-
1
-
-
77949507309
-
Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
-
T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, and Y. Saeys. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics (Oxford, England), 26(3):392-398, 2010.
-
(2010)
Bioinformatics (Oxford, England)
, vol.26
, Issue.3
, pp. 392-398
-
-
Abeel, T.1
Helleputte, T.2
Van de Peer, Y.3
Dupont, P.4
Saeys, Y.5
-
6
-
-
35248893424
-
Comparison of classifier selection methods for improving committee performance
-
T.Windeatt and F. Roli, editors, Guildford, UK, Lecture Notes in Computer Science, Springer
-
M. Aksela. Comparison of classifier selection methods for improving committee performance. In: T.Windeatt and F. Roli, editors, Proc. 4rd Int.Workshop on Multiple Classifier Systems (MCS 2003), Guildford, UK. Volume 2709: Lecture Notes in Computer Science, pp. 84-93. Springer, 2003.
-
(2003)
Proc. 4rd Int.Workshop on Multiple Classifier Systems (MCS 2003)
, vol.2709
, pp. 84-93
-
-
Aksela, M.1
-
8
-
-
0034875843
-
On combining classifiers using sum and product rules
-
L. A. Alexandre, A. C. Campilho, and M. Kamel. On combining classifiers using sum and product rules. Pattern Recognition Letters, 22(12):1283-1289, 2001.
-
(2001)
Pattern Recognition Letters
, vol.22
, Issue.12
, pp. 1283-1289
-
-
Alexandre, L.A.1
Campilho, A.C.2
Kamel, M.3
-
9
-
-
0033220742
-
Experimental evaluation of expert fusion strategies
-
F. M. Alkoot and J. Kittler. Experimental evaluation of expert fusion strategies. Pattern Recognition Letters, 20:1361-1369, 1999.
-
(1999)
Pattern Recognition Letters
, vol.20
, pp. 1361-1369
-
-
Alkoot, F.M.1
Kittler, J.2
-
11
-
-
0345213569
-
Comparison of statistical and neural classifiers and their applications to optical character recognition and speech classification
-
C. T. Leondes, editor, Neural Network Systems, Academic Press
-
E. Alpaydin. Comparison of statistical and neural classifiers and their applications to optical character recognition and speech classification. In: C. T. Leondes, editor, Image Processing and Pattern Recognition, Volume 5: Neural Network Systems, pp. 61-88. Academic Press, 1998.
-
(1998)
Image Processing and Pattern Recognition
, vol.5
, pp. 61-88
-
-
Alpaydin, E.1
-
13
-
-
22444454855
-
Cascading classifiers
-
E. Alpaydin and C. Kaynak. Cascading classifiers. KYBERNETIKA, 34(4):369-374, 1998.
-
(1998)
KYBERNETIKA
, vol.34
, Issue.4
, pp. 369-374
-
-
Alpaydin, E.1
Kaynak, C.2
-
14
-
-
0033330591
-
Learning error-correcting output codes from data
-
MIT AI Laboratory
-
E. Alpaydin and E. Mayoraz. Learning error-correcting output codes from data. In:Proceedings of ICANN'99, pp. 743-748. MIT AI Laboratory, 1999.
-
(1999)
Proceedings of ICANN'99
, pp. 743-748
-
-
Alpaydin, E.1
Mayoraz, E.2
-
15
-
-
80053146664
-
A noise-based stability evaluation of threshold-based feature selection techniques
-
IEEE Systems, Man, and Cybernetics Society
-
W. Altidor, T. M. Khoshgoftaar, and A. Napolitano. A noise-based stability evaluation of threshold-based feature selection techniques. In: IEEE International Conference on Information Reuse and Integration (IRI), pp. 240-245. IEEE Systems, Man, and Cybernetics Society, 2011.
-
(2011)
IEEE International Conference on Information Reuse and Integration (IRI)
, pp. 240-245
-
-
Altidor, W.1
Khoshgoftaar, T.M.2
Napolitano, A.3
-
16
-
-
25844518769
-
On naive Bayesian fusion of dependent classifiers
-
H. Altinçay. On naive Bayesian fusion of dependent classifiers. Pattern Recognition Letters, 26(15):2463-2473, 2005.
-
(2005)
Pattern Recognition Letters
, vol.26
, Issue.15
, pp. 2463-2473
-
-
Altinçay, H.1
-
19
-
-
80455173720
-
A new gene selection method based on random subspace ensemble for microarray cancer classification
-
M. Loog, L.Wessels, M. J. T. Reinders, and D. Ridder, editors, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
-
G. Armano, C. Chira, and N. Hatami. A new gene selection method based on random subspace ensemble for microarray cancer classification. In: M. Loog, L.Wessels, M. J. T. Reinders, and D. Ridder, editors, Pattern Recognition in Bioinformatics, Volume 7036:Lecture Notes in Computer Science, pp. 191-201. Springer, Berlin, Heidelberg, 2011.
-
(2011)
Pattern Recognition in Bioinformatics
, vol.7036
, pp. 191-201
-
-
Armano, G.1
Chira, C.2
Hatami, N.3
-
20
-
-
0033556929
-
Boosted mixture of experts: an ensemble learning scheme
-
R.Avnimelech and N. Intrator. Boosted mixture of experts: an ensemble learning scheme. Neural Computation, 11(2):483-497, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.2
, pp. 483-497
-
-
Avnimelech, R.1
Intrator, N.2
-
22
-
-
84886567160
-
UCI Machine Learning Repository
-
17 December
-
K. Bache and M. Lichman. UCI Machine Learning Repository, 17 December 2013. http://archive.ics.uci.edu/ml.
-
(2013)
-
-
Bache, K.1
Lichman, M.2
-
23
-
-
84878011646
-
A genetic-based subspace analysis method for improving error-correcting output coding
-
M. A. Bagheri, Q. Gao, and S. Escalera. A genetic-based subspace analysis method for improving error-correcting output coding. Pattern Recognition, 46(10):2830-2839, 2013.
-
(2013)
Pattern Recognition
, vol.46
, Issue.10
, pp. 2830-2839
-
-
Bagheri, M.A.1
Gao, Q.2
Escalera, S.3
-
24
-
-
0017957910
-
A note on distance-weighted k-nearest neighbor rules
-
T. Bailey and A. K. Jain. A note on distance-weighted k-nearest neighbor rules. IEEE Transactions on Systems, Man, and Cybernetics, 8(4):311-313, 1978.
-
(1978)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.8
, Issue.4
, pp. 311-313
-
-
Bailey, T.1
Jain, A.K.2
-
25
-
-
35248848402
-
A new ensemble diversity measure applied to thinning ensembles
-
T. Windeatt and F. Roli, Guildford, UK, Lecture Notes in Computer Science, Springer
-
R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. A new ensemble diversity measure applied to thinning ensembles. In: T. Windeatt and F. Roli, Guildford, UK. Volume 2709: Lecture Notes in Computer Science, pp. 306-316. Springer, 2003.
-
(2003)
, vol.2709
, pp. 306-316
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
27
-
-
85138482187
-
One-pass boosting
-
J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
-
Z. Barutcuoglu, P. Long, and R. Servedio. One-pass boosting. In: J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems (NIPS), Volume 20, pp. 73-80. MIT Press, Cambridge, MA, 2007.
-
(2007)
Advances in Neural Information Processing Systems (NIPS)
, vol.20
, pp. 73-80
-
-
Barutcuoglu, Z.1
Long, P.2
Servedio, R.3
-
28
-
-
0028257732
-
Democracy in neural nets: voting schemes for classification
-
R. Battiti and A. M. Colla. Democracy in neural nets: voting schemes for classification. Neural Networks, 7:691-707, 1994.
-
(1994)
Neural Networks
, vol.7
, pp. 691-707
-
-
Battiti, R.1
Colla, A.M.2
-
29
-
-
0032645080
-
An empirical comparison of voting classification algorithms:bagging, boosting, and variants
-
E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms:bagging, boosting, and variants. Machine Learning, 36:105-142, 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
30
-
-
84856799903
-
Minimal design of error-correcting output codes
-
M. A. Bautista, S. Escalera, X. Baró, P. Radeva, J. Vitriá, and O. Pujol. Minimal design of error-correcting output codes. Pattern Recognition Letters, 33(6):693-702, 2012.
-
(2012)
Pattern Recognition Letters
, vol.33
, Issue.6
, pp. 693-702
-
-
Bautista, M.A.1
Escalera, S.2
Baró, X.3
Radeva, P.4
Vitriá, J.5
Pujol, O.6
-
31
-
-
84877706508
-
On the effect of calibration in classifier combination
-
A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. On the effect of calibration in classifier combination. Applied Intelligence, 38(4):566-585, 2013.
-
(2013)
Applied Intelligence
, vol.38
, Issue.4
, pp. 566-585
-
-
Bella, A.1
Ferri, C.2
Hernández-Orallo, J.3
Ramírez-Quintana, M.J.4
-
32
-
-
84943264962
-
Agnostic boosting
-
David Helmbold and BobWilliamson, editors, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
-
S. Ben-David, P. M. Long, and Y. Mansour. Agnostic boosting. In: David Helmbold and BobWilliamson, editors, Computational Learning Theory. Volume 2111: Lecture Notes in Computer Science, pp. 507-516. Springer, Berlin, Heidelberg, 2001.
-
(2001)
Computational Learning Theory.
, vol.2111
, pp. 507-516
-
-
Ben-David, S.1
Long, P.M.2
Mansour, Y.3
-
33
-
-
77952766987
-
A user's guide to support vector machines
-
Methods in Molecular Biology, Springer
-
A. Ben-Hur and J. Weston. A user's guide to support vector machines. In: Data Mining Techniques for the Life Sciences. Volume 609: Methods in Molecular Biology, pp. 223-239. Springer, 2008.
-
(2008)
Data Mining Techniques for the Life Sciences.
, vol.609
, pp. 223-239
-
-
Ben-Hur, A.1
Weston, J.2
-
34
-
-
0026892150
-
Consensus theoretic classification methods
-
J. A. Benediktsson and P. H. Swain. Consensus theoretic classification methods. IEEE Transactions on Systems, Man, and Cybernetics, 22:688-704, 1992.
-
(1992)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.22
, pp. 688-704
-
-
Benediktsson, J.A.1
Swain, P.H.2
-
35
-
-
0022830747
-
Consensus rules
-
L. N. Kanal and J. F. Lemmer, editors, Elsevier Science Publishers B.V.
-
C. Berenstein, L. N. Kanal, and D. Lavine. Consensus rules. In: L. N. Kanal and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, pp. 27-32. Elsevier Science Publishers B.V., 1986.
-
(1986)
Uncertainty in Artificial Intelligence
, pp. 27-32
-
-
Berenstein, C.1
Kanal, L.N.2
Lavine, D.3
-
37
-
-
76249114776
-
Feature selection combined with random subspace ensemble for gene expression based diagnosis of malignancies
-
B. Apolloni, M. Marinaro, and R. Tagliaferri, editors, Springer
-
A. Bertoni, R. Folgieri, and G. Valentini. Feature selection combined with random subspace ensemble for gene expression based diagnosis of malignancies. In: B. Apolloni, M. Marinaro, and R. Tagliaferri, editors, Biological and Artificial Intelligence Environments, pp. 29-36. Springer, 2005.
-
(2005)
Biological and Artificial Intelligence Environments
, pp. 29-36
-
-
Bertoni, A.1
Folgieri, R.2
Valentini, G.3
-
42
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2):245-271, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.1
Langley, P.2
-
43
-
-
77955453707
-
A fuzzy random forest
-
P. Bonissone, J. M. Cadenas, M. C. Garrido, and R. A. Díaz-Valladares. A fuzzy random forest. International Journal of Approximate Reasoning, 51(7):729-747, 2010.
-
(2010)
International Journal of Approximate Reasoning
, vol.51
, Issue.7
, pp. 729-747
-
-
Bonissone, P.1
Cadenas, J.M.2
Garrido, M.C.3
Díaz-Valladares, R.A.4
-
44
-
-
0020192214
-
A multiplicative formula for aggregating probability assessments
-
R. F. Bordley. A multiplicative formula for aggregating probability assessments. Management Science, 28:1137-1148, 1982.
-
(1982)
Management Science
, vol.28
, pp. 1137-1148
-
-
Bordley, R.F.1
-
46
-
-
0003495934
-
Bagging predictors
-
Technical Report 421, Department of Statistics, University of California, Berkeley, CA,
-
L. Breiman. Bagging predictors. Technical Report 421, Department of Statistics, University of California, Berkeley, CA, 1994.
-
(1994)
-
-
Breiman, L.1
-
47
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 26(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.26
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
48
-
-
0346786584
-
Arcing classifiers
-
L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801-849, 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
49
-
-
0032634129
-
Pasting small votes for classification in large databases and on-line
-
L. Breiman. Pasting small votes for classification in large databases and on-line. Machine Learning, 36:85-103, 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 85-103
-
-
Breiman, L.1
-
50
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
51
-
-
0003802343
-
-
Wadsworth International, Belmont, CA
-
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth International, Belmont, CA, 1984.
-
(1984)
Classification and Regression Trees.
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
53
-
-
77952072972
-
Ensemble learning
-
C. Sammut and G. Webb, editors, Springer
-
G. Brown. Ensemble learning. In: C. Sammut and G. Webb, editors, Encyclopedia of Machine Learning. Springer, 2010.
-
(2010)
Encyclopedia of Machine Learning.
-
-
Brown, G.1
-
54
-
-
77952046540
-
GOOD and BAD diversity in majority vote ensembles
-
Cairo, Egypt, Lecture Notes in Computer Science, Springer
-
G. Brown and L. I. Kuncheva. GOOD and BAD diversity in majority vote ensembles. In: Proc. 9th International Workshop on Multiple Classifier Systems (MCS'10), Cairo, Egypt. Volume 5997: Lecture Notes in Computer Science, pp. 124-133. Springer, 2010.
-
(2010)
Proc. 9th International Workshop on Multiple Classifier Systems (MCS'10)
, vol.5997
, pp. 124-133
-
-
Brown, G.1
Kuncheva, L.I.2
-
55
-
-
84863403768
-
Conditional likelihood maximisation:a unifying framework for information theoretic feature selection
-
G. Brown, A. Pocock, M. Zhao, and M. Lujan. Conditional likelihood maximisation:a unifying framework for information theoretic feature selection. Journal of Machine Learning Research, 13:27-66, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 27-66
-
-
Brown, G.1
Pocock, A.2
Zhao, M.3
Lujan, M.4
-
56
-
-
10444221886
-
Diversity creation methods: a survey and categorisation
-
G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: a survey and categorisation. Information Fusion, 6(1):5-20, 2005.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
57
-
-
0036762743
-
A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps
-
L. Bruzzone and R. Cossu. A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps. IEEE Transactions on Geoscience and Remote Sensing, 40(9):1984-1996, 2002.
-
(2002)
IEEE Transactions on Geoscience and Remote Sensing
, vol.40
, Issue.9
, pp. 1984-1996
-
-
Bruzzone, L.1
Cossu, R.2
-
58
-
-
0242515926
-
Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
-
R. Bryll, R. Gutierrez-Osuna, and F. Quek. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition, 36(6):1291-1302, 2003.
-
(2003)
Pattern Recognition
, vol.36
, Issue.6
, pp. 1291-1302
-
-
Bryll, R.1
Gutierrez-Osuna, R.2
Quek, F.3
-
60
-
-
77953318018
-
Twin boosting: improved feature selection and prediction
-
P. Bühlmann and T. Hothorn. Twin boosting: improved feature selection and prediction. Statistics and Computing, 20(2):119-138, 2010.
