-
1
-
-
0033164667
-
Comparing classifiers when the misallocation costs are uncertain
-
ADAMS, N. M. and HAND, D. J. (1999). Comparing classifiers when the misallocation costs are uncertain. Pattern Recognitions 32 1139-1147.
-
(1999)
Pattern Recognitions
, vol.32
, pp. 1139-1147
-
-
Adams, N.M.1
Hand, D.J.2
-
2
-
-
33745888312
-
-
Ph.D. dissertation, Dept. Mathematics, Imperial College London
-
BENTON, T. C. (2002). Theoretical and empirical models. Ph.D. dissertation, Dept. Mathematics, Imperial College London.
-
(2002)
Theoretical and Empirical Models
-
-
Benton, T.C.1
-
3
-
-
0000245743
-
Statistical modeling: The two cultures
-
BREIMAN, L. (2001). Statistical modeling: The two cultures (with discussion). Statist. Sci. 16 199-231.
-
(2001)
Statist. Sci.
, vol.16
, pp. 199-231
-
-
Breiman, L.1
-
4
-
-
0030145401
-
A note on comparing classifiers
-
DUIN, R. P. W. (1996). A note on comparing classifiers. Pattern Recognition Letters 17 529-536.
-
(1996)
Pattern Recognition Letters
, vol.17
, pp. 529-536
-
-
Duin, R.P.W.1
-
5
-
-
85038276539
-
Comment on "Statistical modeling: The two cultures" by L. Breiman
-
EFRON, B. (2001). Comment on "Statistical modeling: The two cultures," by L. Breiman. Statist. Sci. 16 218-219.
-
(2001)
Statist. Sci.
, vol.16
, pp. 218-219
-
-
Efron, B.1
-
7
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
FISHER, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 179-188.
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
9
-
-
21744462998
-
On bias, variance, 0/1 loss, and the curse of dimensionality
-
FRIEDMAN, J. H. (1997). On bias, variance, 0/1 loss, and the curse of dimensionality. Data Mining and Knowledge Discovery 1 55-77.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.H.1
-
10
-
-
0023894007
-
Vertebral morphometry: Normative data
-
GALLAGHER, J. C., HEDLUND, L. R., STONER, S. and MEEGER, C. (1988). Vertebral morphometry: Normative data. Bone and Mineral 4 189-196.
-
(1988)
Bone and Mineral
, vol.4
, pp. 189-196
-
-
Gallagher, J.C.1
Hedlund, L.R.2
Stoner, S.3
Meeger, C.4
-
12
-
-
26944482574
-
Classification and computers: Shifting the focus
-
(A. Prat, ed.). Physica, Berlin
-
HAND, D. J. (1996). Classification and computers: Shifting the focus. In COMPSTAT-96: Proceedings in Computational Statistics (A. Prat, ed.) 77-88. Physica, Berlin.
-
(1996)
COMPSTAT-96: Proceedings in Computational Statistics
, pp. 77-88
-
-
Hand, D.J.1
-
14
-
-
0032380355
-
Strategy, methods, and solving the right problems
-
HAND, D. J. (1998). Strategy, methods, and solving the right problems. Comput. Statist. 13 5-14.
-
(1998)
Comput. Statist.
, vol.13
, pp. 5-14
-
-
Hand, D.J.1
-
15
-
-
33745915192
-
Intelligent data analysis and deep understanding
-
(A. Gammerman, ed.). Springer, Berlin
-
HAND, D. J. (1999). Intelligent data analysis and deep understanding. In Causal Models and Intelligent Data Management (A. Gammerman, ed.) 67-80. Springer, Berlin.
-
(1999)
Causal Models and Intelligent Data Management
, pp. 67-80
-
-
Hand, D.J.1
-
16
-
-
0035480925
-
Modelling consumer credit risk
-
HAND, D. J. (2001). Modelling consumer credit risk. IMA J. Management Mathematics 12 139-155.
-
(2001)
IMA J. Management Mathematics
, vol.12
, pp. 139-155
-
-
Hand, D.J.1
-
17
-
-
17444364649
-
Reject inference in credit operations
-
(E. Mays, ed.). Glenlake, Chicago
-
HAND, D. J. (2001). Reject inference in credit operations. In Handbook of Credit Scoring (E. Mays, ed.) 225-240. Glenlake, Chicago.
-
(2001)
Handbook of Credit Scoring
, pp. 225-240
-
-
Hand, D.J.1
-
18
-
-
26444606587
-
Academic obsessions and classification realities: Ignoring practicalities in supervised classification
-
(D. Banks, L. House, F. R. McMorris, P. Arabie and W. Gaul, eds.). Springer, Berlin
-
HAND, D. J, (2004). Academic obsessions and classification realities: Ignoring practicalities in supervised classification. In Classification, Clustering and Data Mining Applications (D. Banks, L. House, F. R. McMorris, P. Arabie and W. Gaul, eds.) 209-232. Springer, Berlin.
