MCS'02, Cagliari, Italy. Volume 2364: Lecture Notes in Computer Science, pp. 137-148. Springer, 2002.
    • (2002) Proc. 3rd International Workshop on Multiple Classifier Systems, MCS'02 , vol.2364 , pp. 137-148
    • Pȩkalska, E.1    Duin, R.P.W.2    Skurichina, M.3
  • 307
    • 84926396757 scopus 로고    scopus 로고
    • Combining Fisher linear discriminant for dissimilarity representations
    • J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
    • E. Pȩkalska, M. Skurichina, and R. P. W. Duin. Combining Fisher linear discriminant for dissimilarity representations. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 230-239. Springer, 2000.
    • (2000) Multiple Classifier Systems , vol.1857 , pp. 230-239
    • Pȩkalska, E.1    Skurichina, M.2    Duin, R.P.W.3
  • 308
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: a tutorial overview
    • F. Pereira, T. Mitchell, and M. Botvinick. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage, 45(1, Supplement 1):S199-S209, 2009.
    • (2009) NeuroImage , vol.45 , pp. S199-S209
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 309
    • 0346891413 scopus 로고
    • Improving reliability of digital systems by redundancy and adaptation
    • PhD thesis, Electrical Engineering, Stanford University,
    • W. Pierce. Improving reliability of digital systems by redundancy and adaptation. PhD thesis, Electrical Engineering, Stanford University, 1961.
    • (1961)
    • Pierce, W.1
  • 310
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • A. J. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, editors, MIT Press
    • J. Platt. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: A. J. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pp. 61-74. MIT Press, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 311
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar. Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6:21-45, 2006.
    • (2006) IEEE Circuits and Systems Magazine , vol.6 , pp. 21-45
    • Polikar, R.1
  • 312
    • 0036532848 scopus 로고    scopus 로고
    • Decision-level fusion in fingerprint verification
    • S. Prabhakar and A. K. Jain. Decision-level fusion in fingerprint verification. Pattern Recognition, 35(4):861-874, 2002.
    • (2002) Pattern Recognition , vol.35 , Issue.4 , pp. 861-874
    • Prabhakar, S.1    Jain, A.K.2
  • 313
    • 0004042460 scopus 로고
    • PROBEN1-A set of neural network benchmark problems and benchmarking rules
    • Technical Report 21/94, University of Karlsruhe, Karlsruhe, Germany
    • L. Prechelt. PROBEN1-A set of neural network benchmark problems and benchmarking rules. Technical Report 21/94, University of Karlsruhe, Karlsruhe, Germany, 1994.
    • (1994)
    • Prechelt, L.1
  • 314
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • F. Provost and P. Domingos. Tree induction for probability-based ranking. Machine Learning, 52(3):199-215, 2003.
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 199-215
    • Provost, F.1    Domingos, P.2
  • 316
    • 34948906283 scopus 로고    scopus 로고
    • An incremental node embedding technique for error correcting output codes
    • O. Pujol, S. Escalera, and P. Radeva. An incremental node embedding technique for error correcting output codes. Pattern Recognition, 41:713-725, 2008.
    • (2008) Pattern Recognition , vol.41 , pp. 713-725
    • Pujol, O.1    Escalera, S.2    Radeva, P.3
  • 317
    • 33645963453 scopus 로고    scopus 로고
    • Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes
    • O. Pujol, P. Radeva, and J. Vitria. Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(6):1007-1012, 2006.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.6 , pp. 1007-1012
    • Pujol, O.1    Radeva, P.2    Vitria, J.3
  • 320
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 324
    • 33751205340 scopus 로고    scopus 로고
    • Trainable fusion rules. I. Large sample size case
    • Š. Raudys. Trainable fusion rules. I. Large sample size case. Neural Networks, 19(10):1506-1516, 2006.
    • (2006) Neural Networks , vol.19 , Issue.10 , pp. 1506-1516
    • Raudys, S.1
  • 325
    • 33751229918 scopus 로고    scopus 로고
    • Trainable fusion rules. II. Small sample-size effects
    • Š. Raudys. Trainable fusion rules. II. Small sample-size effects. Neural Networks, 19(10):1517-1527, 2006.