-
(2010)
Statistics and Computing
, vol.20
, Issue.2
, pp. 119-138
-
-
Bühlmann, P.1
Hothorn, T.2
-
61
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
62
-
-
33746791981
-
On the impact of fusion strategies on classification errors for large ensembles of classifiers
-
J. B. D. Cabrera. On the impact of fusion strategies on classification errors for large ensembles of classifiers. Pattern Recognition, 39:1963-1978, 2006.
-
(2006)
Pattern Recognition
, vol.39
, pp. 1963-1978
-
-
Cabrera, J.B.D.1
-
63
-
-
79953822842
-
Affect detection: an interdisciplinary review of models, methods, and their applications
-
R. A. Calvo and S. D'Mello. Affect detection: an interdisciplinary review of models, methods, and their applications. IEEE Transactions on Affective Computing, 1(1):18-37, 2010.
-
(2010)
IEEE Transactions on Affective Computing
, vol.1
, Issue.1
, pp. 18-37
-
-
Calvo, R.A.1
D'Mello, S.2
-
64
-
-
33845506212
-
Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles
-
A. M. P. Canuto, M. C. C. Abreu, L. M. Oliveira, J. C. Xavier Jr., and A. de M. Santos. Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles. Pattern Recognition Letters, 28(4):472-486, 2007.
-
(2007)
Pattern Recognition Letters
, vol.28
, Issue.4
, pp. 472-486
-
-
Canuto, A.M.P.1
Abreu, M.C.C.2
Oliveira, L.M.3
Xavier, J.C.4
de, A.5
Santos, M.6
-
66
-
-
0033336136
-
Distributed data mining in credit card fraud detection
-
P. K. Chan,Wei Fan, A. L. Prodromidis, and S. J. Stolfo. Distributed data mining in credit card fraud detection. IEEE Intelligent Systems and their Applications, 14(6):67-74, 1999.
-
(1999)
IEEE Intelligent Systems and their Applications
, vol.14
, Issue.6
, pp. 67-74
-
-
Chan, P.K.1
Fan, W.2
Prodromidis, A.L.3
Stolfo, S.J.4
-
67
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
68
-
-
84947592660
-
Distributed pasting of small votes
-
F. Roli and J. Kittler, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
-
N. V. Chawla, L. O. Hall, K. W. Bowyer, T. E. Moore Jr., and W. P. Kegelmeyer. Distributed pasting of small votes. In F. Roli and J. Kittler, editors, Proc. 3d International Workshop on Multiple Classifier Systems, MCS'02, Cagliari, Italy. Volume 2364: Lecture Notes in Computer Science, pp. 51-62. Springer, 2002.
-
(2002)
Proc. 3d International Workshop on Multiple Classifier Systems, MCS'02
, vol.2364
, pp. 51-62
-
-
Chawla, N.V.1
Hall, L.O.2
Bowyer, K.W.3
Moore, T.E.4
Kegelmeyer, W.P.5
-
69
-
-
9444297357
-
SMOTEBoost: improving prediction of the minority class in boosting
-
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
-
N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. SMOTEBoost: improving prediction of the minority class in boosting. In: Knowledge Discovery in Databases:PKDD 2003. Volume 2838: Lecture Notes in Computer Science, pp. 107-119. Springer, Berlin, Heidelberg, 2003.
-
(2003)
Knowledge Discovery in Databases:PKDD 2003.
, vol.2838
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
71
-
-
0035368916
-
An asymptotic analysis of some expert fusion methods
-
D. Chen and X. Cheng. An asymptotic analysis of some expert fusion methods. Pattern Recognition Letters, 22:901-904, 2001.
-
(2001)
Pattern Recognition Letters
, vol.22
, pp. 901-904
-
-
Chen, D.1
Cheng, X.2
-
72
-
-
0000291808
-
Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification
-
K. Chen, L. Wang, and H. Chi. Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification. International Journal on Pattern Recognition and Artificial Intelligence, 11(3):417-445, 1997.
-
(1997)
International Journal on Pattern Recognition and Artificial Intelligence
, vol.11
, Issue.3
, pp. 417-445
-
-
Chen, K.1
Wang, L.2
Chi, H.3
-
73
-
-
0033115883
-
Pattern recognition with neural networks combined by genetic algorithm
-
S. B. Cho. Pattern recognition with neural networks combined by genetic algorithm. Fuzzy Sets and Systems, 103:339-347, 1999.
-
(1999)
Fuzzy Sets and Systems
, vol.103
, pp. 339-347
-
-
Cho, S.B.1
-
74
-
-
78650797552
-
Asurvey of binary similarity and distance measures
-
S. S. Choi, S. H. Cha, and C. Tappert. Asurvey of binary similarity and distance measures. Journal on Systemics, Cybernetics and Informatics, 8(1):43-48, 2010.
-
(2010)
Journal on Systemics, Cybernetics and Informatics
, vol.8
, Issue.1
, pp. 43-48
-
-
Choi, S.S.1
Cha, S.H.2
Tappert, C.3
-
75
-
-
78649669320
-
Deep big simple neural nets excel on handwritten digit recognition
-
Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. Deep big simple neural nets excel on handwritten digit recognition. Neural Computation, 22:3207-3220, 2010.
-
(2010)
Neural Computation
, vol.22
, pp. 3207-3220
-
-
Ciresan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
78
-
-
0003954942
-
Diversity versus quality in classification ensembles based on feature selection
-
Technical Report TCD-CS-2000-02, Department of Computer Science, Trinity College, Dublin
-
P. Cunningham and J. Carney. Diversity versus quality in classification ensembles based on feature selection. Technical Report TCD-CS-2000-02, Department of Computer Science, Trinity College, Dublin, 2000.
-
(2000)
-
-
Cunningham, P.1
Carney, J.2
-
79
-
-
38449114584
-
Random forests for classification in ecology
-
D. Richard Cutler, Thomas C. Edwards Jr., Karen H. Beard, Adele Cutler, and Kyle T. Hess. Random forests for classification in ecology. Ecology, 88(11):2783-2792, 2007.
-
(2007)
Ecology
, vol.88
, Issue.11
, pp. 2783-2792
-
-
Richard Cutler, D.1
Edwards, T.C.2
Beard, K.H.3
Cutler, A.4
Hess, K.T.5
-
80
-
-
35248857943
-
Polychotomous classification with pairwise classifiers: a new voting principle
-
Guildford, UK, Lecture Notes in Computer Science, Springer
-
F. Cutzu. Polychotomous classification with pairwise classifiers: a new voting principle. In: Proc. 4th International Workshop on Multiple Classifier Systems (MCS 2003), Guildford, UK. Volume 2709: Lecture Notes in Computer Science, pp. 115-124. Springer, 2003.
-
(2003)
Proc. 4th International Workshop on Multiple Classifier Systems (MCS 2003)
, vol.2709
, pp. 115-124
-
-
Cutzu, F.1
-
82
-
-
0018465664
-
A composite classifier system design: concepts and methodology
-
B. V. Dasarathy and B. V. Sheela. A composite classifier system design: concepts and methodology. Proceedings of IEEE, 67:708-713, 1979.
-
(1979)
Proceedings of IEEE
, vol.67
, pp. 708-713
-
-
Dasarathy, B.V.1
Sheela, B.V.2
-
83
-
-
0013326060
-
Feature selection for classification
-
M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis, 1:131-156, 1997.
-
(1997)
Intelligent Data Analysis
, vol.1
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
84
-
-
0003144188
-
Consensus methods as tools for data analysis
-
H. H. Bock, editor, Elsevier Science Publishers B.V. (North Holland)
-
W. H. E. Day. Consensus methods as tools for data analysis. In: H. H. Bock, editor, Classification and Related Methods for Data Analysis, pp. 317-324. Elsevier Science Publishers B.V. (North Holland), 1988.
-
(1988)
Classification and Related Methods for Data Analysis
, pp. 317-324
-
-
Day, W.H.E.1
-
85
-
-
79958004813
-
An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction
-
K. W. De Bock and D. Van den Poel. An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction. Expert Systems with Applications, 38(10):12293-12301, 2011.
-
(2011)
Expert Systems with Applications
, vol.38
, Issue.10
, pp. 12293-12301
-
-
De Bock, K.W.1
Van den Poel, D.2
-
86
-
-
52049116700
-
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns
-
F. De Martino, G. Valente, N. Staeren, J. Ashburner, and R. Goebel a E. Formisano. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage, 43(1):44-58, 2008.
-
(2008)
NeuroImage
, vol.43
, Issue.1
, pp. 44-58
-
-
De Martino, F.1
Valente, G.2
Staeren, N.3
Ashburner, J.4
Goebel, R.5
Formisano, E.6
-
87
-
-
0036833267
-
Plurality voting-based multiple classifier systems: statistically independent with respect to dependent classifiers sets
-
M. Demirekler and H. Altincay. Plurality voting-based multiple classifier systems: statistically independent with respect to dependent classifiers sets. Pattern Recognition, 35:2365-2379, 2002.
-
(2002)
Pattern Recognition
, vol.35
, pp. 2365-2379
-
-
Demirekler, M.1
Altincay, H.2
-
89
-
-
29644438050
-
Statistical comparison of classifiers over multiple data sets
-
J.Demšar. Statistical comparison of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
91
-
-
35048842229
-
Dynamic classifier selection by adaptive k-nearestneighbourhood rule
-
Cambridge, UK, Lecture Notes in Computer Science, Springer
-
L. Didaci and G. Giacinto. Dynamic classifier selection by adaptive k-nearestneighbourhood rule. In: Proceedings of the 5th International Workshop on Multiple Classifier Systems. (MCS'04), Cambridge, UK. Volume 3077: Lecture Notes in Computer Science, pp. 174-183. Springer, 2004.
-
(2004)
Proceedings of the 5th International Workshop on Multiple Classifier Systems. (MCS'04)
, vol.3077
, pp. 174-183
-
-
Didaci, L.1
Giacinto, G.2
-
92
-
-
24044449939
-
A study on the performances of dynamic classifier selection based on local accuracy estimation
-
L. Didaci, G. Giacinto, F. Roli, and G. L. Marcialis. A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recognition, 38(11):2188-2191, 2005.
-
(2005)
Pattern Recognition
, vol.38
, Issue.11
, pp. 2188-2191
-
-
Didaci, L.1
Giacinto, G.2
Roli, F.3
Marcialis, G.L.4
-
93
-
-
0038137313
-
Decision templates for the classification of bioacoustic time series
-
C. Dietrich, G. Palm, and F. Schwenker. Decision templates for the classification of bioacoustic time series. Information Fusion, 4:101-109, 2003.
-
(2003)
Information Fusion
, vol.4
, pp. 101-109
-
-
Dietrich, C.1
Palm, G.2
Schwenker, F.3
-
94
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization
-
T. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization. Machine Learning, 40(2):139-157, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.1
-
95
-
-
80053403826
-
Ensemble methods in machine learning
-
J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
-
T. G. Dietterich. Ensemble methods in machine learning. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 1-15. Springer, 2000.
-
(2000)
Multiple Classifier Systems
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
97
-
-
69549123046
-
Error-correcting output codes: a general method for improving multiclass inductive learning programs
-
AAAI Press
-
T. G. Dietterich and G. Bakiri. Error-correcting output codes: a general method for improving multiclass inductive learning programs. In: Proc. 9th National Conference on Artificial Intelligence, AAAI-91, pp. 572-577. AAAI Press, 1991.
-
(1991)
Proc. 9th National Conference on Artificial Intelligence, AAAI-91
, pp. 572-577
-
-
Dietterich, T.G.1
Bakiri, G.2
-
99
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 7(10):1895-1924, 1998.
-
(1998)
Neural Computation
, vol.7
, Issue.10
, pp. 1895-1924
-
-
Dietterich, T.G.1
-
100
-
-
0005271994
-
Madaboost: a modification of AdaBoost
-
San Francisco, CA, USA, Morgan Kaufmann
-
C. Domingo and O.Watanabe. Madaboost: a modification of AdaBoost. In: Proceedings of the Thirteenth Annual Conference on Computational Learning Theory, COLT '00, San Francisco, CA, USA. pp. 180-189. Morgan Kaufmann, 2000.
-
(2000)
Proceedings of the Thirteenth Annual Conference on Computational Learning Theory, COLT '00
, pp. 180-189
-
-
Domingo, C.1
Watanabe, O.2
-
101
-
-
85172419807
-
Why does bagging work? A Bayesian account and its implications
-
AAAI Press
-
P. Domingos. Why does bagging work? A Bayesian account and its implications. In:Knowledge Discovery and Data Mining, pp. 155-158. AAAI Press, 1997.
-
(1997)
Knowledge Discovery and Data Mining
, pp. 155-158
-
-
Domingos, P.1
-
102
-
-
0012937288
-
A unified bias-variance decomposition and its applications
-
Stanford, CA, Morgan Kaufmann
-
P. Domingos. A unified bias-variance decomposition and its applications. In: Proc. 7th International Conference on Machine Learning, Stanford, CA, pp. 231-238. Morgan Kaufmann, 2000.
-
(2000)
Proc. 7th International Conference on Machine Learning
, pp. 231-238
-
-
Domingos, P.1
-
103
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29:103-130, 1997.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
104
-
-
0001337304
-
Boosting and other ensemble methods
-
H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik. Boosting and other ensemble methods. Neural Computation, 6:1289-1301, 1994.
-
(1994)
Neural Computation
, vol.6
, pp. 1289-1301
-
-
Drucker, H.1
Cortes, C.2
Jackel, L.D.3
LeCun, Y.4
Vapnik, V.5
-
105
-
-
0022101320
-
A review of fuzzy set aggregation connectives
-
D. Dubois and H. Prade. A review of fuzzy set aggregation connectives. Information Sciences, 36:85-121, 1985.
-
(1985)
Information Sciences
, vol.36
, pp. 85-121
-
-
Dubois, D.1
Prade, H.2
-
109
-
-
84867038939
-
Experiments with classifier combination rules
-
J. Kittler and F. Roli, editors, Cagliari, Italy, Springer
-
R. P. W. Duin and D. M. J. Tax. Experiments with classifier combination rules. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857:Lecture Notes in Computer Science, pp. 16-29, Springer, 2000.
-
(2000)
Multiple Classifier Systems
, pp. 16-29
-
-
Duin, R.P.W.1
Tax, D.M.J.2
-
110
-
-
0030145401
-
A note on comparing classifiers
-
R. P. W. Duin. A note on comparing classifiers. Pattern Recognition Letters, 17:529-536, 1996.
-
(1996)
Pattern Recognition Letters
, vol.17
, pp. 529-536
-
-
Duin, R.P.W.1
-
111
-
-
38149049450
-
Solution to instability problems with sequential wrapper-based approaches to feature selection
-
Technical Report TCD-CS-2002-28, Department of Computer Science, Trinity College, Dublin
-
K. Dunne, P. Cunningham, and F. Azuaje. Solution to instability problems with sequential wrapper-based approaches to feature selection. Technical Report TCD-CS-2002-28, Department of Computer Science, Trinity College, Dublin, 2002.
-
(2002)
-
-
Dunne, K.1
Cunningham, P.2
Azuaje, F.3
-
112
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
S. Džeroski and B. Ženko. Is combining classifiers with stacking better than selecting the best one? Machine Learning, 54(3):255-273, 2004.
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 255-273
-
-
Džeroski, S.1
Ženko, B.2
-
113
-
-
0022232712
-
A theoretical basis for the analysis of multiversion software subject to coincident errors
-
D. E. Eckhardt and L. D. Lee. A theoretical basis for the analysis of multiversion software subject to coincident errors. IEEE Transactions on Software Engineering, 11(12):1511-1517, 1985.
-
(1985)
IEEE Transactions on Software Engineering
, vol.11
, Issue.12
, pp. 1511-1517
-
-
Eckhardt, D.E.1
Lee, L.D.2
-
116
-
-
0033220785
-
Sequential selection of discrete features for neural networks-a Bayesian approach to building a cascade
-
M. Egmont-Petersen, W. R. M. Dassen, and J. H. C. Reiber. Sequential selection of discrete features for neural networks-a Bayesian approach to building a cascade. Pattern Recognition Letters, 20(11-13):1439-1448, 1999.