-
(2004)
Classification, Clustering and Data Mining Applications
, pp. 209-232
-
-
Hand, D.J.1
-
20
-
-
0040453788
-
Statistical classification methods in consumer credit scoring: A review
-
HAND, D. J. and HENLEY, W. E. (1997). Statistical classification methods in consumer credit scoring: A review. J. Roy. Statist. Soc. Ser. A 160 523-541.
-
(1997)
J. Roy. Statist. Soc. Ser. A
, vol.160
, pp. 523-541
-
-
Hand, D.J.1
Henley, W.E.2
-
21
-
-
33745889878
-
Comment on "Statistical modeling: The two cultures" by L. Breiman
-
HOADLEY, B. (2001). Comment on "Statistical modeling: The two cultures," by L. Breiman. Statist. Sci. 16 220-224.
-
(2001)
Statist. Sci.
, vol.16
, pp. 220-224
-
-
Hoadley, B.1
-
22
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
HOLTE, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 63-90.
-
(1993)
Machine Learning
, vol.11
, pp. 63-90
-
-
Holte, R.C.1
-
23
-
-
19944408787
-
-
Ph.D. dissertation, Dept. Mathematics, Imperial College London
-
JAMAIN, A. (2004). Meta-analysis of classification methods. Ph.D. dissertation, Dept. Mathematics, Imperial College London.
-
(2004)
Meta-analysis of Classification Methods
-
-
Jamain, A.1
-
24
-
-
33745893154
-
Mining supervised classification performance studies: A meta-analytic investigation
-
Dept. Mathematics, Imperial College London
-
JAMAIN, A. and HAND, D. J. (2005). Mining supervised classification performance studies: A meta-analytic investigation. Technical report, Dept. Mathematics, Imperial College London.
-
(2005)
Technical Report
-
-
Jamain, A.1
Hand, D.J.2
-
25
-
-
84984734780
-
Credit scoring with uncertain class definitions
-
KELLY, M. G and HAND, D. J. (1999). Credit scoring with uncertain class definitions. IMA J. Mathematics Management 10331-345.
-
(1999)
IMA J. Mathematics Management
, vol.10
, pp. 331-345
-
-
Kelly, M.G.1
Hand, D.J.2
-
26
-
-
0002665505
-
Defining the goals to optimise data mining performance
-
(R. Agrawal, P. Stolorz and G. Piatetsky-Shapiro, eds.). AAAI Press, Menlo Park, CA
-
KELLY, M. G., HAND, D. J. and ADAMS, N. M. (1998). Defining the goals to optimise data mining performance. In Proc. Fourth International Conference on Knowledge Discovery and Data Mining (R. Agrawal, P. Stolorz and G. Piatetsky-Shapiro, eds.) 234-238. AAAI Press, Menlo Park, CA.
-
(1998)
Proc. Fourth International Conference on Knowledge Discovery and Data Mining
, pp. 234-238
-
-
Kelly, M.G.1
Hand, D.J.2
Adams, N.M.3
-
27
-
-
0000833531
-
The impact of changing populations on classifier performance
-
(S. Chaudhuri and D. Madigan, eds.). ACM, New York
-
KELLY, M. G., HAND, D. J. and ADAMS, N. M. (1999). The impact of changing populations on classifier performance. In Proc. Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (S. Chaudhuri and D. Madigan, eds.) 367-371. ACM, New York.
-
(1999)
Proc. Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 367-371
-
-
Kelly, M.G.1
Hand, D.J.2
Adams, N.M.3
-
28
-
-
0003678296
-
Supervised classification problems: How to be both judge and jury
-
Springer, Berlin
-
KELLY, M. G., HAND, D. J. and ADAMS, N. M. (1999). Supervised classification problems: How to be both judge and jury. In Advances in Intelligent Data Analysis. Lecture Notes in Comput. Sci. 1642 235-244. Springer, Berlin.
-
(1999)
Advances in Intelligent Data Analysis. Lecture Notes in Comput. Sci.
, vol.1642
, pp. 235-244
-
-
Kelly, M.G.1
Hand, D.J.2
Adams, N.M.3
-
29
-
-
0141804082
-
Detecting concept drift with support vector machines
-
(P. Langley, ed.). Morgan Kaufmann, San Francisco
-
KLINKENBERG, R. and THORSTEN, J. (2000). Detecting concept drift with support vector machines. In Proc. 17th International Conference on Machine Learning (P. Langley, ed.) 487-494. Morgan Kaufmann, San Francisco.