    • (2006) Neural Networks , vol.19 , Issue.10 , pp. 1517-1527
    • Raudys, S.1
  • 326
    • 84865207305 scopus 로고    scopus 로고
    • Scalable and efficient multi-label classification for evolving data streams
    • J. Read, A. Bifet, G. Holmes, and B. Pfahringer. Scalable and efficient multi-label classification for evolving data streams. Machine Learning, 88(1-2):243-272, 2012.
    • (2012) Machine Learning , vol.88 , Issue.1-2 , pp. 243-272
    • Read, J.1    Bifet, A.2    Holmes, G.3    Pfahringer, B.4
  • 327
    • 70349303514 scopus 로고    scopus 로고
    • Regularized linear models in stacked generalization
    • J. A. Benediktsson, J. Kittler, and F. Roli, editors, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • G. Reid, S.and Grudic. Regularized linear models in stacked generalization. In:J. A. Benediktsson, J. Kittler, and F. Roli, editors, Multiple Classifier Systems. Volume 5519: Lecture Notes in Computer Science, pp. 112-121. Springer, Berlin, Heidelberg, 2009.
    • (2009) Multiple Classifier Systems. , vol.5519 , pp. 112-121
    • Reid, G.1    Grudic, S.2
  • 328
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian: a posteriori probabilities
    • M. D. Richard and R. P. Lippmann. Neural network classifiers estimate Bayesian: a posteriori probabilities. Neural Computation, 3:461-483, 1991.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 333
    • 58549093526 scopus 로고    scopus 로고
    • Collective-agreement-based pruning of ensembles
    • L. Rokach. Collective-agreement-based pruning of ensembles. Computational Statistics & Data Analysis, 53(4):1015-1026, 2009.
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.4 , pp. 1015-1026
    • Rokach, L.1
  • 334
    • 69449097857 scopus 로고    scopus 로고
    • Taxonomy for characterizing ensemble methods in classification tasks:a review and annotated bibliography
    • L. Rokach. Taxonomy for characterizing ensemble methods in classification tasks:a review and annotated bibliography. Computational Statistics and Data Analysis, 53:4046-4072, 2009.
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 4046-4072
    • Rokach, L.1
  • 336
    • 84956994921 scopus 로고    scopus 로고
    • Methods for designing multiple classifier systems
    • J. Kittler and F. Roli, editors, Cambridge, UK, Lecture Notes in Computer Science, Springer
    • F. Roli, G. Giacinto, and G. Vernazza. Methods for designing multiple classifier systems. In: J. Kittler and F. Roli, editors, Proc. Second International Workshop on Multiple Classifier Systems, Cambridge, UK. Volume 2096: Lecture Notes in Computer Science, pp. 78-87. Springer, 2001.
    • (2001) Proc. Second International Workshop on Multiple Classifier Systems , vol.2096 , pp. 78-87
    • Roli, F.1    Giacinto, G.2    Vernazza, G.3
  • 337
    • 84947583149 scopus 로고    scopus 로고
    • An experimental comparison of classifier fusion rules for multimodal personal identity verification systems
    • F. Roli and J. Kittler, editors, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • F. Roli, J. Kittler, G. Fumera, and D. Muntoni. An experimental comparison of classifier fusion rules for multimodal personal identity verification systems. In: F. Roli and J. Kittler, editors, Multiple Classifier Systems. Volume 2364: Lecture Notes in Computer Science, pp. 325-335. Springer, Berlin, Heidelberg, 2002.
    • (2002) Multiple Classifier Systems. , vol.2364 , pp. 325-335
    • Roli, F.1    Kittler, J.2    Fumera, G.3    Muntoni, D.4
  • 342
    • 37249029075 scopus 로고    scopus 로고
    • Classifier diversity in combined pattern recognition systems
    • PhD thesis, University of Paisley, Scotland, UK
    • D. Ruta. Classifier diversity in combined pattern recognition systems. PhD thesis, University of Paisley, Scotland, UK, 2003.