-
(1999)
Pattern Recognition Letters
, vol.20
, Issue.11-13
, pp. 1439-1448
-
-
Egmont-Petersen, M.1
Dassen, W.R.M.2
Reiber, J.H.C.3
-
117
-
-
84945260284
-
How to make AdaBoost.M1 work for weak base classifiers by changing only one line of the code
-
Springer, Lecture Notes in Computer Science
-
G. Eibl and K. P. Pfeiffer. How to make AdaBoost.M1 work for weak base classifiers by changing only one line of the code. In: Proceedings of the 13th European Conference on Machine Learning, ECML '02, pp. 72-83. Springer, Lecture Notes in Computer Science, 2002.
-
(2002)
Proceedings of the 13th European Conference on Machine Learning, ECML '02
, pp. 72-83
-
-
Eibl, G.1
Pfeiffer, K.P.2
-
119
-
-
80053634784
-
Incremental learning of concept drift in nonstationary environments
-
R. Elwell and R. Polikar. Incremental learning of concept drift in nonstationary environments. IEEE Transactions on Neural Networks, 22(10):1517-1531, 2011.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, Issue.10
, pp. 1517-1531
-
-
Elwell, R.1
Polikar, R.2
-
122
-
-
84871533042
-
On the decoding process in ternary errorcorrecting output codes
-
S. Escalera, O. Pujol, and P. Radeva. On the decoding process in ternary errorcorrecting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1):120-134, 2010.
-
(2010)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.32
, Issue.1
, pp. 120-134
-
-
Escalera, S.1
Pujol, O.2
Radeva, P.3
-
123
-
-
43249104670
-
Subclass problemdependent design for error-correcting output codes
-
S. Escalera, D. M. J. Tax, O. Pujol, P. Radeva, and R. P. W. Duin. Subclass problemdependent design for error-correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6):1041-1054, 2008.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, Issue.6
, pp. 1041-1054
-
-
Escalera, S.1
Tax, D.M.J.2
Pujol, O.3
Radeva, P.4
Duin, R.P.W.5
-
124
-
-
0031145187
-
A comparative analysis of methods for pruning decision trees
-
F. Esposito, D. Malerba, and G. Semeraro. A comparative analysis of methods for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):476-491, 1997.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.5
, pp. 476-491
-
-
Esposito, F.1
Malerba, D.2
Semeraro, G.3
-
125
-
-
33750291885
-
MP-Boost: a multiple-pivot boosting algorithm and its application to text categorization
-
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
-
A. Esuli, T. Fagni, and F. Sebastiani. MP-Boost: a multiple-pivot boosting algorithm and its application to text categorization. In: String Processing and Information Retrieval. Volume 4209: Lecture Notes in Computer Science, pp. 1-12. Springer, Berlin, Heidelberg, 2006.
-
(2006)
String Processing and Information Retrieval.
, vol.4209
, pp. 1-12
-
-
Esuli, A.1
Fagni, T.2
Sebastiani, F.3
-
126
-
-
0003578015
-
-
John Wiley and Sons, New York
-
B. Everitt. Cluster Analysis. John Wiley and Sons, New York, 1993.
-
(1993)
Cluster Analysis.
-
-
Everitt, B.1
-
127
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188, 1936.
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
129
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
G. Forman. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3:1289-1305, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1289-1305
-
-
Forman, G.1
-
131
-
-
0035371148
-
An adaptive version of the boost by majority algorithm
-
Y. Freund. An adaptive version of the boost by majority algorithm. Machine Learning, 43(3):293-318, 2001.
-
(2001)
Machine Learning
, vol.43
, Issue.3
, pp. 293-318
-
-
Freund, Y.1
-
132
-
-
77957197521
-
A more robust boosting algorithm
-
eprint arXiv:0905.2138, Statistics -Machine Learning
-
Y. Freund. A more robust boosting algorithm, eprint arXiv:0905.2138, Statistics -Machine Learning, 2009.
-
(2009)
-
-
Freund, Y.1
-
134
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
135
-
-
0001408126
-
Discussion of the paper "Arcing Classifiers" by Leo Breiman
-
Y. Freund and R. E. Schapire. Discussion of the paper "Arcing Classifiers" by Leo Breiman. The Annals of Statistics, 26(3):824-832, 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.3
, pp. 824-832
-
-
Freund, Y.1
Schapire, R.E.2
-
136
-
-
0034164230
-
Additive logistic regression: a statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28(2):337-374, 2000.
-
(2000)
Annals of Statistics
, vol.28
, Issue.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
139
-
-
0031276011
-
Bayesian network classifiers
-
N. Friedman, D. Geiger, and M. Goldszmid. Bayesian network classifiers. Machine Learning, 29(2):131-163, 1997.
-
(1997)
Machine Learning
, vol.29
, Issue.2
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmid, M.3
-
142
-
-
0016758101
-
Cognitron: a self-organizing multilayered neural network
-
K. Fukushima. Cognitron: a self-organizing multilayered neural network. Biological Cybernetics, 20:121-136, 1975.
-
(1975)
Biological Cybernetics
, vol.20
, pp. 121-136
-
-
Fukushima, K.1
-
143
-
-
84926401292
-
Performance analysis and comparison of linear combiners for classifier fusion
-
IEEE Computer Society
-
G. Fumera and F. Roli. Performance analysis and comparison of linear combiners for classifier fusion. In: Proc. 16th International Conference on Pattern Recognition. IEEE Computer Society, 2002.
-
(2002)
Proc. 16th International Conference on Pattern Recognition.
-
-
Fumera, G.1
Roli, F.2
-
144
-
-
35248892506
-
Linear combiners for classifier fusion: some theoretical and experimental results
-
T. Windeatt and F. Roli, editors, Guildford, UK, Lecture Notes in Computer Science, Springer
-
G. Fumera and F. Roli. Linear combiners for classifier fusion: some theoretical and experimental results. In: T. Windeatt and F. Roli, editors, Proc. 4rd Int. Workshop on Multiple Classifier Systems (MCS 2003), Guildford, UK. Volume 2709: Lecture Notes in Computer Science, pp. 74-83. Springer, 2003.
-
(2003)
Proc. 4rd Int. Workshop on Multiple Classifier Systems (MCS 2003)
, vol.2709
, pp. 74-83
-
-
Fumera, G.1
Roli, F.2
-
145
-
-
21244501361
-
A theoretical and experimental analysis of linear combiners for multiple classifier systems
-
G. Fumera and F. Roli. A theoretical and experimental analysis of linear combiners for multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:942-956, 2005.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, pp. 942-956
-
-
Fumera, G.1
Roli, F.2
-
146
-
-
0034541162
-
Cascade generalization
-
J. Gamma and P. Brazdil. Cascade generalization. Machine Learning, 41(3):315-343, 2000.
-
(2000)
Machine Learning
, vol.41
, Issue.3
, pp. 315-343
-
-
Gamma, J.1
Brazdil, P.2
-
147
-
-
58149287952
-
An extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all pairwise comparisons
-
S. García and F. Herrera. An extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all pairwise comparisons. Journal of Machine Learning Research, 9:2677-2694, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2677-2694
-
-
García, S.1
Herrera, F.2
-
148
-
-
84857789335
-
Supervised subspace projections for constructing ensembles of classifiers
-
N. García-Pedrajas, J. Maudes-Raedo, C. García-Osorio, and J. J. Rodríguez-Díez. Supervised subspace projections for constructing ensembles of classifiers. Information Sciences, 193:1-21, 2012.
-
(2012)
Information Sciences
, vol.193
, pp. 1-21
-
-
García-Pedrajas, N.1
Maudes-Raedo, J.2
García-Osorio, C.3
Rodríguez-Díez, J.J.4
-
149
-
-
25144482428
-
Proteomic mass spectra classification using decision tree based ensemble methods
-
P. Geurts, D. deSeny, M. Fillet, M.-A. Meuwis, M. Malaise, M.-P. Merville, and L. Wehenkel. Proteomic mass spectra classification using decision tree based ensemble methods. Bioinformatics, 21(14):3138-3145, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.14
, pp. 3138-3145
-
-
Geurts, P.1
deSeny, D.2
Fillet, M.3
Meuwis, M.-A.4
Malaise, M.5
Merville, M.-P.6
Wehenkel, L.7
-
150
-
-
0003831446
-
-
2nd edition. Prentice Hall, Englewood Cliffs, NJ
-
S. Ghahramani. Fundamentals of Probability, 2nd edition. Prentice Hall, Englewood Cliffs, NJ, 2000.
-
(2000)
Fundamentals of Probability
-
-
Ghahramani, S.1
-
151
-
-
84925487039
-
Multiclassifier systems: back to the future
-
F. Roli and J. Kittler, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
-
J. Ghosh. Multiclassifier systems: back to the future. In: F. Roli and J. Kittler, editors, Proc. 3d InternationalWorkshop on Multiple Classifier Systems, MCS'02, Cagliari, Italy. Volume 2364: Lecture Notes in Computer Science, pp. 1-15. Springer, 2002.
-
(2002)
Proc. 3d InternationalWorkshop on Multiple Classifier Systems, MCS'02
, vol.2364
, pp. 1-15
-
-
Ghosh, J.1
-
152
-
-
78651434307
-
Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods
-
K. Ghosh, Y. S. Ng, and R. Srinivasan. Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods. Computers & Chemical Engineering, 35(2):342-355, 2011.
-
(2011)
Computers & Chemical Engineering
, vol.35
, Issue.2
, pp. 342-355
-
-
Ghosh, K.1
Ng, Y.S.2
Srinivasan, R.3
-
154
-
-
0035202645
-
An approach to the automatic design of multiple classifier systems
-
G. Giacinto and F. Roli. An approach to the automatic design of multiple classifier systems. Pattern Recognition Letters, 22:25-33, 2001.
-
(2001)
Pattern Recognition Letters
, vol.22
, pp. 25-33
-
-
Giacinto, G.1
Roli, F.2
-
155
-
-
0035420134
-
Design of effective neural network ensembles for image classification processes
-
G. Giacinto and F. Roli. Design of effective neural network ensembles for image classification processes. Image Vision and Computing Journal, 19(9-10):699-707, 2001.
-
(2001)
Image Vision and Computing Journal
, vol.19
, Issue.9-10
, pp. 699-707
-
-
Giacinto, G.1
Roli, F.2
-
156
-
-
84994037050
-
Dynamic classifier selection based on multiple classifier behaviour
-
G. Giacinto and F. Roli. Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognition, 34(9):1879-1881, 2001.
-
(2001)
Pattern Recognition
, vol.34
, Issue.9
, pp. 1879-1881
-
-
Giacinto, G.1
Roli, F.2
-
157
-
-
30344471525
-
Random forests for land cover classification
-
P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson. Random forests for land cover classification. Pattern Recognition Letters, 27(4):294-300, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.4
, pp. 294-300
-
-
Gislason, P.O.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
158
-
-
0004241258
-
-
Chapman & Hall /CRC, Boca Raton, FL
-
A. D. Gordon. Classification. Chapman & Hall /CRC, Boca Raton, FL, 1999.
-
(1999)
Classification.
-
-
Gordon, A.D.1
-
160
-
-
84855599605
-
Stream mining: a novel architecture for ensemble-based classification
-
V. Grossi and F. Turini. Stream mining: a novel architecture for ensemble-based classification. Knowledge and Information Systems, 30:247-281, 2012.
-
(2012)
Knowledge and Information Systems
, vol.30
, pp. 247-281
-
-
Grossi, V.1
Turini, F.2
-
161
-
-
0036088194
-
Combining discriminant models with new multi-class SVMs
-
Y. Guermeur. Combining discriminant models with new multi-class SVMs. Pattern Analysis & Applications, 5(2):168-179, 2002.
-
(2002)
Pattern Analysis & Applications
, vol.5
, Issue.2
, pp. 168-179
-
-
Guermeur, Y.1
-
165
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
166
-
-
80053576495
-
Creating and measuring diversity in multiple classifier systems using support vector data description
-
M. S. Haghighi, A. Vahedian, and H. S. Yazdi. Creating and measuring diversity in multiple classifier systems using support vector data description. Applied Soft Computing, 11(8):4931-4942, 2011.
-
(2011)
Applied Soft Computing
, vol.11
, Issue.8
, pp. 4931-4942
-
-
Haghighi, M.S.1
Vahedian, A.2
Yazdi, H.S.3
-
167
-
-
76749092270
-
The WEKA data mining software: an update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.Witten. The WEKA data mining software: an update. SIGKDD Explorations, 11, 2009.
-
(2009)
SIGKDD Explorations
, vol.11
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
168
-
-
14644421528
-
Investigation of the random forest framework for classification of hyperspectral data
-
J. Ham, Y. C. Chen, M. M. Crawford, and J. Ghosh. Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43(3):492-501, 2005.
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.3
, pp. 492-501
-
-
Ham, J.1
Chen, Y.C.2
Crawford, M.M.3
Ghosh, J.4
-
169
-
-
82655173888
-
Remote sensing image classification based on neural network ensemble algorithm
-
M. Han, X. Zhu, and W. Yao. Remote sensing image classification based on neural network ensemble algorithm. Neurocomputing, 78:133-138, 2012.
-
(2012)
Neurocomputing
, vol.78
, pp. 133-138
-
-
Han, M.1
Zhu, X.2
Yao, W.3
-
171
-
-
77951964158
-
Small-sample precision of ROC-related estimates
-
B. Hanczar, J. Hua, C. Sima, J.Weinstein, M. Bittner, and E. R. Dougherty. Small-sample precision of ROC-related estimates. Bioinformatics (Oxford, England), 26(6):822-830, 2010.
-
(2010)
Bioinformatics (Oxford, England)
, vol.26
, Issue.6
, pp. 822-830
-
-
Hanczar, B.1
Hua, J.2
Sima, C.3
Weinstein, J.4
Bittner, M.5
Dougherty, E.R.6
-
173
-
-
33745886270
-
Classifier technology and the illusion of progress (with discussion)
-
D. J. Hand. Classifier technology and the illusion of progress (with discussion). Statistical Science, 21:1-34, 2006.
-
(2006)
Statistical Science
, vol.21
, pp. 1-34
-
-
Hand, D.J.1
-
175
-
-
0031171679
-
Optimal linear combinations of neural networks
-
S. Hashem. Optimal linear combinations of neural networks. Neural Networks, 10(4):599-614, 1997.
-
(1997)
Neural Networks
, vol.10
, Issue.4
, pp. 599-614
-
-
Hashem, S.1
-
176
-
-
0001122278
-
Treating harmful collinearity in neural network ensembles
-
A. J. C. Sharkey, editor, Springer, London
-
S. Hashem. Treating harmful collinearity in neural network ensembles. In: A. J. C. Sharkey, editor, Combining Artificial Neural Nets, pp. 101-125. Springer, London, 1999.
-
(1999)
Combining Artificial Neural Nets
, pp. 101-125
-
-
Hashem, S.1
-
177
-
-
0028742255
-
Optimal linear combinations of neural networks:an overview
-
Orlando, FL, IEEE
-
S. Hashem, B. Schmeiser, and Y. Yih. Optimal linear combinations of neural networks:an overview. In: IEEE International Conference on Neural Networks, Orlando, FL, pp. 1507-1512. IEEE, 1994.
-
(1994)
IEEE International Conference on Neural Networks
, pp. 1507-1512
-
-
Hashem, S.1
Schmeiser, B.2
Yih, Y.3
-
179
-
-
0003684449
-
-
2nd edition. Springer
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Data Mining, Inference, and Prediction, 2nd edition. Springer, 2009.
-
(2009)
The Elements of Statistical Learning. Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
181
-
-
84872492238
-
How large should ensembles of classifiers be?
