메뉴 건너뛰기




Volumn 2364, Issue , 2002, Pages 52-61

Distributed pasting of small votes

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER SCIENCE; COMPUTERS;

EID: 84947592660     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45428-4_5     Document Type: Conference Paper
Times cited : (21)

References (20)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Kluwer
    • Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, Vol 36, 105-139. Kluwer (1999).
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Irvine, Dept. of Information and Computer Sciences
    • Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html, University of California, Irvine, Dept. of Information and Computer Sciences (1998).
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Kluwer
    • Breiman, L. Bagging predictors. Machine Learning, Vol 24. Kluwer (1996) 123–140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • Kluwer
    • Breiman, L.: Pasting small votes for classification in large databases and on-line. Machine Learning, Vol 36. Kluwer (1999) 85–103.
    • (1999) Machine Learning , vol.36 , pp. 85-103
    • Breiman, L.1
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Kluwer
    • Dietterich, T.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, Vol 40. Kluwer (2000) 139–158.
    • (2000) Machine Learning , vol.40 , pp. 139-158
    • Dietterich, T.1
  • 11
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on decision-specific scoring matrices
    • Jones, D.: Protein secondary structure prediction based on decision-specific scoring matrices. Journal of Molecular Biology, Vol 292. (1999) 195–202.
    • (1999) Journal of Molecular Biology , vol.292 , pp. 195-202
    • Jones, D.1
  • 12
    • 84867057507 scopus 로고    scopus 로고
    • Different ways of weakening decision trees and their impact on classification accuracy of DT combination
    • Lecture Notes in Computer Science, Springer-Verlag
    • Latinne, P., Debeir, O., Decaestecker, C.: Different ways of weakening decision trees and their impact on classification accuracy of DT combination. First International Workshop on Multiple Classifier Systems. Lecture Notes in Computer Science, Vol 1857. Springer-Verlag, (2000) 200–210.
    • (2000) First International Workshop on Multiple Classifier Systems , vol.1857 , pp. 200-210
    • Latinne, P.1    Debeir, O.2    Decaestecker, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.