    • (2003)
    • Ruta, D.1
  • 343
    • 37549008443 scopus 로고    scopus 로고
    • A theoretical analysis of the limits of majority voting errors for multiple classifier systems
    • Technical Report 11, Department of Computing and Information Systems, University of Paisley, December
    • D. Ruta and B. Gabrys. A theoretical analysis of the limits of majority voting errors for multiple classifier systems. Technical Report 11, ISSN 1461-6122, Department of Computing and Information Systems, University of Paisley, December 2000.
    • (2000)
    • Ruta, D.1    Gabrys, B.2
  • 344
    • 24744441752 scopus 로고    scopus 로고
    • Analysis of the correlation between majority voting error and the diversity measures in multiple classifier systems
    • Paisley, Scotland
    • D. Ruta and B. Gabrys. Analysis of the correlation between majority voting error and the diversity measures in multiple classifier systems. In: Proc. SOCO 2001, Paisley, Scotland, 2001.
    • (2001) Proc. SOCO 2001
    • Ruta, D.1    Gabrys, B.2
  • 346
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19):2507-2517, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 347
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: pitfalls to avoid and a recommended approach
    • S. Salzberg. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1:317-328, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-328
    • Salzberg, S.1
  • 348
    • 0002534234 scopus 로고    scopus 로고
    • On comparing classifiers: a critique of current research and methods
    • S. Salzberg. On comparing classifiers: a critique of current research and methods. Data Mining and Knowledge Discovery, 1:1-12, 1999.
    • (1999) Data Mining and Knowledge Discovery , vol.1 , pp. 1-12
    • Salzberg, S.1
  • 349
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks:a survey of some existing methods, and some new results
    • F. Scarselli and A. C. Tsoi. Universal approximation using feedforward neural networks:a survey of some existing methods, and some new results. Neural Networks, 11(1):15-37, 1998.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 15-37
    • Scarselli, F.1    Tsoi, A.C.2
  • 352
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 356
    • 2542488394 scopus 로고    scopus 로고
    • Smooth boosting and learning with malicious noise
    • R. A. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine Learning Research, 4:633-648, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 633-648
    • Servedio, R.A.1
  • 357
    • 80455125337 scopus 로고    scopus 로고
    • Ensemble learning
    • Technical Report RN/11/02, Department of Computer Science, UCL, London
    • M. Sewell. Ensemble learning. Technical Report RN/11/02, Department of Computer Science, UCL, London, 2011.
    • (2011)
    • Sewell, M.1
  • 359
    • 0001644870 scopus 로고
    • Optimizing group judgemental accuracy in the presence of interdependencies
    • L. Shapley and B. Grofman. Optimizing group judgemental accuracy in the presence of interdependencies. Public Choice, 43:329-343, 1984.
    • (1984) Public Choice , vol.43 , pp. 329-343
    • Shapley, L.1    Grofman, B.2
  • 361
    • 84867074502 scopus 로고    scopus 로고
    • The test-and-select approach to ensemble combination
    • J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
    • A. J. C. Sharkey, N. E. Sharkey, U. Gerecke, and G. O. Chandroth. The test-and-select approach to ensemble combination. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 30-44. Springer, 2000.
    • (2000) Multiple Classifier Systems , vol.1857 , pp. 30-44
    • Sharkey, A.J.C.1    Sharkey, N.E.2    Gerecke, U.3    Chandroth, G.O.4
  • 362
    • 33748469875 scopus 로고    scopus 로고
    • MutualBoost learning for selecting Gabor features for face recognition
    • L. Shen and L. Bai. MutualBoost learning for selecting Gabor features for face recognition. Pattern Recognition Letters, 27(15):1758-1767, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.15 , pp. 1758-1767
    • Shen, L.1    Bai, L.2
  • 363
    • 6444238786 scopus 로고    scopus 로고
    • Selected tree classifier combination based on both accuracy and error diversity
    • H. W. Shin and S. Y. Sohn. Selected tree classifier combination based on both accuracy and error diversity. Pattern Recognition, 38(2):191-197, 2005.