-
D. Hernandez-Lobato, G. Martinez-Mu noz, and A. Suarez. How large should ensembles of classifiers be? Pattern Recognition, 46(5):1323-1336, 2013.
-
(2013)
Pattern Recognition
, vol.46
, Issue.5
, pp. 1323-1336
-
-
Hernandez-Lobato, D.1
Martinez-Munoz, G.2
Suarez, A.3
-
183
-
-
0011187879
-
Multiple classifier combination: lessons and the next steps
-
A. Kandel and H. Bunke, editors, World Scientific
-
T. K. Ho. Multiple classifier combination: lessons and the next steps. In: A. Kandel and H. Bunke, editors, Hybrid Methods in Pattern Recognition, pp. 171-198. World Scientific, 2002.
-
(2002)
Hybrid Methods in Pattern Recognition
, pp. 171-198
-
-
Ho, T.K.1
-
185
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
R. C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1):63-91, 1993.
-
(1993)
Machine Learning
, vol.11
, Issue.1
, pp. 63-91
-
-
Holte, R.C.1
-
186
-
-
0037410515
-
Double-bagging: combining classifiers by bootstrap aggregation
-
T. Hothorn and B. Lausen. Double-bagging: combining classifiers by bootstrap aggregation. Pattern Recognition, 36(6):1303-1309, 2003.
-
(2003)
Pattern Recognition
, vol.36
, Issue.6
, pp. 1303-1309
-
-
Hothorn, T.1
Lausen, B.2
-
188
-
-
33646142788
-
Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
-
Y.-M. Huang, C.-M. Hung, and H. C. Jiau. Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem. Nonlinear Analysis:Real World Applications, 7:720-747, 2006.
-
(2006)
Nonlinear Analysis:Real World Applications
, vol.7
, pp. 720-747
-
-
Huang, Y.-M.1
Hung, C.-M.2
Jiau, H.C.3
-
189
-
-
85115215265
-
A method of combining multiple classifiers-a neural network approach
-
Jerusalem, Israel, IEEE Computer Society
-
Y. S. Huang and C. Y. Suen. A method of combining multiple classifiers-a neural network approach. In: 12th International Conference on Pattern Recognition, Jerusalem, Israel, pp. 473-475. IEEE Computer Society, 1994.
-
(1994)
12th International Conference on Pattern Recognition
, pp. 473-475
-
-
Huang, Y.S.1
Suen, C.Y.2
-
190
-
-
0029230267
-
A method of combining multiple experts for the recognition of unconstrained handwritten numerals
-
Y. S. Huang and C. Y. Suen. A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:90-93, 1995.
-
(1995)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.17
, pp. 90-93
-
-
Huang, Y.S.1
Suen, C.Y.2
-
191
-
-
57449111248
-
Random survival forests
-
H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer. Random survival forests. Annals of Applied Statistics, 2(3):841-860, 2008.
-
(2008)
Annals of Applied Statistics
, vol.2
, Issue.3
, pp. 841-860
-
-
Ishwaran, H.1
Kogalur, U.B.2
Blackstone, E.H.3
Lauer, M.S.4
-
192
-
-
77951774214
-
Method of classifier selection using the genetic approach
-
K. Jackowski and M.Wozniak. Method of classifier selection using the genetic approach. Expert Systems, 27(2):114-128, 2010.
-
(2010)
Expert Systems
, vol.27
, Issue.2
, pp. 114-128
-
-
Jackowski, K.1
Wozniak, M.2
-
193
-
-
0029372769
-
Methods for combining experts' probability assessments
-
R. A. Jacobs. Methods for combining experts' probability assessments. Neural Computation, 7:867-888, 1995.
-
(1995)
Neural Computation
, vol.7
, pp. 867-888
-
-
Jacobs, R.A.1
-
194
-
-
0001940458
-
Adaptive mixtures of local experts
-
R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3:79-87, 1991.
-
(1991)
Neural Computation
, vol.3
, pp. 79-87
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
196
-
-
0002970573
-
Guest editorial: special issue on artificial neural networks and statistical pattern recognition
-
A. K. Jain and J. Mao. Guest editorial: special issue on artificial neural networks and statistical pattern recognition. IEEE Transactions on Neural Networks, 8(1):1-3, 1997.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.1
, pp. 1-3
-
-
Jain, A.K.1
Mao, J.2
-
197
-
-
70349861745
-
Feature selection for fMRI-based deception detection
-
B. Jin, A. Strasburger, S. Laken, F. A. Kozel, K. Johnson, M. George, and X. Lu. Feature selection for fMRI-based deception detection. BMC Bioinformatics, 10(Suppl 9):S15, 2009.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. S15
-
-
Jin, B.1
Strasburger, A.2
Laken, S.3
Kozel, F.A.4
Johnson, K.5
George, M.6
Lu, X.7
-
199
-
-
0029617280
-
Convergence results for the EM approach to mixtures of experts architectures
-
M. I. Jordan and L. Xu. Convergence results for the EM approach to mixtures of experts architectures. Neural Networks, 8:1409-1431, 1995.
-
(1995)
Neural Networks
, vol.8
, pp. 1409-1431
-
-
Jordan, M.I.1
Xu, L.2
-
202
-
-
84867287964
-
Effective diagnosis of coronary artery disease using the rotation forest ensemble method
-
E. M. Karabulut and T. Ibrikci. Effective diagnosis of coronary artery disease using the rotation forest ensemble method. Journal of Medical systems, 36(5):3011-3018, 2012.
-
(2012)
Journal of Medical systems
, vol.36
, Issue.5
, pp. 3011-3018
-
-
Karabulut, E.M.1
Ibrikci, T.2
-
203
-
-
84875922650
-
An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping
-
T. Kavzoglu and I. Colkesen. An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping. International Journal of Remote Sensing, 34(12):4224-4241, 2013.
-
(2013)
International Journal of Remote Sensing
, vol.34
, Issue.12
, pp. 4224-4241
-
-
Kavzoglu, T.1
Colkesen, I.2
-
204
-
-
82855178868
-
Aweight-adjusted voting algorithm for ensembles of classifiers
-
H. Kim, H. Kim, H. Moon, and H. Ahn. Aweight-adjusted voting algorithm for ensembles of classifiers. Journal of the Korean Statistical Society, 40(4):437-449, 2011.
-
(2011)
Journal of the Korean Statistical Society
, vol.40
, Issue.4
, pp. 437-449
-
-
Kim, H.1
Kim, H.2
Moon, H.3
Ahn, H.4
-
206
-
-
84957023641
-
Relationship of sum and vote fusion strategies
-
F. Roli and J. Kittler, editors, Cambridge, UK, Lecture Notes in Computer Science, Springer
-
J. Kittler and F. M. Alkoot. Relationship of sum and vote fusion strategies. In: F. Roli and J. Kittler, editors, Proc. Second International Workshop on Multiple Classifier Systems, MCS'01, Cambridge, UK. Volume 2096: Lecture Notes in Computer Science, pp. 339-348. Springer, 2001.
-
(2001)
Proc. Second International Workshop on Multiple Classifier Systems, MCS'01
, vol.2096
, pp. 339-348
-
-
Kittler, J.1
Alkoot, F.M.2
-
207
-
-
0032021555
-
On combining classifiers
-
J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3):226-239, 1998.
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.P.W.3
Matas, J.4
-
208
-
-
0031271160
-
Strategies for combining classifiers employing shared and distinct representations
-
J. Kittler, A. Hojjatoleslami, and T.Windeatt. Strategies for combining classifiers employing shared and distinct representations. Pattern Recognition Letters, 18:1373-1377, 1997.
-
(1997)
Pattern Recognition Letters
, vol.18
, pp. 1373-1377
-
-
Kittler, J.1
Hojjatoleslami, A.2
Windeatt, T.3
-
209
-
-
2342463050
-
On nearest-neighbor error-correcting output codes with application to all-pairs multiclass support vector machines
-
A. Klautau, N. Jevtić, and A. Orlitsky. On nearest-neighbor error-correcting output codes with application to all-pairs multiclass support vector machines. Journal of Machine Learning Research, 4:1-15, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 1-15
-
-
Klautau, A.1
Jevtić, N.2
Orlitsky, A.3
-
211
-
-
34147126272
-
Pairwise fusion matrix for combining classifiers
-
A. H. R. Ko, R. Sabourin, A. de Souza Britto Jr., and L. Oliveira. Pairwise fusion matrix for combining classifiers. Pattern Recognition, 40(8):2198-2210, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.8
, pp. 2198-2210
-
-
Ko, A.H.R.1
Sabourin, R.2
de Souza Britto, A.3
Oliveira, L.4
-
213
-
-
0012307201
-
Improving simple Bayes
-
Technical report, Data Mining and Visualization Group, Silicon Graphics Inc, California
-
R. Kohavi, B. Becker, and D. Sommerfield. Improving simple Bayes. Technical report, Data Mining and Visualization Group, Silicon Graphics Inc, California, 1997.
-
(1997)
-
-
Kohavi, R.1
Becker, B.2
Sommerfield, D.3
-
215
-
-
0002872346
-
Bias plus variance decomposition for zero-one loss functions
-
L. Saitta, editor, Morgan Kaufmann
-
R. Kohavi and D. H. Wolpert. Bias plus variance decomposition for zero-one loss functions. In: L. Saitta, editor, Machine Learning: Proc. 13th International Conference, pp. 275-283. Morgan Kaufmann, 1996.
-
(1996)
Machine Learning: Proc. 13th International Conference
, pp. 275-283
-
-
Kohavi, R.1
Wolpert, D.H.2
-
216
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
IJCAI'95, Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
-
R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI'95, pp. 1137-1143. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1995.
-
(1995)
Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2
, pp. 1137-1143
-
-
Kohavi, R.1
-
218
-
-
0027682531
-
Inductive and Bayesian learning in medical diagnosis
-
I. Kononenko. Inductive and Bayesian learning in medical diagnosis. Applied Artificial Intelligence, 7:317-337, 1993.
-
(1993)
Applied Artificial Intelligence
, vol.7
, pp. 317-337
-
-
Kononenko, I.1
-
219
-
-
38149009608
-
Improving stability of feature selection methods
-
Berlin, Heidelberg. CAIP'07, pages 929-936. Springer-Verlag
-
P. Krizek, J. Kittler, and V. Hlavac. Improving stability of feature selection methods. In:Proceedings of the 12th International Conference on Computer Analysis of Images and Patterns, Berlin, Heidelberg. Volume 4673: CAIP'07, pages 929-936. Springer-Verlag, 2007.
-
(2007)
Proceedings of the 12th International Conference on Computer Analysis of Images and Patterns
, vol.4673
-
-
Krizek, P.1
Kittler, J.2
Hlavac, V.3
-
220
-
-
85054435084
-
Neural network ensembles, cross validation and active learning
-
G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, MIT Press, Cambridge, MA
-
A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and active learning. In: G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems. Volume 7, pp. 231-238. MIT Press, Cambridge, MA, 1995.
-
(1995)
Advances in Neural Information Processing Systems.
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
221
-
-
0036080105
-
Hierarchical fusion of multiple classifiers for hyperspectral data analysis
-
S. Kumar, J. Ghosh, and M. M. Crawford. Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Analysis & Applications, 5(2):210-220, 2002.
-
(2002)
Pattern Analysis & Applications
, vol.5
, Issue.2
, pp. 210-220
-
-
Kumar, S.1
Ghosh, J.2
Crawford, M.M.3
-
222
-
-
0346076780
-
'fuzzy' vs 'non-fuzzy' in combining classifiers designed by boosting
-
L. I. Kuncheva. 'fuzzy' vs 'non-fuzzy' in combining classifiers designed by boosting. IEEE Transactions on Fuzzy Systems, 11(6):729-741, 2003.
-
(2003)
IEEE Transactions on Fuzzy Systems
, vol.11
, Issue.6
, pp. 729-741
-
-
Kuncheva, L.I.1
-
224
-
-
9644281038
-
Using diversity measures for generating error-correcting output codes in classifier ensembles
-
L. I. Kuncheva. Using diversity measures for generating error-correcting output codes in classifier ensembles. Pattern Recognition Letters, 26:83-90, 2005.
-
(2005)
Pattern Recognition Letters
, vol.26
, pp. 83-90
-
-
Kuncheva, L.I.1
-
225
-
-
84926396344
-
Choosing parameters for random subspace ensembles for fMRI classification
-
Cairo, Egypt, Springer
-
L. I.Kuncheva and C. O. Plumpton. Choosing parameters for random subspace ensembles for fMRI classification. In: Proc. Proc. Multiple Classifier Systems (MCS'10), Cairo, Egypt, pp. 124-133. Springer, 2010.
-
(2010)
Proc. Proc. Multiple Classifier Systems (MCS'10)
, pp. 124-133
-
-
Kuncheva, L.I.1
Plumpton, C.O.2
-
226
-
-
37249046891
-
An experimental study on rotation forest ensembles
-
Prague, Czech Republic, Lecture Notes in Computer Science, Springer
-
L. I. Kuncheva and J. J. Rodríguez. An experimental study on rotation forest ensembles. In: Proceedings of the 7th International Workshop on Multiple Classifier Systems (MCS'07), Prague, Czech Republic. Volume 4472: Lecture Notes in Computer Science, pp. 459-468. Springer, 2007.
-
(2007)
Proceedings of the 7th International Workshop on Multiple Classifier Systems (MCS'07)
, vol.4472
, pp. 459-468
-
-
Kuncheva, L.I.1
Rodríguez, J.J.2
-
227
-
-
77952293118
-
Classifier ensembles for fMRI data analysis: an experiment
-
L. I. Kuncheva and J. J. Rodríguez. Classifier ensembles for fMRI data analysis: an experiment. Magnetic Resonance Imaging, 28(4):583-593, 2010.
-
(2010)
Magnetic Resonance Imaging
, vol.28
, Issue.4
, pp. 583-593
-
-
Kuncheva, L.I.1
Rodríguez, J.J.2
-
228
-
-
76249085189
-
Random subspace ensembles for fMRI classification
-
L. I. Kuncheva, J. J. Rodríguez, C. O. Plumpton, D. E. J. Linden, and S. J. Johnston. Random subspace ensembles for fMRI classification. IEEE Transactions on Medical Imaging, 29(2):531-542, 2010.
-
(2010)
IEEE Transactions on Medical Imaging
, vol.29
, Issue.2
, pp. 531-542
-
-
Kuncheva, L.I.1
Rodríguez, J.J.2
Plumpton, C.O.3
Linden, D.E.J.4
Johnston, S.J.5
-
229
-
-
84873129280
-
Evaluation of feature ranking ensembles for high-dimensional biomedical data: a case study
-
Brussels, Belgium, IEEE
-
L. I.Kuncheva, C. J. Smith, S.Yasir, C. O. Phillips, and K. E. Lewis. Evaluation of feature ranking ensembles for high-dimensional biomedical data: a case study. In: Proceedings of theWorkshop on Biological Data Mining and its Applications in Healthcare (BioDM), IEEE 12th International Conference on Data Mining, Brussels, Belgium, pp. 49-56. IEEE, 2012.
-
(2012)
Proceedings of theWorkshop on Biological Data Mining and its Applications in Healthcare (BioDM), IEEE 12th International Conference on Data Mining
, pp. 49-56
-
-
Kuncheva, L.I.1
Smith, C.J.2
Yasir, S.3
Phillips, C.O.4
Lewis, K.E.5
-
230
-
-
38249003590
-
Change-glasses approach in pattern recognition
-
L. I. Kuncheva. Change-glasses approach in pattern recognition. Pattern Recognition Letters, 14:619-623, 1993.
-
(1993)
Pattern Recognition Letters
, vol.14
, pp. 619-623
-
-
Kuncheva, L.I.1
-
233
-
-
0035899791
-
Using measures of similarity and inclusion for multiple classifier fusion by decision templates
-
L. I. Kuncheva. Using measures of similarity and inclusion for multiple classifier fusion by decision templates. Fuzzy Sets and Systems, 122(3):401-407, 2001.