-
(2000)
Proc. 17th International Conference on Machine Learning
, pp. 487-494
-
-
Klinkenberg, R.1
Thorsten, J.2
-
30
-
-
85166317163
-
Approaches to online learning and concept drift for user identification in computer security
-
(R. Agrawal, P. Stolorz and G. Piatetsky-Shapiro, eds.). AAAI Press, Menlo Park, CA
-
LANE, T. and BRODLEY, C. E. (1998). Approaches to online learning and concept drift for user identification in computer security. In Proc. Fourth International Conference on Knowledge Discovery and Data Mining (R. Agrawal, P. Stolorz and G. Piatetsky-Shapiro, eds.) 259-263. AAAI Press, Menlo Park, CA.
-
(1998)
Proc. Fourth International Conference on Knowledge Discovery and Data Mining
, pp. 259-263
-
-
Lane, T.1
Brodley, C.E.2
-
32
-
-
0036602708
-
Direct versus indirect credit scoring classifications
-
LI, H. G. and HAND, D. J. (2002). Direct versus indirect credit scoring classifications. J. Operational Research Society 53 647-654.
-
(2002)
J. Operational Research Society
, vol.53
, pp. 647-654
-
-
Li, H.G.1
Hand, D.J.2
-
34
-
-
79952785777
-
An empirical comparison of pruning methods for decision tree induction
-
MINGERS, J. (1989). An empirical comparison of pruning methods for decision tree induction. Machine Learning 4 227-243.
-
(1989)
Machine Learning
, vol.4
, pp. 227-243
-
-
Mingers, J.1
-
35
-
-
33745834241
-
-
Dept, Information and Computer Sciences, Univ. California, Irvine.
-
NEWMAN, D. J., HETTICH, S., BLAKE, C. L. and MERZ, C. J. (1998). UCI repository of machine learning databases. Dept, Information and Computer Sciences, Univ. California, Irvine. Available at www.ics.uci.edu/-mlearn/ MLRepository.html.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Newman, D.J.1
Hettich, S.2
Blake, C.L.3
Merz, C.J.4
-
36
-
-
0035283313
-
Robust classification for imprecise environments
-
PROVOST, F. and FAWCETT, T. (2001). Robust classification for imprecise environments. Machine Learning 42 203-231.
-
(2001)
Machine Learning
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
37
-
-
0000686085
-
Learning hard concepts through constructive induction: Framework and rationale
-
RENDELL, A. L. and SESHU, R. (1990). Learning hard concepts through constructive induction: Framework and rationale. Computational Intelligence 6 247-270.
-
(1990)
Computational Intelligence
, vol.6
, pp. 247-270
-
-
Rendell, A.L.1
Seshu, R.2
-
39
-
-
0001384863
-
Quantitative methods in credit management: A survey
-
ROSENBERG, E. and GLEIT, A. (1994). Quantitative methods in credit management: A survey. Oper. Res. 42 589-613.
-
(1994)
Oper. Res.
, vol.42
, pp. 589-613
-
-
Rosenberg, E.1
Gleit, A.2
-
40
-
-
27144463192
-
On comparing classifiers: Pitfalls to avoid and a recommended approach
-
SALZBERG, S. L. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1 317-328.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 317-328
-
-
Salzberg, S.L.1
-
41
-
-
0026119038
-
Symbolic and neural learning algorithms: An experimental comparison
-
SHAVLIK, J., MOONEY, R. J. and TOWELL, G. (1991). Symbolic and neural learning algorithms: An experimental comparison. Machine Learning 6 111-143.
-
(1991)
Machine Learning
, vol.6
, pp. 111-143
-
-
Shavlik, J.1
Mooney, R.J.2
Towell, G.3
-
42
-
-
0001466281
-
A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers
-
THOMAS, L. C. (2000). A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers. International J. Forecasting 16 149-172.
-
(2000)
International J. Forecasting
, vol.16
, pp. 149-172
-
-
Thomas, L.C.1
-
46
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
WIDMER, G. and KUBAT, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine Learning 2369-101.
-
(1996)
Machine Learning
, pp. 2369-3101
-
-
Widmer, G.1
Kubat, M.2
-
47
-
-
0002082928
-
Issues and problems in applying neural computing to target marketing
-
ZAHAVI, J. and LEVIN, N. (1997). Issues and problems in applying neural computing to target marketing. J. Direct Marketing 11(4) 63-75.
-
(1997)
J. Direct Marketing
, vol.11
, Issue.4
, pp. 63-75
-
-
Zahavi, J.1
Levin, N.2
|