    • (2005) Pattern Recognition , vol.38 , Issue.2 , pp. 191-197
    • Shin, H.W.1    Sohn, S.Y.2
  • 366
    • 80052967700 scopus 로고    scopus 로고
    • Design of reject rules for ECOC classification systems
    • P. Simeone, C. Marrocco, and F. Tortorella. Design of reject rules for ECOC classification systems. Pattern Recognition, 45(2):863-875, 2012.
    • (2012) Pattern Recognition , vol.45 , Issue.2 , pp. 863-875
    • Simeone, P.1    Marrocco, C.2    Tortorella, F.3
  • 367
    • 13544267516 scopus 로고    scopus 로고
    • Adynamic classifier selection and combination approach to image region labelling
    • S. Singh and M. Singh. Adynamic classifier selection and combination approach to image region labelling. Signal Processing-Image Communication, 20(3):219-231, 2005.
    • (2005) Signal Processing-Image Communication , vol.20 , Issue.3 , pp. 219-231
    • Singh, S.1    Singh, M.2
  • 369
    • 0004132023 scopus 로고    scopus 로고
    • Stabilizing weak classifiers
    • PhD thesis, Delft University of Technology, Delft, The Netherlands
    • M. Skurichina. Stabilizing weak classifiers. PhD thesis, Delft University of Technology, Delft, The Netherlands, 2001.
    • (2001)
    • Skurichina, M.1
  • 370
    • 77949539217 scopus 로고    scopus 로고
    • Pitfalls of supervised feature selection
    • P. Smialowski, D. Frishman, and S. Kramer. Pitfalls of supervised feature selection. Bioinformatics, 26(3):440-443, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 440-443
    • Smialowski, P.1    Frishman, D.2    Kramer, S.3
  • 371
    • 0029769829 scopus 로고    scopus 로고
    • The pandemonium system of reflective agents
    • F. Smieja. The pandemonium system of reflective agents. IEEE Transactions on Neural Networks, 7:97-106, 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , pp. 97-106
    • Smieja, F.1
  • 372
    • 0036543957 scopus 로고    scopus 로고
    • Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection
    • P. C. Smits. Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. IEEE Transactions on Geoscience and Remote Sensing, 40(4):801-813, 2002.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.4 , pp. 801-813
    • Smits, P.C.1
  • 374
    • 83455221244 scopus 로고    scopus 로고
    • Improving feature selection process resistance to failures caused by curse-of-dimensionality effects
    • P. Somol, J. Grim, J. Novovičová, and P. Pudil. Improving feature selection process resistance to failures caused by curse-of-dimensionality effects. Kybernetika, 47(3):401-425, 2011.
    • (2011) Kybernetika , vol.47 , Issue.3 , pp. 401-425
    • Somol, P.1    Grim, J.2    Novovičová, J.3    Pudil, P.4
  • 375
    • 78149286082 scopus 로고    scopus 로고
    • Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality
    • P. Somol and J. Novovičová. Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(11):1921-1939, 2010.
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.32 , Issue.11 , pp. 1921-1939
    • Somol, P.1    Novovičová, J.2
  • 376
    • 84926401285 scopus 로고    scopus 로고
    • Diversity, margins and non-stationary learning
    • PhD thesis, School of Computer Science, The University of Manchester, UK
    • R. J. Stapenhurst. Diversity, margins and non-stationary learning. PhD thesis, School of Computer Science, The University of Manchester, UK, 2012.
    • (2012)
    • Stapenhurst, R.J.1
  • 377
    • 79957981863 scopus 로고    scopus 로고
    • Rotation of random forests for genomic and proteomic classification problems
    • H. R. Arabnia and Q. N. Tran, editors, Advances in Experimental Medicine and Biology, Springer
    • G. Stiglic, J. J. Rodríguez, and P. Kokol. Rotation of random forests for genomic and proteomic classification problems. In H. R. Arabnia and Q. N. Tran, editors, Software Tools and Algorithms for Biological Systems. Volume 696: Advances in Experimental Medicine and Biology, pp. 211-221. Springer, 2011.