-
(2001)
Fuzzy Sets and Systems
, vol.122
, Issue.3
, pp. 401-407
-
-
Kuncheva, L.I.1
-
234
-
-
0036532571
-
Switching between selection and fusion in combining classifiers: an experiment
-
L. I. Kuncheva. Switching between selection and fusion in combining classifiers: an experiment. IEEE Transactions on Systems, Man, and Cybernetics, 32(2):146-156, 2002.
-
(2002)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.32
, Issue.2
, pp. 146-156
-
-
Kuncheva, L.I.1
-
237
-
-
0034830461
-
Decision templates for multiple classifier fusion: an experimental comparison
-
L. I.Kuncheva, J. C. Bezdek, and R. P.W. Duin. Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition, 34(2):299-314, 2001.
-
(2001)
Pattern Recognition
, vol.34
, Issue.2
, pp. 299-314
-
-
Kuncheva, L.I.1
Bezdek, J.C.2
Duin, R.P.W.3
-
240
-
-
34147125588
-
Is independence good for combining classifiers?
-
Barcelona, Spain, IEEE Computer Society
-
L. I. Kuncheva, C. J. Whitaker, C. A. Shipp, and R. P.W. Duin. Is independence good for combining classifiers? In: Proc. 15th International Conference on Pattern Recognition, Barcelona, Spain, Volume 2, pp. 169-171. IEEE Computer Society, 2000.
-
(2000)
Proc. 15th International Conference on Pattern Recognition
, vol.2
, pp. 169-171
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
Shipp, C.A.3
Duin, R.P.W.4
-
241
-
-
0038133019
-
Limits on the majority vote accuracy in classifier fusion
-
L. I. Kuncheva, C. J. Whitaker, C. A. Shipp, and R. P. W. Duin. Limits on the majority vote accuracy in classifier fusion. Pattern Analysis and Applications, 6:22-31, 2003.
-
(2003)
Pattern Analysis and Applications
, vol.6
, pp. 22-31
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
Shipp, C.A.3
Duin, R.P.W.4
-
242
-
-
0027610524
-
Genetic algorithm for feature selection for parallel classifiers
-
L. I.Kuncheva. Genetic algorithm for feature selection for parallel classifiers. Information Processing Letters, 46(4):163-168, 1993.
-
(1993)
Information Processing Letters
, vol.46
, Issue.4
, pp. 163-168
-
-
Kuncheva, L.I.1
-
243
-
-
84873302224
-
A bound on kappa-error diagrams for analysis of classifier ensembles
-
L. I. Kuncheva. A bound on kappa-error diagrams for analysis of classifier ensembles. IEEE Transactions on Knowledge and Data Engineering, 25(3):494-501, 2013.
-
(2013)
IEEE Transactions on Knowledge and Data Engineering
, vol.25
, Issue.3
, pp. 494-501
-
-
Kuncheva, L.I.1
-
245
-
-
0023911719
-
Multiple reading procedures: the performance of diagnostic tests
-
P. A. Lachenbruch. Multiple reading procedures: the performance of diagnostic tests. Statistics in Medicine, 7:549-557, 1988.
-
(1988)
Statistics in Medicine
, vol.7
, pp. 549-557
-
-
Lachenbruch, P.A.1
-
246
-
-
33646258047
-
Random subspace method for multivariate feature selection
-
C. Lai, M. J. T. Reinders, and L. Wessels. Random subspace method for multivariate feature selection. Pattern Recognition Letters, 27(10):1067-1076, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.10
, pp. 1067-1076
-
-
Lai, C.1
Reinders, M.J.T.2
Wessels, L.3
-
247
-
-
84867038166
-
Classifier combinations: implementations and theoretical issues
-
J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
-
L. Lam. Classifier combinations: implementations and theoretical issues. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 78-86. Springer, 2000.
-
(2000)
Multiple Classifier Systems
, vol.1857
, pp. 78-86
-
-
Lam, L.1
-
248
-
-
85115251311
-
A theoretical analysis of the application of majority voting to pattern recognition
-
Jerusalem, Israel, IEEE Computer Society
-
L. Lam and A. Krzyzak. A theoretical analysis of the application of majority voting to pattern recognition. In: 12th International Conference on Pattern Recognition, Jerusalem, Israel, pp. 418-420. IEEE Computer Society, 1994.
-
(1994)
12th International Conference on Pattern Recognition
, pp. 418-420
-
-
Lam, L.1
Krzyzak, A.2
-
249
-
-
0029373189
-
Optimal combination of pattern classifiers
-
L. Lam and C. Y. Suen. Optimal combination of pattern classifiers. Pattern Recognition Letters, 16:945-954, 1995.
-
(1995)
Pattern Recognition Letters
, vol.16
, pp. 945-954
-
-
Lam, L.1
Suen, C.Y.2
-
250
-
-
0031238275
-
Application of majority voting to pattern recognition: an analysis of its behavior and performance
-
L. Lam and C. Y. Suen. Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics, 27(5):553-568, 1997.
-
(1997)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.27
, Issue.5
, pp. 553-568
-
-
Lam, L.1
Suen, C.Y.2
-
251
-
-
85061066913
-
Selection of relevant features in machine learning
-
P. Langley. Selection of relevant features in machine learning. In: Proc. AAAI Fall Symposium on Relevance, pp. 140-144, 1994.
-
(1994)
Proc. AAAI Fall Symposium on Relevance
, pp. 140-144
-
-
Langley, P.1
-
252
-
-
79959753092
-
The changing science of machine learning
-
P. Langley. The changing science of machine learning. Machine Learning, 82:275-279, 2011.
-
(2011)
Machine Learning
, vol.82
, pp. 275-279
-
-
Langley, P.1
-
253
-
-
0026992322
-
An analysis of Bayesian classifiers
-
pages 399-406. AAAI Press, Menlo Park, California
-
P. Langley,W. Iba, and K. Thompson. An analysis of Bayesian classifiers. In: Proceedings of the 10th National Conference on Artificial Intelligence, pages 399-406. AAAI Press, Menlo Park, California, 1992.
-
(1992)
Proceedings of the 10th National Conference on Artificial Intelligence
-
-
Langley, P.1
Iba, W.2
Thompson, K.3
-
254
-
-
84867057507
-
Different ways of weakening decision trees and their impact on classification accuracy of DT combination
-
J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
-
P. Latinne, O. Debeir, and C. Decaestecker. Different ways of weakening decision trees and their impact on classification accuracy of DT combination. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 200-209. Springer, 2000.
-
(2000)
Multiple Classifier Systems
, vol.1857
, pp. 200-209
-
-
Latinne, P.1
Debeir, O.2
Decaestecker, C.3
-
255
-
-
21244433737
-
Adaptive boosting techniques in heterogeneous and spatial databases
-
A. Lazarevic and Z. Obradovic. Adaptive boosting techniques in heterogeneous and spatial databases. Intelligent Data Analysis, 5:1-24, 2001.
-
(2001)
Intelligent Data Analysis
, vol.5
, pp. 1-24
-
-
Lazarevic, A.1
Obradovic, Z.2
-
256
-
-
0022721406
-
Probabilistic and evidential approaches for multisource data analysis
-
T. Lee, J. A. Richards, and P. H. Swain. Probabilistic and evidential approaches for multisource data analysis. IEEE Transactions on Geoscience and Remote Sensing, 25(3):283-293, 1987.
-
(1987)
IEEE Transactions on Geoscience and Remote Sensing
, vol.25
, Issue.3
, pp. 283-293
-
-
Lee, T.1
Richards, J.A.2
Swain, P.H.3
-
257
-
-
0035683536
-
Learning Spatially Localized, Parts-Based Representation
-
IEEE, I-207-I-212
-
Li, S., Hou, X., Zhang, H. & Cheng, Q. Learning Spatially Localized, Parts-Based Representation, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2001, 1, I-207-I-212.
-
(2001)
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
, vol.1
-
-
Li, S.1
Hou, X.2
Zhang, H.3
Cheng, Q.4
-
258
-
-
28244495034
-
Classifiability-based omnivariate decision trees
-
Y. Li, M. Dong, and R. Kothari. Classifiability-based omnivariate decision trees. IEEE Transactions on Neural Networks, 16(6):1547-1560, 2005.
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, Issue.6
, pp. 1547-1560
-
-
Li, Y.1
Dong, M.2
Kothari, R.3
-
259
-
-
0345040873
-
Classification and regression by randomForest
-
A. Liawand M.Wiener. Classification and regression by randomForest.RNews, 2(3):18-22, 2002.
-
(2002)
RNews
, vol.2
, Issue.3
, pp. 18-22
-
-
Liawand, A.1
Wiener, M.2
-
260
-
-
0038667775
-
Performance analysis of pattern classifier combination by plurality voting
-
X. Lin, S. Yacoub, J. Burns, and S. Simske. Performance analysis of pattern classifier combination by plurality voting. Pattern Recognition Letters, 24(12):1795-1969, 2003.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.12
, pp. 1795-1969
-
-
Lin, X.1
Yacoub, S.2
Burns, J.3
Simske, S.4
-
261
-
-
83455176853
-
A systematic discussion of fusion techniques for multi-modal affect recognition tasks
-
ICMI'11, ACM New York, NY, USA
-
F. Lingenfelser, J. Wagner, and E. André. A systematic discussion of fusion techniques for multi-modal affect recognition tasks. In: Proceedings of the 13th International Conference on Multimodal Interfaces, ICMI'11, pp. 19-26. ACM New York, NY, USA, 2011.
-
(2011)
Proceedings of the 13th International Conference on Multimodal Interfaces
, pp. 19-26
-
-
Lingenfelser, F.1
Wagner, J.2
André, E.3
-
262
-
-
0024884032
-
Conceptual modeling of coincident failures in multiversion software
-
B. Littlewood and D. R. Miller. Conceptual modeling of coincident failures in multiversion software. IEEE Transactions on Software Engineering, 15(12):1596-1614, 1989.
-
(1989)
IEEE Transactions on Software Engineering
, vol.15
, Issue.12
, pp. 1596-1614
-
-
Littlewood, B.1
Miller, D.R.2
-
263
-
-
84926401289
-
-
Newport Beach, CA
-
H. Liu, R. Stine, and L. Auslender, editors. Proceedings of the Workshop on Feature Selection for Data Mining, Newport Beach, CA, 2005.
-
(2005)
Proceedings of the Workshop on Feature Selection for Data Mining
-
-
Liu, H.1
Stine, R.2
Auslender, L.3
-
265
-
-
84926401288
-
Estimating, optimizing and combining diversity and performance measures in ensemble creation
-
PhD thesis, Department of Technology, Orebro University
-
T. Löfström. Estimating, optimizing and combining diversity and performance measures in ensemble creation. PhD thesis, Department of Technology, Orebro University, 2008.
-
(2008)
-
-
Löfström, T.1
-
267
-
-
0038724544
-
Boosting and microarray data
-
P. M. Long and V. B. Vega. Boosting and microarray data. Machine Learning, 52:31-44, 2003.
-
(2003)
Machine Learning
, vol.52
, pp. 31-44
-
-
Long, P.M.1
Vega, V.B.2
-
269
-
-
51249194645
-
A logical calculus of the ideas immanent in nervous activity
-
W. S. MacCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.
-
(1943)
Bulletin of Mathematical Biophysics
, vol.5
, pp. 115-133
-
-
MacCulloch, W.S.1
Pitts, W.2
-
270
-
-
79551523991
-
Greedy optimization classifiers ensemble based on diversity
-
S. Mao, L. C. Jiao, L. Xiong, and S. Gou. Greedy optimization classifiers ensemble based on diversity. Pattern Recognition, 44(6):1245-1261, 2011.
-
(2011)
Pattern Recognition
, vol.44
, Issue.6
, pp. 1245-1261
-
-
Mao, S.1
Jiao, L.C.2
Xiong, L.3
Gou, S.4
-
272
-
-
84861183555
-
Two-level classifier ensembles for credit risk assessment
-
A. I. Marques, V. Garcia, and J. S. Sanchez. Two-level classifier ensembles for credit risk assessment. Expert Systems with Applications, 39(12):10916-10922, 2012.
-
(2012)
Expert Systems with Applications
, vol.39
, Issue.12
, pp. 10916-10922
-
-
Marques, A.I.1
Garcia, V.2
Sanchez, J.S.3
-
273
-
-
60349092310
-
An analysis of ensemble pruning techniques based on ordered aggregation
-
G. Martinez-Muñoz, D. Hernandez-Lobato, and A. Suarez. An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):245-259, 2009.
-
(2009)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.31
, Issue.2
, pp. 245-259
-
-
Martinez-Muñoz, G.1
Hernandez-Lobato, D.2
Suarez, A.3
-
274
-
-
0033870982
-
Improved generalization through explicit optimization of margins
-
L. Mason, P. L. Bartlet, and J. Baxter. Improved generalization through explicit optimization of margins. Machine Learning, 38(3):243-255, 2000.
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 243-255
-
-
Mason, L.1
Bartlet, P.L.2
Baxter, J.3
-
276
-
-
84867071286
-
Effectiveness of error-correcting output codes in multiclass learning problems
-
J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
-
F. Masulli and G. Valentini. Effectiveness of error-correcting output codes in multiclass learning problems. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 107-116. Springer, 2000.
-
(2000)
Multiple Classifier Systems
, vol.1857
, pp. 107-116
-
-
Masulli, F.1
Valentini, G.2
-
278
-
-
80053990343
-
Random feature weights for decision tree ensemble construction
-
J. Maudes, J. J. Rodríguez, C. Garcia-Osorio, and N. Garcia-Pedrajas. Random feature weights for decision tree ensemble construction. Information Fusion, 13(1):20-30, 2012.
-
(2012)
Information Fusion
, vol.13
, Issue.1
, pp. 20-30
-
-
Maudes, J.1
Rodríguez, J.J.2
Garcia-Osorio, C.3
Garcia-Pedrajas, N.4
-
279
-
-
77953650340
-
Information theoretic combination of pattern classifiers
-
J. Meynet and J.-P. Thiran. Information theoretic combination of pattern classifiers. Pattern Recognition, 43(10):3412-3421, 2010.
-
(2010)
Pattern Recognition
, vol.43
, Issue.10
, pp. 3412-3421
-
-
Meynet, J.1
Thiran, J.-P.2
-
283
-
-
0011763906
-
Dynaboost: combining boosted hypotheses in a dynamic way
-
Technical Report IDIAP-RR99-09, IDIAP (Dalle Molle Institute for Perceptual Artificial Intelligence)
-
P. Moerland and E. Mayoraz. Dynaboost: combining boosted hypotheses in a dynamic way. Technical Report IDIAP-RR99-09, IDIAP (Dalle Molle Institute for Perceptual Artificial Intelligence), 1999.
-
(1999)
-
-
Moerland, P.1
Mayoraz, E.2
-
286
-
-
0042847140
-
Inference for the generalization error
-
C. Nadeau and Y. Bengio. Inference for the generalization error. Machine Learning, 62:239-281, 2003.
-
(2003)
Machine Learning
, vol.62
, pp. 239-281
-
-
Nadeau, C.1
Bengio, Y.2
-
288
-
-
56349112745
-
An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
-
L. Nanni and A. Lumini. An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 36(2, Part 2):3028-3033, 2009.
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.2
, pp. 3028-3033
-
-
Nanni, L.1
Lumini, A.2
-
289
-
-
84867453089
-
Consensus diagnosis: a simulation study
-
K. C. Ng and B. Abramson. Consensus diagnosis: a simulation study. IEEE Transactions on Systems, Man, and Cybernetics, 22:916-928, 1992.
