-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Kluwer
-
Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, Vol 36, 105-139. Kluwer (1999).
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0003408496
-
-
University of California, Irvine, Dept. of Information and Computer Sciences
-
Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html, University of California, Irvine, Dept. of Information and Computer Sciences (1998).
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
3
-
-
0030211964
-
Bagging predictors
-
Kluwer
-
Breiman, L. Bagging predictors. Machine Learning, Vol 24. Kluwer (1996) 123–140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0032634129
-
Pasting small votes for classification in large databases and on-line
-
Kluwer
-
Breiman, L.: Pasting small votes for classification in large databases and on-line. Machine Learning, Vol 36. Kluwer (1999) 85–103.
-
(1999)
Machine Learning
, vol.36
, pp. 85-103
-
-
Breiman, L.1
-
7
-
-
0035694077
-
Bagging is a small dataset phenomenon
-
Chawla, N.V., Moore, T.E., Bowyer, K.W., Hall, L.O., Springer, C., Kegelmeyer, W.P.: Bagging is a small dataset phenomenon. International Conference of Computer Vision and Pattern Recognition (CVPR). (2000) 684–689.
-
(2000)
International Conference of Computer Vision and Pattern Recognition (CVPR)
, pp. 684-689
-
-
Chawla, N.V.1
Moore, T.E.2
Bowyer, K.W.3
Hall, L.O.4
Springer, C.5
Kegelmeyer, W.P.6
-
8
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Kluwer
-
Dietterich, T.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, Vol 40. Kluwer (2000) 139–158.
-
(2000)
Machine Learning
, vol.40
, pp. 139-158
-
-
Dietterich, T.1
-
10
-
-
84925801855
-
Learning rules from distributed data
-
Hall, L.O., Chawla, N.V., Bowyer, K.W., Kegelmeyer, W.P.: Learning rules from distributed data. Workshop of Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (1999).
-
(1999)
Workshop of Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
-
Hall, L.O.1
Chawla, N.V.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
11
-
-
0033578684
-
Protein secondary structure prediction based on decision-specific scoring matrices
-
Jones, D.: Protein secondary structure prediction based on decision-specific scoring matrices. Journal of Molecular Biology, Vol 292. (1999) 195–202.
-
(1999)
Journal of Molecular Biology
, vol.292
, pp. 195-202
-
-
Jones, D.1
-
12
-
-
84867057507
-
Different ways of weakening decision trees and their impact on classification accuracy of DT combination
-
Lecture Notes in Computer Science, Springer-Verlag
-
Latinne, P., Debeir, O., Decaestecker, C.: Different ways of weakening decision trees and their impact on classification accuracy of DT combination. First International Workshop on Multiple Classifier Systems. Lecture Notes in Computer Science, Vol 1857. Springer-Verlag, (2000) 200–210.
-
(2000)
First International Workshop on Multiple Classifier Systems
, vol.1857
, pp. 200-210
-
-
Latinne, P.1
Debeir, O.2
Decaestecker, C.3
-
14
-
-
33747646201
-
Decision theoretic subsampling for induction on large databases
-
A mherst, MA
-
Musick, R., Catlett, J., Russell, S.. Decision theoretic subsampling for induction on large databases. Tenth International Conference on Machine Learning, A mherst, MA. (1993) 212-219.
-
(1993)
Tenth International Conference on Machine Learning
, pp. 212-219
-
-
Musick, R.1
Catlett, J.2
Russell, S.3
|