    • (2011) Software Tools and Algorithms for Biological Systems. , vol.696 , pp. 211-221
    • Stiglic, G.1    Rodríguez, J.J.2    Kokol, P.3
  • 379
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • E. K. Tang, P. N. Suganthan, and X. Yao. An analysis of diversity measures. Machine Learning, 65(1):247-271, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 380
    • 33645157313 scopus 로고    scopus 로고
    • Gene selection algorithms for microarray data based on least squares support vector machine
    • E. K. Tang, P. N. Suganthan, and X. Yao. Gene selection algorithms for microarray data based on least squares support vector machine. BMC Bioinformatics, 7(1):95, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 95
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 381
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7):1088-1099, 2006.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 387
    • 0001172625 scopus 로고
    • Note on optimal selection of independent binary-valued features for pattern recognition
    • G. T. Toussaint. Note on optimal selection of independent binary-valued features for pattern recognition. IEEE Transactions on Information Theory, 17:618, 1971.
    • (1971) IEEE Transactions on Information Theory , vol.17 , pp. 618
    • Toussaint, G.T.1
  • 388
    • 0000442861 scopus 로고
    • Combining estimators using non-constant weighting functions
    • G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, MIT Press, Cambridge, MA
    • V. Tresp and M. Taniguchi. Combining estimators using non-constant weighting functions. In: G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7. MIT Press, Cambridge, MA, 1995.
    • (1995) Advances in Neural Information Processing Systems 7.
    • Tresp, V.1    Taniguchi, M.2
  • 389
    • 37649024337 scopus 로고    scopus 로고
    • Search strategies for ensemble feature selection in medical diagnostics
    • Technical report, Trinity College Dublin, Ireland
    • A. Tsymbal, P. Cunnigham, M. Pechenizkiy, and S. Puuronen. Search strategies for ensemble feature selection in medical diagnostics. Technical report, Trinity College Dublin, Ireland, 2003.
    • (2003)
    • Tsymbal, A.1    Cunnigham, P.2    Pechenizkiy, M.3    Puuronen, S.4
  • 390
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • A. Tsymbal, M. Pechenizkiy, and P. Cunningham. Diversity in search strategies for ensemble feature selection. Information Fusion, 6(1):83-98, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 393
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition, 29(2):341-348, 1996.
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 394
    • 0001562581 scopus 로고    scopus 로고
    • Linear and order statistics combiners for pattern classification
    • A. J. C. Sharkey, editor, Springer, London
    • K. Tumer and J. Ghosh. Linear and order statistics combiners for pattern classification. In: A. J. C. Sharkey, editor, Combining Artificial Neural Nets, pp. 127-161. Springer, London, 1999.
    • (1999) Combining Artificial Neural Nets , pp. 127-161
    • Tumer, K.1    Ghosh, J.2
  • 395
    • 0033893813 scopus 로고    scopus 로고
    • Optimal linear combination of neural networks for improving classification performance
    • N. Ueda. Optimal linear combination of neural networks for improving classification performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(2):207-215, 2000.
    • (2000) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.22 , Issue.2 , pp. 207-215
    • Ueda, N.1
  • 396
    • 29144512925 scopus 로고    scopus 로고
    • Ensemble methods based on bias-variance analysis
    • PhD thesis, University of Genova, Genova, Italy
    • G. Valentini. Ensemble methods based on bias-variance analysis. PhD thesis, University of Genova, Genova, Italy, 2003.
    • (2003)
    • Valentini, G.1
  • 398
    • 0034873461 scopus 로고    scopus 로고
    • Multidimensional pattern recognition problems and combining classifiers
    • V. Valev and A. Asaithambi. Multidimensional pattern recognition problems and combining classifiers. Pattern Recognition Letters, 22(12):1291-1297, 2001.