-
(1992)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.22
, pp. 916-928
-
-
Ng, K.C.1
Abramson, B.2
-
291
-
-
0010069683
-
Evaluation of adaptive mixtures of competing experts
-
R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Morgan Kaufmann
-
S. J. Nowlan and G. E. Hinton. Evaluation of adaptive mixtures of competing experts. In: R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3, pp. 774-780. Morgan Kaufmann, 1991.
-
(1991)
Advances in Neural Information Processing Systems 3
, pp. 774-780
-
-
Nowlan, S.J.1
Hinton, G.E.2
-
292
-
-
0037235971
-
On the relationship between majority vote accuracy and dependency in multiple classifier systems
-
S.-B. Oh. On the relationship between majority vote accuracy and dependency in multiple classifier systems. Pattern Recognition Letters, 24:359-363, 2003.
-
(2003)
Pattern Recognition Letters
, vol.24
, pp. 359-363
-
-
Oh, S.-B.1
-
293
-
-
0012987265
-
A genetic algorithm approach for creating neural network ensembles
-
A. J. C. Sharkey, editor, Springer, London
-
D. Opitz and J. Shavlik. A genetic algorithm approach for creating neural network ensembles. In: A. J. C. Sharkey, editor, Combining Artificial Neural Nets, pp. 79-99. Springer, London, 1999.
-
(1999)
Combining Artificial Neural Nets
, pp. 79-99
-
-
Opitz, D.1
Shavlik, J.2
-
294
-
-
0032596573
-
Feature selection for ensembles
-
Orlando, FL, AAAI Press
-
D. W. Opitz. Feature selection for ensembles. In: Proc. 16th National Conference on Artificial Intelligence, (AAAI), Orlando, FL, pp. 379-384. AAAI Press, 1999.
-
(1999)
Proc. 16th National Conference on Artificial Intelligence, (AAAI)
, pp. 379-384
-
-
Opitz, D.W.1
-
295
-
-
84944215019
-
Input decimation ensembles: decorrelation through dimensionality reduction
-
Cambridge, UK, Lecture Notes in Computer Science, Springer
-
N. Oza and K. Tumer. Input decimation ensembles: decorrelation through dimensionality reduction. In: Proc. 12nd International Workshop on Multiple Classifier Systems, MCS'01, Cambridge, UK. Volume 2096: Lecture Notes in Computer Science, pp. 238-247. Springer, 2001.
-
(2001)
Proc. 12nd International Workshop on Multiple Classifier Systems, MCS'01
, vol.2096
, pp. 238-247
-
-
Oza, N.1
Tumer, K.2
-
296
-
-
35248871180
-
Boosting with averaged weight vectors
-
T. Windeatt and F. Roli, editors, Guildford, UK, Lecture Notes in Computer Science, Springer
-
N. C. Oza. Boosting with averaged weight vectors. In: T. Windeatt and F. Roli, editors, Proc. 4rd Int. Workshop on Multiple Classifier Systems (MCS 2003), Guildford, UK. Volume 2709: Lecture Notes in Computer Science, pp. 15-24. Springer, 2003.
-
(2003)
Proc. 4rd Int. Workshop on Multiple Classifier Systems (MCS 2003)
, vol.2709
, pp. 15-24
-
-
Oza, N.C.1
-
297
-
-
35348915328
-
Classifier ensembles: select real-world applications
-
N. C. Oza and K. Tumer. Classifier ensembles: select real-world applications. Information Fusion, 9(1):4-20, 2008.
-
(2008)
Information Fusion
, vol.9
, Issue.1
, pp. 4-20
-
-
Oza, N.C.1
Tumer, K.2
-
298
-
-
84873048938
-
SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease
-
A. Ozcift. SVM feature selection based rotation forest ensemble classifiers to improve computer-aided diagnosis of Parkinson disease. Journal of Medical Systems, 36(4):2141-2147, 2012.
-
(2012)
Journal of Medical Systems
, vol.36
, Issue.4
, pp. 2141-2147
-
-
Ozcift, A.1
-
299
-
-
13344278660
-
Random forest classifier for remote sensing classification
-
M. Pal. Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1):217-222, 2005.
-
(2005)
International Journal of Remote Sensing
, vol.26
, Issue.1
, pp. 217-222
-
-
Pal, M.1
-
300
-
-
61849098236
-
Pruning an ensemble of classifiers via reinforcement learning
-
I. Partalas, G. Tsoumakas, and I. Vlahavas. Pruning an ensemble of classifiers via reinforcement learning. Neurocomputing, 72:1900-1909, 2009.
-
(2009)
Neurocomputing
, vol.72
, pp. 1900-1909
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
301
-
-
78049528785
-
An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
-
I. Partalas, G. Tsoumakas, and I. Vlahavas. An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Machine Learning, 81(3):257-282, 2010.
-
(2010)
Machine Learning
, vol.81
, Issue.3
, pp. 257-282
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
302
-
-
37249057720
-
Refining multiple classifier system diversity
-
Technical Report 348, Computer Science Department, University of Exeter, UK
-
D. Partridge andW. Krzanowski. Refining multiple classifier system diversity. Technical Report 348, Computer Science Department, University of Exeter, UK, 2003.
-
(2003)
-
-
Partridge, D.1
Krzanowski, W.2
-
303
-
-
0031244715
-
Software diversity: practical statistics for its measurement and exploitation
-
D. Partridge and W. J. Krzanowski. Software diversity: practical statistics for its measurement and exploitation. Information & Software Technology, 39:707-717, 1997.
-
(1997)
Information & Software Technology
, vol.39
, pp. 707-717
-
-
Partridge, D.1
Krzanowski, W.J.2
-
304
-
-
1242263799
-
New results on error correcting output codes of kernel machines
-
A. Passerini, M. Pontil, and P. Frasconi. New results on error correcting output codes of kernel machines. IEEE Transactions on Neural Networks, 15(1):45-54, 2004.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.1
, pp. 45-54
-
-
Passerini, A.1
Pontil, M.2
Frasconi, P.3
-
306
-
-
84947609791
-
A discussion on the classifier projection space for classifier combining
-
F. Roli and J. Kittler, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
-
E. Pȩkalska, R. P. W. Duin, and M. Skurichina. A discussion on the classifier projection space for classifier combining. In: F. Roli and J. Kittler, editors, Proc. 3rd International Workshop on Multiple Classifier Systems, MCS'02, Cagliari, Italy. Volume 2364: Lecture Notes in Computer Science, pp. 137-148. Springer, 2002.
-
(2002)
Proc. 3rd International Workshop on Multiple Classifier Systems, MCS'02
, vol.2364
, pp. 137-148
-
-
Pȩkalska, E.1
Duin, R.P.W.2
Skurichina, M.3
-
307
-
-
84926396757
-
Combining Fisher linear discriminant for dissimilarity representations
-
J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
-
E. Pȩkalska, M. Skurichina, and R. P. W. Duin. Combining Fisher linear discriminant for dissimilarity representations. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 230-239. Springer, 2000.
-
(2000)
Multiple Classifier Systems
, vol.1857
, pp. 230-239
-
-
Pȩkalska, E.1
Skurichina, M.2
Duin, R.P.W.3
-
308
-
-
65549168742
-
Machine learning classifiers and fMRI: a tutorial overview
-
F. Pereira, T. Mitchell, and M. Botvinick. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage, 45(1, Supplement 1):S199-S209, 2009.
-
(2009)
NeuroImage
, vol.45
, pp. S199-S209
-
-
Pereira, F.1
Mitchell, T.2
Botvinick, M.3
-
309
-
-
0346891413
-
Improving reliability of digital systems by redundancy and adaptation
-
PhD thesis, Electrical Engineering, Stanford University,
-
W. Pierce. Improving reliability of digital systems by redundancy and adaptation. PhD thesis, Electrical Engineering, Stanford University, 1961.
-
(1961)
-
-
Pierce, W.1
-
310
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
-
A. J. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, editors, MIT Press
-
J. Platt. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: A. J. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pp. 61-74. MIT Press, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
Platt, J.1
-
311
-
-
33748611921
-
Ensemble based systems in decision making
-
R. Polikar. Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6:21-45, 2006.
-
(2006)
IEEE Circuits and Systems Magazine
, vol.6
, pp. 21-45
-
-
Polikar, R.1
-
312
-
-
0036532848
-
Decision-level fusion in fingerprint verification
-
S. Prabhakar and A. K. Jain. Decision-level fusion in fingerprint verification. Pattern Recognition, 35(4):861-874, 2002.
-
(2002)
Pattern Recognition
, vol.35
, Issue.4
, pp. 861-874
-
-
Prabhakar, S.1
Jain, A.K.2
-
313
-
-
0004042460
-
PROBEN1-A set of neural network benchmark problems and benchmarking rules
-
Technical Report 21/94, University of Karlsruhe, Karlsruhe, Germany
-
L. Prechelt. PROBEN1-A set of neural network benchmark problems and benchmarking rules. Technical Report 21/94, University of Karlsruhe, Karlsruhe, Germany, 1994.
-
(1994)
-
-
Prechelt, L.1
-
314
-
-
0042346121
-
Tree induction for probability-based ranking
-
F. Provost and P. Domingos. Tree induction for probability-based ranking. Machine Learning, 52(3):199-215, 2003.
-
(2003)
Machine Learning
, vol.52
, Issue.3
, pp. 199-215
-
-
Provost, F.1
Domingos, P.2
-
316
-
-
34948906283
-
An incremental node embedding technique for error correcting output codes
-
O. Pujol, S. Escalera, and P. Radeva. An incremental node embedding technique for error correcting output codes. Pattern Recognition, 41:713-725, 2008.
-
(2008)
Pattern Recognition
, vol.41
, pp. 713-725
-
-
Pujol, O.1
Escalera, S.2
Radeva, P.3
-
317
-
-
33645963453
-
Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes
-
O. Pujol, P. Radeva, and J. Vitria. Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(6):1007-1012, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.6
, pp. 1007-1012
-
-
Pujol, O.1
Radeva, P.2
Vitria, J.3
-
318
-
-
84958544572
-
Correlation-based and contextual meritbased ensemble feature selection
-
Lecture Notes in Computer Science, Springer
-
S. Puuronen, A. Tsymbal, and I. Skrypnyk. Correlation-based and contextual meritbased ensemble feature selection. In: Proc. 4th International Conference on Advances in Intelligent Data Analysis, IDA'01, Cascais, Portugal. Volume 2189: Lecture Notes in Computer Science, pp. 135-144. Springer, 2001.
-
(2001)
Proc. 4th International Conference on Advances in Intelligent Data Analysis, IDA'01, Cascais, Portugal.
, vol.2189
, pp. 135-144
-
-
Puuronen, S.1
Tsymbal, A.2
Skrypnyk, I.3
-
319
-
-
0030370417
-
Bagging, boosting and C4.5
-
Cambridge, MA, AAAI Press
-
J. R. Quinlan. Bagging, boosting and C4.5. In: Proc 13rd Int. Conference on Artificial Intelligence AAAI-96, Cambridge, MA, pp. 725-730. AAAI Press, 1996.
-
(1996)
Proc 13rd Int. Conference on Artificial Intelligence AAAI-96
, pp. 725-730
-
-
Quinlan, J.R.1
-
320
-
-
33744584654
-
Induction of decision trees
-
J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
323
-
-
0342502195
-
Soft margins for AdaBoost
-
G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
324
-
-
33751205340
-
Trainable fusion rules. I. Large sample size case
-
Š. Raudys. Trainable fusion rules. I. Large sample size case. Neural Networks, 19(10):1506-1516, 2006.
-
(2006)
Neural Networks
, vol.19
, Issue.10
, pp. 1506-1516
-
-
Raudys, S.1
-
325
-
-
33751229918
-
Trainable fusion rules. II. Small sample-size effects
-
Š. Raudys. Trainable fusion rules. II. Small sample-size effects. Neural Networks, 19(10):1517-1527, 2006.
-
(2006)
Neural Networks
, vol.19
, Issue.10
, pp. 1517-1527
-
-
Raudys, S.1
-
326
-
-
84865207305
-
Scalable and efficient multi-label classification for evolving data streams
-
J. Read, A. Bifet, G. Holmes, and B. Pfahringer. Scalable and efficient multi-label classification for evolving data streams. Machine Learning, 88(1-2):243-272, 2012.
-
(2012)
Machine Learning
, vol.88
, Issue.1-2
, pp. 243-272
-
-
Read, J.1
Bifet, A.2
Holmes, G.3
Pfahringer, B.4
-
327
-
-
70349303514
-
Regularized linear models in stacked generalization
-
J. A. Benediktsson, J. Kittler, and F. Roli, editors, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
-
G. Reid, S.and Grudic. Regularized linear models in stacked generalization. In:J. A. Benediktsson, J. Kittler, and F. Roli, editors, Multiple Classifier Systems. Volume 5519: Lecture Notes in Computer Science, pp. 112-121. Springer, Berlin, Heidelberg, 2009.
-
(2009)
Multiple Classifier Systems.
, vol.5519
, pp. 112-121
-
-
Reid, G.1
Grudic, S.2
-
328
-
-
0001595997
-
Neural network classifiers estimate Bayesian: a posteriori probabilities
-
M. D. Richard and R. P. Lippmann. Neural network classifiers estimate Bayesian: a posteriori probabilities. Neural Computation, 3:461-483, 1991.
-
(1991)
Neural Computation
, vol.3
, pp. 461-483
-
-
Richard, M.D.1
Lippmann, R.P.2
-
331
-
-
33750095186
-
Rotation forest: a new classifier ensemble method
-
J. J. Rodríguez, L. I. Kuncheva, and C. J. Alonso. Rotation forest: a new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1619-1630, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodríguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
332
-
-
71549144943
-
Forests of nested dichotomies
-
J. J. Rodríguez, C. García-Osorio, and J. Maudes. Forests of nested dichotomies. Pattern Recognition Letters, 31(2):125-132, 2010.
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.2
, pp. 125-132
-
-
Rodríguez, J.J.1
García-Osorio, C.2
Maudes, J.3
-
333
-
-
58549093526
-
Collective-agreement-based pruning of ensembles
-
L. Rokach. Collective-agreement-based pruning of ensembles. Computational Statistics & Data Analysis, 53(4):1015-1026, 2009.
-
(2009)
Computational Statistics & Data Analysis
, vol.53
, Issue.4
, pp. 1015-1026
-
-
Rokach, L.1
-
334
-
-
69449097857
-
Taxonomy for characterizing ensemble methods in classification tasks:a review and annotated bibliography
-
L. Rokach. Taxonomy for characterizing ensemble methods in classification tasks:a review and annotated bibliography. Computational Statistics and Data Analysis, 53:4046-4072, 2009.
-
(2009)
Computational Statistics and Data Analysis
, vol.53
, pp. 4046-4072
-
-
Rokach, L.1
-
336
-
-
84956994921
-
Methods for designing multiple classifier systems
-
J. Kittler and F. Roli, editors, Cambridge, UK, Lecture Notes in Computer Science, Springer
-
F. Roli, G. Giacinto, and G. Vernazza. Methods for designing multiple classifier systems. In: J. Kittler and F. Roli, editors, Proc. Second International Workshop on Multiple Classifier Systems, Cambridge, UK. Volume 2096: Lecture Notes in Computer Science, pp. 78-87. Springer, 2001.
-
(2001)
Proc. Second International Workshop on Multiple Classifier Systems
, vol.2096
, pp. 78-87
-
-
Roli, F.1
Giacinto, G.2
Vernazza, G.3
-
337
-
-
84947583149
-
An experimental comparison of classifier fusion rules for multimodal personal identity verification systems
-
F. Roli and J. Kittler, editors, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
-
F. Roli, J. Kittler, G. Fumera, and D. Muntoni. An experimental comparison of classifier fusion rules for multimodal personal identity verification systems. In: F. Roli and J. Kittler, editors, Multiple Classifier Systems. Volume 2364: Lecture Notes in Computer Science, pp. 325-335. Springer, Berlin, Heidelberg, 2002.
