메뉴 건너뛰기




Volumn 98, Issue 462, 2003, Pages 324-339

Boosting with the L2 loss: Regression and classification

Author keywords

Functional gradient descent; LogitBoost; Minimax error rate; Nonparametric classification; Nonparametric regression; Smoothing spline

Indexed keywords


EID: 0043245810     PISSN: 01621459     EISSN: None     Source Type: Journal    
DOI: 10.1198/016214503000125     Document Type: Article
Times cited : (763)

References (27)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Allwein, E., Schapire, R., and Singer, Y. (2001), "Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers," Journal of Machine Learning Research, 1, 113-141.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 113-141
    • Allwein, E.1    Schapire, R.2    Singer, Y.3
  • 3
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • _ (1999), "Prediction Games and Arcing Algorithms," Neural Computation, 11, 1493-1517.
    • (1999) Neural Computation , vol.11 , pp. 1493-1517
  • 4
    • 0013228784 scopus 로고    scopus 로고
    • Some infinity theory for predictor ensembles
    • University of California, Berkeley, Dept. of Statistics
    • _ (2000), "Some Infinity Theory for Predictor Ensembles," Technical Report 579, University of California, Berkeley, Dept. of Statistics.
    • (2000) Technical Report , vol.579
  • 5
    • 0042742883 scopus 로고    scopus 로고
    • Comment on "additive logistic regression: A statistical view of boosting,"
    • by J. H. Friedman, T. Hastie, and R. Tibshirani
    • Buja, A. (2000), Comment on "Additive Logistic Regression: A Statistical View of Boosting," by J. H. Friedman, T. Hastie, and R. Tibshirani, The Annals of Statistics, 28, 387-391.
    • (2000) The Annals of Statistics , vol.28 , pp. 387-391
    • Buja, A.1
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. G. (2000), "An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization," Machine Learning, 40, 139-157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 9
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y. (1995), "Boosting a Weak Learning Algorithm by Majority," Information and Computation, 121, 256-285.
    • (1995) Information and Computation , vol.121 , pp. 256-285
    • Freund, Y.1
  • 11
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. H. (2001), "Greedy Function Approximation: A Gradient Boosting Machine," The Annals of Statistics, 29, 1189-1232.
    • (2001) The Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 12
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J. H., Hastie, T., and Tibshirani, R. (2000), "Additive Logistic Regression: A Statistical View of Boosting" (with discussion), The Annals of Statistics, 28, 337-407.
    • (2000) The Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 3142657752 scopus 로고    scopus 로고
    • Process consistency for adaboost
    • to appear
    • Jiang, W. (2003), "Process Consistency for AdaBoost," The Annals of Statistics, to appear.
    • (2003) The Annals of Statistics
    • Jiang, W.1
  • 19
    • 0009289545 scopus 로고
    • Optimal rates of convergence to bayes risk in nonparametric discrimination
    • Marron, J. S. (1983), "Optimal Rates of Convergence to Bayes Risk in Nonparametric Discrimination," The Annals of Statistics, 11, 1142-1155.
    • (1983) The Annals of Statistics , vol.11 , pp. 1142-1155
    • Marron, J.S.1
  • 20
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • eds. A. J. Smola, P. J. Bartlett, B. Schölkopf, and D. Schuurmans, Cambridge, MA: MIT Press
    • Mason, L., Baxter, J., Bartlett, P., and Frean, M. (2000), "Functional Gradient Techniques for Combining Hypotheses," in Advances in Large Margin Classifiers, eds. A. J. Smola, P. J. Bartlett, B. Schölkopf, and D. Schuurmans, Cambridge, MA: MIT Press.
    • (2000) Advances in Large Margin Classifiers
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 21
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. E. (1990), "The Strength of Weak Learnability," Machine Learning, 5, 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 22
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S. (1998), "Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods," The Annals of Statistics, 26, 1651-1686.
    • (1998) The Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 24
    • 0008286966 scopus 로고
    • Natural spline functions. Their associated eigenvalue problem
    • Utreras, F. (1983), "Natural Spline Functions. Their Associated Eigenvalue Problem," Numer. Math., 42, 107-117.
    • (1983) Numer. Math. , vol.42 , pp. 107-117
    • Utreras, F.1
  • 25
    • 38249030627 scopus 로고
    • Convergence rates for multivariate smoothing spline functions
    • _ (1988), "Convergence Rates for Multivariate Smoothing Spline Functions," Journal of Approximation Theory, 52, 1-27.
    • (1988) Journal of Approximation Theory , vol.52 , pp. 1-27
  • 26
    • 0003466536 scopus 로고
    • Philadelphia: Society for Industrial and Applied Mathematics
    • Wahba, G. (1990), Spline Models for Observational Data, Philadelphia: Society for Industrial and Applied Mathematics.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 27
    • 0033321586 scopus 로고    scopus 로고
    • Minimax nonparametric classification - Part I: Rates of convergence
    • Yang, Y. (1999), "Minimax Nonparametric Classification - Part I: Rates of Convergence," IEEE Transactions on Information Theory, 45, 2271-2284.
    • (1999) IEEE Transactions on Information Theory , vol.45 , pp. 2271-2284
    • Yang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.