    • (2001) Pattern Recognition Letters , vol.22 , Issue.12 , pp. 1291-1297
    • Valev, V.1    Asaithambi, A.2
  • 401
    • 77956549297 scopus 로고    scopus 로고
    • Discriminative and informative features for biomolecular text mining with ensemble feature selection
    • S.Van Landeghem, T. Abeel,Y. Saeys, andY.Van de Peer. Discriminative and informative features for biomolecular text mining with ensemble feature selection. Bioinformatics (Oxford, England), 26(18):i554-i560, 2010.
    • (2010) Bioinformatics (Oxford, England) , vol.26 , Issue.18 , pp. i554-i560
    • Van Landeghem, S.1    Abeel, T.2    Saeys, Y.3    Van de Peer, Y.4
  • 403
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V. N. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5):988-999, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 404
    • 84878466127 scopus 로고    scopus 로고
    • Majority voting by independent classifiers can increase error rates
    • S. B.Vardeman and M. D. Morris. Majority voting by independent classifiers can increase error rates. The American Statistician, 67(2):94-96, 2013.
    • (2013) The American Statistician , vol.67 , Issue.2 , pp. 94-96
    • Vardeman, S.B.1    Morris, M.D.2
  • 406
    • 0025597157 scopus 로고
    • Neural network classification: a Bayesian interpretation
    • E. A. Wan. Neural network classification: a Bayesian interpretation. IEEE Transactions on Neural Networks, 1(4):303-305, 1990.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.4 , pp. 303-305
    • Wan, E.A.1
  • 407
    • 84155181098 scopus 로고    scopus 로고
    • Two credit scoring models based on dual strategy ensemble trees
    • G.Wang, J. Ma, L. Huang, and K. Xu. Two credit scoring models based on dual strategy ensemble trees. Knowledge-Based Systems, 26:61-68, 2012.
    • (2012) Knowledge-Based Systems , vol.26 , pp. 61-68
    • Wang, G.1    Ma, J.2    Huang, L.3    Xu, K.4
  • 411
    • 33748541473 scopus 로고    scopus 로고
    • Totally corrective boosting algorithms that maximize the margin
    • New York, ACM, ACM International Conference Proceeding Series
    • M.Warmuth, J. Liao, and G. Ratsch. Totally corrective boosting algorithms that maximize the margin. In: Proceedings of the 23rd International Conference on Machine Learning, New York, pp. 1001-1008. ACM, ACM International Conference Proceeding Series, ISBN 1-59593-383-2, 2006.
    • (2006) Proceedings of the 23rd International Conference on Machine Learning , pp. 1001-1008
    • Warmuth, M.1    Liao, J.2    Ratsch, G.3
  • 412
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: a technique for combining boosting and wagging
    • G. I. Webb. MultiBoosting: a technique for combining boosting and wagging. Machine Learning, 40(2):159-196, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 413
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: aggregating one-dependence estimators
    • G. I.Webb, J. Boughton, and Z.Wang. Not so naive Bayes: aggregating one-dependence estimators. Machine Learning, 58(1):5-24, 2005.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.2    Wang, Z.3
  • 414
    • 0040907586 scopus 로고    scopus 로고
    • A fast histogram-based postprocessor that improves posterior probability estimates
    • W.Wei, T. K. Leen, and E. Barnard. A fast histogram-based postprocessor that improves posterior probability estimates. Neural Computation, 11(5):1235-1248, 1999.
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 1235-1248
    • Wei, W.1    Leen, T.K.2    Barnard, E.3
  • 415
    • 10444224738 scopus 로고    scopus 로고
    • Diversity measures for multiple classifier system analysis and design
    • T. Windeatt. Diversity measures for multiple classifier system analysis and design. Information Fusion, 6(1):21-36, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 21-36
    • Windeatt, T.1
  • 417
    • 0037368938 scopus 로고    scopus 로고
    • Coding and decoding strategies for multi-class learning problems
    • T. Windeatt and R. Ghaderi. Coding and decoding strategies for multi-class learning problems. Information fusion, 4:11-21, 2003.