-
(2002)
Multiple Classifier Systems.
, vol.2364
, pp. 325-335
-
-
Roli, F.1
Kittler, J.2
Fumera, G.3
Muntoni, D.4
-
338
-
-
84926401286
-
-
Lecture Notes in Computer Science (LNCS). Springer
-
F. Roli, J. Kittler, T. Windeatt, N. Oza, R. Polikar, M. Haindl, J. A. Benediktsson, N. El-Gayar, C. Sansone, and Z. H. Zhou, editors. Proc. of the international Workshops on Multiple Classifier Systems, Lecture Notes in Computer Science (LNCS). Springer, 2000-2013.
-
(2000)
Proc. of the international Workshops on Multiple Classifier Systems
-
-
Roli, F.1
Kittler, J.2
Windeatt, T.3
Oza, N.4
Polikar, R.5
Haindl, M.6
Benediktsson, J.A.7
El-Gayar, N.8
Sansone, C.9
Zhou, Z.H.10
-
339
-
-
1842733197
-
Are loss functions all the same?
-
L. Rosasco, E. De, Vito A. Caponnetto, M. Piana, and A. Verri. Are loss functions all the same? Neural Computation, 15:1063-1076, 2004.
-
(2004)
Neural Computation
, vol.15
, pp. 1063-1076
-
-
Rosasco, L.1
De, E.2
Caponnetto, V.A.3
Piana, M.4
Verri, A.5
-
341
-
-
0025670892
-
The multilayer perceptron as an approximation to a Bayes optimal discriminant function
-
D. W. Ruck, S. K. Rojers, M. Kabrisky, M. E. Oxley, and B. W. Suter. The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Transactions on Neural Networks, 1(4):296-298, 1990.
-
(1990)
IEEE Transactions on Neural Networks
, vol.1
, Issue.4
, pp. 296-298
-
-
Ruck, D.W.1
Rojers, S.K.2
Kabrisky, M.3
Oxley, M.E.4
Suter, B.W.5
-
342
-
-
37249029075
-
Classifier diversity in combined pattern recognition systems
-
PhD thesis, University of Paisley, Scotland, UK
-
D. Ruta. Classifier diversity in combined pattern recognition systems. PhD thesis, University of Paisley, Scotland, UK, 2003.
-
(2003)
-
-
Ruta, D.1
-
343
-
-
37549008443
-
A theoretical analysis of the limits of majority voting errors for multiple classifier systems
-
Technical Report 11, Department of Computing and Information Systems, University of Paisley, December
-
D. Ruta and B. Gabrys. A theoretical analysis of the limits of majority voting errors for multiple classifier systems. Technical Report 11, ISSN 1461-6122, Department of Computing and Information Systems, University of Paisley, December 2000.
-
(2000)
-
-
Ruta, D.1
Gabrys, B.2
-
344
-
-
24744441752
-
Analysis of the correlation between majority voting error and the diversity measures in multiple classifier systems
-
Paisley, Scotland
-
D. Ruta and B. Gabrys. Analysis of the correlation between majority voting error and the diversity measures in multiple classifier systems. In: Proc. SOCO 2001, Paisley, Scotland, 2001.
-
(2001)
Proc. SOCO 2001
-
-
Ruta, D.1
Gabrys, B.2
-
346
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19):2507-2517, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
347
-
-
27144463192
-
On comparing classifiers: pitfalls to avoid and a recommended approach
-
S. Salzberg. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1:317-328, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 317-328
-
-
Salzberg, S.1
-
348
-
-
0002534234
-
On comparing classifiers: a critique of current research and methods
-
S. Salzberg. On comparing classifiers: a critique of current research and methods. Data Mining and Knowledge Discovery, 1:1-12, 1999.
-
(1999)
Data Mining and Knowledge Discovery
, vol.1
, pp. 1-12
-
-
Salzberg, S.1
-
349
-
-
0345195977
-
Universal approximation using feedforward neural networks:a survey of some existing methods, and some new results
-
F. Scarselli and A. C. Tsoi. Universal approximation using feedforward neural networks:a survey of some existing methods, and some new results. Neural Networks, 11(1):15-37, 1998.
-
(1998)
Neural Networks
, vol.11
, Issue.1
, pp. 15-37
-
-
Scarselli, F.1
Tsoi, A.C.2
-
352
-
-
0032280519
-
Boosting the margin: a new explanation for the effectiveness of voting methods
-
R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
354
-
-
72949118881
-
RUSBoost: a hybrid approach to alleviating class imbalance
-
C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano. RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics Part A, 40(1):185-197, 2010.
-
(2010)
IEEE Transactions on Systems, Man, and Cybernetics Part A
, vol.40
, Issue.1
, pp. 185-197
-
-
Seiffert, C.1
Khoshgoftaar, T.M.2
Van Hulse, J.3
Napolitano, A.4
-
356
-
-
2542488394
-
Smooth boosting and learning with malicious noise
-
R. A. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine Learning Research, 4:633-648, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 633-648
-
-
Servedio, R.A.1
-
357
-
-
80455125337
-
Ensemble learning
-
Technical Report RN/11/02, Department of Computer Science, UCL, London
-
M. Sewell. Ensemble learning. Technical Report RN/11/02, Department of Computer Science, UCL, London, 2011.
-
(2011)
-
-
Sewell, M.1
-
359
-
-
0001644870
-
Optimizing group judgemental accuracy in the presence of interdependencies
-
L. Shapley and B. Grofman. Optimizing group judgemental accuracy in the presence of interdependencies. Public Choice, 43:329-343, 1984.
-
(1984)
Public Choice
, vol.43
, pp. 329-343
-
-
Shapley, L.1
Grofman, B.2
-
361
-
-
84867074502
-
The test-and-select approach to ensemble combination
-
J. Kittler and F. Roli, editors, Cagliari, Italy, Lecture Notes in Computer Science, Springer
-
A. J. C. Sharkey, N. E. Sharkey, U. Gerecke, and G. O. Chandroth. The test-and-select approach to ensemble combination. In: J. Kittler and F. Roli, editors, Multiple Classifier Systems, Cagliari, Italy. Volume 1857: Lecture Notes in Computer Science, pp. 30-44. Springer, 2000.
-
(2000)
Multiple Classifier Systems
, vol.1857
, pp. 30-44
-
-
Sharkey, A.J.C.1
Sharkey, N.E.2
Gerecke, U.3
Chandroth, G.O.4
-
362
-
-
33748469875
-
MutualBoost learning for selecting Gabor features for face recognition
-
L. Shen and L. Bai. MutualBoost learning for selecting Gabor features for face recognition. Pattern Recognition Letters, 27(15):1758-1767, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.15
, pp. 1758-1767
-
-
Shen, L.1
Bai, L.2
-
363
-
-
6444238786
-
Selected tree classifier combination based on both accuracy and error diversity
-
H. W. Shin and S. Y. Sohn. Selected tree classifier combination based on both accuracy and error diversity. Pattern Recognition, 38(2):191-197, 2005.
-
(2005)
Pattern Recognition
, vol.38
, Issue.2
, pp. 191-197
-
-
Shin, H.W.1
Sohn, S.Y.2
-
364
-
-
80052878786
-
Real-time human pose recognition in parts from single depth images
-
IEEE
-
J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-time human pose recognition in parts from single depth images. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1297-1304. IEEE, 2011.
-
(2011)
Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1297-1304
-
-
Shotton, J.1
Fitzgibbon, A.2
Cook, M.3
Sharp, T.4
Finocchio, M.5
Moore, R.6
Kipman, A.7
Blake, A.8
-
365
-
-
25144463615
-
Impact of error estimation on feature selection
-
C. Sima, S. Attor, U. Brag-Neto, J. Lowey, E. Suh, and E. R. Dougherty. Impact of error estimation on feature selection. Pattern Recognition, 38:2472-2482, 2005.
-
(2005)
Pattern Recognition
, vol.38
, pp. 2472-2482
-
-
Sima, C.1
Attor, S.2
Brag-Neto, U.3
Lowey, J.4
Suh, E.5
Dougherty, E.R.6
-
366
-
-
80052967700
-
Design of reject rules for ECOC classification systems
-
P. Simeone, C. Marrocco, and F. Tortorella. Design of reject rules for ECOC classification systems. Pattern Recognition, 45(2):863-875, 2012.
-
(2012)
Pattern Recognition
, vol.45
, Issue.2
, pp. 863-875
-
-
Simeone, P.1
Marrocco, C.2
Tortorella, F.3
-
367
-
-
13544267516
-
Adynamic classifier selection and combination approach to image region labelling
-
S. Singh and M. Singh. Adynamic classifier selection and combination approach to image region labelling. Signal Processing-Image Communication, 20(3):219-231, 2005.
-
(2005)
Signal Processing-Image Communication
, vol.20
, Issue.3
, pp. 219-231
-
-
Singh, S.1
Singh, M.2
-
369
-
-
0004132023
-
Stabilizing weak classifiers
-
PhD thesis, Delft University of Technology, Delft, The Netherlands
-
M. Skurichina. Stabilizing weak classifiers. PhD thesis, Delft University of Technology, Delft, The Netherlands, 2001.
-
(2001)
-
-
Skurichina, M.1
-
370
-
-
77949539217
-
Pitfalls of supervised feature selection
-
P. Smialowski, D. Frishman, and S. Kramer. Pitfalls of supervised feature selection. Bioinformatics, 26(3):440-443, 2010.
-
(2010)
Bioinformatics
, vol.26
, Issue.3
, pp. 440-443
-
-
Smialowski, P.1
Frishman, D.2
Kramer, S.3
-
371
-
-
0029769829
-
The pandemonium system of reflective agents
-
F. Smieja. The pandemonium system of reflective agents. IEEE Transactions on Neural Networks, 7:97-106, 1996.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, pp. 97-106
-
-
Smieja, F.1
-
372
-
-
0036543957
-
Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection
-
P. C. Smits. Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. IEEE Transactions on Geoscience and Remote Sensing, 40(4):801-813, 2002.
-
(2002)
IEEE Transactions on Geoscience and Remote Sensing
, vol.40
, Issue.4
, pp. 801-813
-
-
Smits, P.C.1
-
374
-
-
83455221244
-
Improving feature selection process resistance to failures caused by curse-of-dimensionality effects
-
P. Somol, J. Grim, J. Novovičová, and P. Pudil. Improving feature selection process resistance to failures caused by curse-of-dimensionality effects. Kybernetika, 47(3):401-425, 2011.
-
(2011)
Kybernetika
, vol.47
, Issue.3
, pp. 401-425
-
-
Somol, P.1
Grim, J.2
Novovičová, J.3
Pudil, P.4
-
375
-
-
78149286082
-
Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality
-
P. Somol and J. Novovičová. Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(11):1921-1939, 2010.
-
(2010)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.32
, Issue.11
, pp. 1921-1939
-
-
Somol, P.1
Novovičová, J.2
-
376
-
-
84926401285
-
Diversity, margins and non-stationary learning
-
PhD thesis, School of Computer Science, The University of Manchester, UK
-
R. J. Stapenhurst. Diversity, margins and non-stationary learning. PhD thesis, School of Computer Science, The University of Manchester, UK, 2012.
-
(2012)
-
-
Stapenhurst, R.J.1
-
377
-
-
79957981863
-
Rotation of random forests for genomic and proteomic classification problems
-
H. R. Arabnia and Q. N. Tran, editors, Advances in Experimental Medicine and Biology, Springer
-
G. Stiglic, J. J. Rodríguez, and P. Kokol. Rotation of random forests for genomic and proteomic classification problems. In H. R. Arabnia and Q. N. Tran, editors, Software Tools and Algorithms for Biological Systems. Volume 696: Advances in Experimental Medicine and Biology, pp. 211-221. Springer, 2011.
-
(2011)
Software Tools and Algorithms for Biological Systems.
, vol.696
, pp. 211-221
-
-
Stiglic, G.1
Rodríguez, J.J.2
Kokol, P.3
-
378
-
-
0345548657
-
Random forest: a classification and regression tool for compound classification and QSAR modeling
-
V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P. Feuston. Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences, 43(6):1947-1958, 2003.
-
(2003)
Journal of Chemical Information and Computer Sciences
, vol.43
, Issue.6
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
379
-
-
33749018252
-
An analysis of diversity measures
-
E. K. Tang, P. N. Suganthan, and X. Yao. An analysis of diversity measures. Machine Learning, 65(1):247-271, 2006.
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 247-271
-
-
Tang, E.K.1
Suganthan, P.N.2
Yao, X.3
-
380
-
-
33645157313
-
Gene selection algorithms for microarray data based on least squares support vector machine
-
E. K. Tang, P. N. Suganthan, and X. Yao. Gene selection algorithms for microarray data based on least squares support vector machine. BMC Bioinformatics, 7(1):95, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 95
-
-
Tang, E.K.1
Suganthan, P.N.2
Yao, X.3
-
381
-
-
33746424489
-
Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
-
D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7):1088-1099, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.7
, pp. 1088-1099
-
-
Tao, D.1
Tang, X.2
Li, X.3
Wu, X.4
-
383
-
-
0033713738
-
Combining multiple classifier by averaging or multiplying?
-
D. M. J. Tax, M. van Breukelen, R. P. W. Duin, and J. Kittler. Combining multiple classifier by averaging or multiplying? Pattern Recognition, 33:1475-1485, 2000.
-
(2000)
Pattern Recognition
, vol.33
, pp. 1475-1485
-
-
Tax, D.M.J.1
van Breukelen, M.2
Duin, R.P.W.3
Kittler, J.4
-
385
-
-
0001415299
-
Comparison of discrimination techniques applied to a complex data set of head injured patients
-
D. M. Titterington, G. D. Murray, L. S. Murray, D. J. Spiegelhalter, A. M. Skene, J. D. F. Habbema, and G. J. Gelpke. Comparison of discrimination techniques applied to a complex data set of head injured patients. Journal of the Royal Statistical Society. Series A (General), 144:145-175, 1981.
-
(1981)
Journal of the Royal Statistical Society. Series A (General)
, vol.144
, pp. 145-175
-
-
Titterington, D.M.1
Murray, G.D.2
Murray, L.S.3
Spiegelhalter, D.J.4
Skene, A.M.5
Habbema, J.D.F.6
Gelpke, G.J.7
-
387
-
-
0001172625
-
Note on optimal selection of independent binary-valued features for pattern recognition
-
G. T. Toussaint. Note on optimal selection of independent binary-valued features for pattern recognition. IEEE Transactions on Information Theory, 17:618, 1971.
-
(1971)
IEEE Transactions on Information Theory
, vol.17
, pp. 618
-
-
Toussaint, G.T.1
-
388
-
-
0000442861
-
Combining estimators using non-constant weighting functions
-
G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, MIT Press, Cambridge, MA
-
V. Tresp and M. Taniguchi. Combining estimators using non-constant weighting functions. In: G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7. MIT Press, Cambridge, MA, 1995.
-
(1995)
Advances in Neural Information Processing Systems 7.
-
-
Tresp, V.1
Taniguchi, M.2
-
389
-
-
37649024337
-
Search strategies for ensemble feature selection in medical diagnostics
-
Technical report, Trinity College Dublin, Ireland
-
A. Tsymbal, P. Cunnigham, M. Pechenizkiy, and S. Puuronen. Search strategies for ensemble feature selection in medical diagnostics. Technical report, Trinity College Dublin, Ireland, 2003.