    • (2003) Information fusion , vol.4 , pp. 11-21
    • Windeatt, T.1    Ghaderi, R.2
  • 418
    • 79958833224 scopus 로고    scopus 로고
    • A probabilistic model of classifier competence for dynamic ensemble selection
    • T. Woloszynski and M. Kurzynski. A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recognition, 44(10-11):2656-2668, 2011.
    • (2011) Pattern Recognition , vol.44 , Issue.10-11 , pp. 2656-2668
    • Woloszynski, T.1    Kurzynski, M.2
  • 419
    • 84858073995 scopus 로고    scopus 로고
    • A measure of competence based on random classification for dynamic ensemble selection
    • T. Woloszynski, M. Kurzynski, P. Podsiadlo, and G. W. Stachowiak. A measure of competence based on random classification for dynamic ensemble selection. Information Fusion, 13(3):207-213, 2012.
    • (2012) Information Fusion , vol.13 , Issue.3 , pp. 207-213
    • Woloszynski, T.1    Kurzynski, M.2    Podsiadlo, P.3    Stachowiak, G.W.4
  • 420
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241-260, 1992.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-260
    • Wolpert, D.H.1
  • 423
    • 77950017573 scopus 로고    scopus 로고
    • Sequence-based prediction of protein-protein interactions by means of Rotation Forest and autocorrelation descriptor
    • J.-F. Xia, K. Han, and D.-S. Huang. Sequence-based prediction of protein-protein interactions by means of Rotation Forest and autocorrelation descriptor. Protein and Peptide Letters, 17(1):137-145, 2010.
    • (2010) Protein and Peptide Letters , vol.17 , Issue.1 , pp. 137-145
    • Xia, J.-F.1    Han, K.2    Huang, D.-S.3
  • 424
    • 77958150674 scopus 로고    scopus 로고
    • A dynamic classifier ensemble selection approach for noise data
    • J. Xiao, C. He, X. Jiang, and D. Liu. A dynamic classifier ensemble selection approach for noise data. Information Sciences, 180(18):3402-3421, 2010.
    • (2010) Information Sciences , vol.180 , Issue.18 , pp. 3402-3421
    • Xiao, J.1    He, C.2    Jiang, X.3    Liu, D.4
  • 425
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their application to handwriting recognition
    • L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combining multiple classifiers and their application to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics, 22:418-435, 1992.
    • (1992) IEEE Transactions on Systems, Man, and Cybernetics , vol.22 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 429
    • 0001218846 scopus 로고
    • On the association of attributes in statistics
    • G. U. Yule. On the association of attributes in statistics. Phil. Trans., A, 194:257-319, 1900.
    • (1900) Phil. Trans., A , vol.194 , pp. 257-319
    • Yule, G.U.1
  • 431
    • 84948152666 scopus 로고    scopus 로고
    • Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
    • Springer
    • G. Zenobi and P. Cunningham. Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: Lecture Notes in Computer Science, pp. 576-587. Springer, 2001.
    • (2001) Lecture Notes in Computer Science , pp. 576-587
    • Zenobi, G.1    Cunningham, P.2
  • 432
    • 84879296134 scopus 로고    scopus 로고
    • Reliable classification of vehicle types based on cascade classifier ensembles
    • B. Zhang. Reliable classification of vehicle types based on cascade classifier ensembles. IEEE Transactions on Intelligent Transportation Systems, 14(1):322-332, 2013.
    • (2013) IEEE Transactions on Intelligent Transportation Systems , vol.14 , Issue.1 , pp. 322-332
    • Zhang, B.1
  • 433
    • 79955369093 scopus 로고    scopus 로고
    • Phenotype recognition with combined features and random subspace classifier ensemble
    • B. Zhang and T. D. Pham. Phenotype recognition with combined features and random subspace classifier ensemble. BMC Bioinformatics, 12(128), 2011.
    • (2011) BMC Bioinformatics , vol.12 , Issue.128
    • Zhang, B.1    Pham, T.D.2
  • 434
    • 80052546565 scopus 로고    scopus 로고
    • An experimental study of one- and two-level classifier fusion for different sample sizes
    • C.-X. Zhang and R. P. W. Duin. An experimental study of one- and two-level classifier fusion for different sample sizes. Pattern Recognition Letters, 32(14):1756-1767, 2011.
    • (2011) Pattern Recognition Letters , vol.32 , Issue.14 , pp. 1756-1767
    • Zhang, C.-X.1    Duin, R.P.W.2
  • 435
    • 44449124996 scopus 로고    scopus 로고
    • Rotboost: a technique for combining rotation forest and adaboost
    • C.-X. Zhang and J.-S. Zhang. Rotboost: a technique for combining rotation forest and adaboost. Pattern Recognition Letters, 29(10):1524-1536, 2008.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.10 , pp. 1524-1536
    • Zhang, C.-X.1    Zhang, J.-S.2
  • 436
    • 77956456333 scopus 로고    scopus 로고
    • Sparse ensembles using weighted combination methods based on linear programming
    • L. Zhang andW.-D. Zhou. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognition, 44(1):97-106, 2011.
    • (2011) Pattern Recognition , vol.44 , Issue.1 , pp. 97-106
    • Zhang, L.1    Zhou, W.-D.2
  • 437
    • 71549138167 scopus 로고    scopus 로고
    • An ensemble of classifiers with genetic algorithm based feature selection
    • Z. Zhang and P. Yang. An ensemble of classifiers with genetic algorithm based feature selection. IEEE Intelligent Informatics Bulletin, 9(1):18-24, 2008.
    • (2008) IEEE Intelligent Informatics Bulletin , vol.9 , Issue.1 , pp. 18-24
    • Zhang, Z.1    Yang, P.2
  • 438
    • 84871345229 scopus 로고    scopus 로고
    • Error-correcting output codes based ensemble feature extraction
    • G. Zhong and C.-L. Liu. Error-correcting output codes based ensemble feature extraction. Pattern Recognition, 46(4):1091-1100, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.4 , pp. 1091-1100
    • Zhong, G.1    Liu, C.-L.2
  • 440
    • 77952032494 scopus 로고    scopus 로고
    • Multi-information ensemble diversity
    • N. Gayar, J. Kittler, and F. Roli, editors, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • Z.-H. Zhou and N. Li. Multi-information ensemble diversity. In: N. Gayar, J. Kittler, and F. Roli, editors, Multiple Classifier Systems. Volume 5997: Lecture Notes in Computer Science, pp. 134-144. Springer, Berlin, Heidelberg, 2010.
    • (2010) Multiple Classifier Systems. , vol.5997 , pp. 134-144
    • Zhou, Z.-H.1    Li, N.2
  • 441
    • 49749129552 scopus 로고    scopus 로고
    • Multiclass AdaBoost
    • Technical Report 430, Department of Statistics, University of Michigan
    • J. Zhu, S. Rosset, H. Zou, and T. Hastie. Multiclass AdaBoost. Technical Report 430, Department of Statistics, University of Michigan, 2006.
    • (2006)
    • Zhu, J.1    Rosset, S.2    Zou, H.3    Hastie, T.4
  • 442
    • 67349169203 scopus 로고    scopus 로고
    • Semi-random subspace method for face recognition
    • Y. Zhu, J. Liu, and S. Chen. Semi-random subspace method for face recognition. Image and Vision Computing, 27(9):1358-1370, 2009.
    • (2009) Image and Vision Computing , vol.27 , Issue.9 , pp. 1358-1370
    • Zhu, Y.1    Liu, J.2    Chen, S.3
  • 443
    • 46149138580 scopus 로고
    • A probability model of a committee of classifiers
    • Yu. A. Zuev. A probability model of a committee of classifiers. USSR Comput. Math. Math. Phys., 26(1):170-179, 1987.
    • (1987) USSR Comput. Math. Math. Phys. , vol.26 , Issue.1 , pp. 170-179
    • Zuev, Y.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.