-
(2003)
-
-
Tsymbal, A.1
Cunnigham, P.2
Pechenizkiy, M.3
Puuronen, S.4
-
390
-
-
10444238133
-
Diversity in search strategies for ensemble feature selection
-
A. Tsymbal, M. Pechenizkiy, and P. Cunningham. Diversity in search strategies for ensemble feature selection. Information Fusion, 6(1):83-98, 2005.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 83-98
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
-
391
-
-
0026152562
-
Measures of confidence associated with combining classification rules
-
J. D. Tubbs andW. O. Alltop. Measures of confidence associated with combining classification rules. IEEE Transactions on Systems, Man, and Cybernetics, 21:690-692, 1991.
-
(1991)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.21
, pp. 690-692
-
-
Tubbs, J.D.1
Alltop, W.O.2
-
392
-
-
38049071588
-
Review of classifier combination methods
-
Simone Marinai and Hiromichi Fujisawa, editors, Springer, Berlin, Heidelberg
-
S. Tulyakov, S. Jaeger, V. Govindaraju, and D. Doermann. Review of classifier combination methods. In: Simone Marinai and Hiromichi Fujisawa, editors, Machine Learning in Document Analysis and Recognition. Volume 90: Studies in Computational Intelligence, pp. 361-386. Springer, Berlin, Heidelberg, 2008.
-
(2008)
Machine Learning in Document Analysis and Recognition. Volume 90: Studies in Computational Intelligence
, pp. 361-386
-
-
Tulyakov, S.1
Jaeger, S.2
Govindaraju, V.3
Doermann, D.4
-
393
-
-
0030085913
-
Analysis of decision boundaries in linearly combined neural classifiers
-
K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition, 29(2):341-348, 1996.
-
(1996)
Pattern Recognition
, vol.29
, Issue.2
, pp. 341-348
-
-
Tumer, K.1
Ghosh, J.2
-
394
-
-
0001562581
-
Linear and order statistics combiners for pattern classification
-
A. J. C. Sharkey, editor, Springer, London
-
K. Tumer and J. Ghosh. Linear and order statistics combiners for pattern classification. In: A. J. C. Sharkey, editor, Combining Artificial Neural Nets, pp. 127-161. Springer, London, 1999.
-
(1999)
Combining Artificial Neural Nets
, pp. 127-161
-
-
Tumer, K.1
Ghosh, J.2
-
395
-
-
0033893813
-
Optimal linear combination of neural networks for improving classification performance
-
N. Ueda. Optimal linear combination of neural networks for improving classification performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(2):207-215, 2000.
-
(2000)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.22
, Issue.2
, pp. 207-215
-
-
Ueda, N.1
-
396
-
-
29144512925
-
Ensemble methods based on bias-variance analysis
-
PhD thesis, University of Genova, Genova, Italy
-
G. Valentini. Ensemble methods based on bias-variance analysis. PhD thesis, University of Genova, Genova, Italy, 2003.
-
(2003)
-
-
Valentini, G.1
-
398
-
-
0034873461
-
Multidimensional pattern recognition problems and combining classifiers
-
V. Valev and A. Asaithambi. Multidimensional pattern recognition problems and combining classifiers. Pattern Recognition Letters, 22(12):1291-1297, 2001.
-
(2001)
Pattern Recognition Letters
, vol.22
, Issue.12
, pp. 1291-1297
-
-
Valev, V.1
Asaithambi, A.2
-
399
-
-
0008578789
-
Combining classifiers for the recognition of handwritten digits
-
Prague, Czech Republic
-
M. van Breukelen, R. P. W Duin, D. M. J. Tax, and J. E. den Hartog. Combining classifiers for the recognition of handwritten digits. In: I-st IAPR TC1 Workshop on Statistical Techniques in Pattern Recognition, Prague, Czech Republic, pp. 13-18, 1997.
-
(1997)
I-st IAPR TC1 Workshop on Statistical Techniques in Pattern Recognition
, pp. 13-18
-
-
van Breukelen, M.1
Duin, R.P.W.2
Tax, D.M.J.3
den Hartog, J.E.4
-
401
-
-
77956549297
-
Discriminative and informative features for biomolecular text mining with ensemble feature selection
-
S.Van Landeghem, T. Abeel,Y. Saeys, andY.Van de Peer. Discriminative and informative features for biomolecular text mining with ensemble feature selection. Bioinformatics (Oxford, England), 26(18):i554-i560, 2010.
-
(2010)
Bioinformatics (Oxford, England)
, vol.26
, Issue.18
, pp. i554-i560
-
-
Van Landeghem, S.1
Abeel, T.2
Saeys, Y.3
Van de Peer, Y.4
-
403
-
-
0032594959
-
An overview of statistical learning theory
-
V. N. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5):988-999, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
404
-
-
84878466127
-
Majority voting by independent classifiers can increase error rates
-
S. B.Vardeman and M. D. Morris. Majority voting by independent classifiers can increase error rates. The American Statistician, 67(2):94-96, 2013.
-
(2013)
The American Statistician
, vol.67
, Issue.2
, pp. 94-96
-
-
Vardeman, S.B.1
Morris, M.D.2
-
406
-
-
0025597157
-
Neural network classification: a Bayesian interpretation
-
E. A. Wan. Neural network classification: a Bayesian interpretation. IEEE Transactions on Neural Networks, 1(4):303-305, 1990.
-
(1990)
IEEE Transactions on Neural Networks
, vol.1
, Issue.4
, pp. 303-305
-
-
Wan, E.A.1
-
407
-
-
84155181098
-
Two credit scoring models based on dual strategy ensemble trees
-
G.Wang, J. Ma, L. Huang, and K. Xu. Two credit scoring models based on dual strategy ensemble trees. Knowledge-Based Systems, 26:61-68, 2012.
-
(2012)
Knowledge-Based Systems
, vol.26
, pp. 61-68
-
-
Wang, G.1
Ma, J.2
Huang, L.3
Xu, K.4
-
411
-
-
33748541473
-
Totally corrective boosting algorithms that maximize the margin
-
New York, ACM, ACM International Conference Proceeding Series
-
M.Warmuth, J. Liao, and G. Ratsch. Totally corrective boosting algorithms that maximize the margin. In: Proceedings of the 23rd International Conference on Machine Learning, New York, pp. 1001-1008. ACM, ACM International Conference Proceeding Series, ISBN 1-59593-383-2, 2006.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 1001-1008
-
-
Warmuth, M.1
Liao, J.2
Ratsch, G.3
-
412
-
-
0034247206
-
MultiBoosting: a technique for combining boosting and wagging
-
G. I. Webb. MultiBoosting: a technique for combining boosting and wagging. Machine Learning, 40(2):159-196, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
413
-
-
14844351034
-
Not so naive Bayes: aggregating one-dependence estimators
-
G. I.Webb, J. Boughton, and Z.Wang. Not so naive Bayes: aggregating one-dependence estimators. Machine Learning, 58(1):5-24, 2005.
-
(2005)
Machine Learning
, vol.58
, Issue.1
, pp. 5-24
-
-
Webb, G.I.1
Boughton, J.2
Wang, Z.3
-
414
-
-
0040907586
-
A fast histogram-based postprocessor that improves posterior probability estimates
-
W.Wei, T. K. Leen, and E. Barnard. A fast histogram-based postprocessor that improves posterior probability estimates. Neural Computation, 11(5):1235-1248, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.5
, pp. 1235-1248
-
-
Wei, W.1
Leen, T.K.2
Barnard, E.3
-
415
-
-
10444224738
-
Diversity measures for multiple classifier system analysis and design
-
T. Windeatt. Diversity measures for multiple classifier system analysis and design. Information Fusion, 6(1):21-36, 2005.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 21-36
-
-
Windeatt, T.1
-
417
-
-
0037368938
-
Coding and decoding strategies for multi-class learning problems
-
T. Windeatt and R. Ghaderi. Coding and decoding strategies for multi-class learning problems. Information fusion, 4:11-21, 2003.
-
(2003)
Information fusion
, vol.4
, pp. 11-21
-
-
Windeatt, T.1
Ghaderi, R.2
-
418
-
-
79958833224
-
A probabilistic model of classifier competence for dynamic ensemble selection
-
T. Woloszynski and M. Kurzynski. A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recognition, 44(10-11):2656-2668, 2011.
-
(2011)
Pattern Recognition
, vol.44
, Issue.10-11
, pp. 2656-2668
-
-
Woloszynski, T.1
Kurzynski, M.2
-
419
-
-
84858073995
-
A measure of competence based on random classification for dynamic ensemble selection
-
T. Woloszynski, M. Kurzynski, P. Podsiadlo, and G. W. Stachowiak. A measure of competence based on random classification for dynamic ensemble selection. Information Fusion, 13(3):207-213, 2012.
-
(2012)
Information Fusion
, vol.13
, Issue.3
, pp. 207-213
-
-
Woloszynski, T.1
Kurzynski, M.2
Podsiadlo, P.3
Stachowiak, G.W.4
-
420
-
-
0026692226
-
Stacked generalization
-
D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241-260, 1992.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-260
-
-
Wolpert, D.H.1
-
422
-
-
37549018049
-
Top 10 algorithms in data mining
-
X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg. Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1):1-37, 2008.
-
(2008)
Knowledge and Information Systems
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
Zhou, Z.-H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
-
423
-
-
77950017573
-
Sequence-based prediction of protein-protein interactions by means of Rotation Forest and autocorrelation descriptor
-
J.-F. Xia, K. Han, and D.-S. Huang. Sequence-based prediction of protein-protein interactions by means of Rotation Forest and autocorrelation descriptor. Protein and Peptide Letters, 17(1):137-145, 2010.
-
(2010)
Protein and Peptide Letters
, vol.17
, Issue.1
, pp. 137-145
-
-
Xia, J.-F.1
Han, K.2
Huang, D.-S.3
-
424
-
-
77958150674
-
A dynamic classifier ensemble selection approach for noise data
-
J. Xiao, C. He, X. Jiang, and D. Liu. A dynamic classifier ensemble selection approach for noise data. Information Sciences, 180(18):3402-3421, 2010.
-
(2010)
Information Sciences
, vol.180
, Issue.18
, pp. 3402-3421
-
-
Xiao, J.1
He, C.2
Jiang, X.3
Liu, D.4
-
425
-
-
0026860706
-
Methods of combining multiple classifiers and their application to handwriting recognition
-
L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combining multiple classifiers and their application to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics, 22:418-435, 1992.
-
(1992)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.22
, pp. 418-435
-
-
Xu, L.1
Krzyzak, A.2
Suen, C.Y.3
-
427
-
-
81455132651
-
Stable gene selection from microarray data via sample weighting
-
L. Yu, Y. Han, and M. E. Berens. Stable gene selection from microarray data via sample weighting. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(1):262-272, 2012.
-
(2012)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.9
, Issue.1
, pp. 262-272
-
-
Yu, L.1
Han, Y.2
Berens, M.E.3
-
429
-
-
0001218846
-
On the association of attributes in statistics
-
G. U. Yule. On the association of attributes in statistics. Phil. Trans., A, 194:257-319, 1900.
-
(1900)
Phil. Trans., A
, vol.194
, pp. 257-319
-
-
Yule, G.U.1
-
431
-
-
84948152666
-
Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
-
Springer
-
G. Zenobi and P. Cunningham. Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: Lecture Notes in Computer Science, pp. 576-587. Springer, 2001.
-
(2001)
Lecture Notes in Computer Science
, pp. 576-587
-
-
Zenobi, G.1
Cunningham, P.2
-
432
-
-
84879296134
-
Reliable classification of vehicle types based on cascade classifier ensembles
-
B. Zhang. Reliable classification of vehicle types based on cascade classifier ensembles. IEEE Transactions on Intelligent Transportation Systems, 14(1):322-332, 2013.
-
(2013)
IEEE Transactions on Intelligent Transportation Systems
, vol.14
, Issue.1
, pp. 322-332
-
-
Zhang, B.1
-
433
-
-
79955369093
-
Phenotype recognition with combined features and random subspace classifier ensemble
-
B. Zhang and T. D. Pham. Phenotype recognition with combined features and random subspace classifier ensemble. BMC Bioinformatics, 12(128), 2011.
-
(2011)
BMC Bioinformatics
, vol.12
, Issue.128
-
-
Zhang, B.1
Pham, T.D.2
-
434
-
-
80052546565
-
An experimental study of one- and two-level classifier fusion for different sample sizes
-
C.-X. Zhang and R. P. W. Duin. An experimental study of one- and two-level classifier fusion for different sample sizes. Pattern Recognition Letters, 32(14):1756-1767, 2011.
-
(2011)
Pattern Recognition Letters
, vol.32
, Issue.14
, pp. 1756-1767
-
-
Zhang, C.-X.1
Duin, R.P.W.2
-
435
-
-
44449124996
-
Rotboost: a technique for combining rotation forest and adaboost
-
C.-X. Zhang and J.-S. Zhang. Rotboost: a technique for combining rotation forest and adaboost. Pattern Recognition Letters, 29(10):1524-1536, 2008.
-
(2008)
Pattern Recognition Letters
, vol.29
, Issue.10
, pp. 1524-1536
-
-
Zhang, C.-X.1
Zhang, J.-S.2
-
436
-
-
77956456333
-
Sparse ensembles using weighted combination methods based on linear programming
-
L. Zhang andW.-D. Zhou. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognition, 44(1):97-106, 2011.
-
(2011)
Pattern Recognition
, vol.44
, Issue.1
, pp. 97-106
-
-
Zhang, L.1
Zhou, W.-D.2
-
437
-
-
71549138167
-
An ensemble of classifiers with genetic algorithm based feature selection
-
Z. Zhang and P. Yang. An ensemble of classifiers with genetic algorithm based feature selection. IEEE Intelligent Informatics Bulletin, 9(1):18-24, 2008.
-
(2008)
IEEE Intelligent Informatics Bulletin
, vol.9
, Issue.1
, pp. 18-24
-
-
Zhang, Z.1
Yang, P.2
-
438
-
-
84871345229
-
Error-correcting output codes based ensemble feature extraction
-
G. Zhong and C.-L. Liu. Error-correcting output codes based ensemble feature extraction. Pattern Recognition, 46(4):1091-1100, 2013.
-
(2013)
Pattern Recognition
, vol.46
, Issue.4
, pp. 1091-1100
-
-
Zhong, G.1
Liu, C.-L.2
-
440
-
-
77952032494
-
Multi-information ensemble diversity
-
N. Gayar, J. Kittler, and F. Roli, editors, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
-
Z.-H. Zhou and N. Li. Multi-information ensemble diversity. In: N. Gayar, J. Kittler, and F. Roli, editors, Multiple Classifier Systems. Volume 5997: Lecture Notes in Computer Science, pp. 134-144. Springer, Berlin, Heidelberg, 2010.
-
(2010)
Multiple Classifier Systems.
, vol.5997
, pp. 134-144
-
-
Zhou, Z.-H.1
Li, N.2
-
441
-
-
49749129552
-
Multiclass AdaBoost
-
Technical Report 430, Department of Statistics, University of Michigan
-
J. Zhu, S. Rosset, H. Zou, and T. Hastie. Multiclass AdaBoost. Technical Report 430, Department of Statistics, University of Michigan, 2006.
-
(2006)
-
-
Zhu, J.1
Rosset, S.2
Zou, H.3
Hastie, T.4
-
442
-
-
67349169203
-
Semi-random subspace method for face recognition
-
Y. Zhu, J. Liu, and S. Chen. Semi-random subspace method for face recognition. Image and Vision Computing, 27(9):1358-1370, 2009.
-
(2009)
Image and Vision Computing
, vol.27
, Issue.9
, pp. 1358-1370
-
-
Zhu, Y.1
Liu, J.2
Chen, S.3
-
443
-
-
46149138580
-
A probability model of a committee of classifiers
-
Yu. A. Zuev. A probability model of a committee of classifiers. USSR Comput. Math. Math. Phys., 26(1):170-179, 1987.
-
(1987)
USSR Comput. Math. Math. Phys.
, vol.26
, Issue.1
, pp. 170-179
-
-
Zuev, Y.A.1
|