메뉴 건너뛰기




Volumn 21, Issue 1, 2006, Pages 1-14

Classifier technology and the illusion of progress

Author keywords

Empirical comparisons; Error rate; Flat maximum effect; Misclassification rate; Population drift; Principle of parsimony; Problem uncertainty; Selectivity bias; Simplicity; Supervised classification

Indexed keywords


EID: 33745886270     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/088342306000000060     Document Type: Review
Times cited : (587)

References (47)
  • 1
    • 0033164667 scopus 로고    scopus 로고
    • Comparing classifiers when the misallocation costs are uncertain
    • ADAMS, N. M. and HAND, D. J. (1999). Comparing classifiers when the misallocation costs are uncertain. Pattern Recognitions 32 1139-1147.
    • (1999) Pattern Recognitions , vol.32 , pp. 1139-1147
    • Adams, N.M.1    Hand, D.J.2
  • 2
    • 33745888312 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Mathematics, Imperial College London
    • BENTON, T. C. (2002). Theoretical and empirical models. Ph.D. dissertation, Dept. Mathematics, Imperial College London.
    • (2002) Theoretical and Empirical Models
    • Benton, T.C.1
  • 3
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • BREIMAN, L. (2001). Statistical modeling: The two cultures (with discussion). Statist. Sci. 16 199-231.
    • (2001) Statist. Sci. , vol.16 , pp. 199-231
    • Breiman, L.1
  • 4
    • 0030145401 scopus 로고    scopus 로고
    • A note on comparing classifiers
    • DUIN, R. P. W. (1996). A note on comparing classifiers. Pattern Recognition Letters 17 529-536.
    • (1996) Pattern Recognition Letters , vol.17 , pp. 529-536
    • Duin, R.P.W.1
  • 5
    • 85038276539 scopus 로고    scopus 로고
    • Comment on "Statistical modeling: The two cultures" by L. Breiman
    • EFRON, B. (2001). Comment on "Statistical modeling: The two cultures," by L. Breiman. Statist. Sci. 16 218-219.
    • (2001) Statist. Sci. , vol.16 , pp. 218-219
    • Efron, B.1
  • 7
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • FISHER, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 9
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1 loss, and the curse of dimensionality
    • FRIEDMAN, J. H. (1997). On bias, variance, 0/1 loss, and the curse of dimensionality. Data Mining and Knowledge Discovery 1 55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 12
    • 26944482574 scopus 로고    scopus 로고
    • Classification and computers: Shifting the focus
    • (A. Prat, ed.). Physica, Berlin
    • HAND, D. J. (1996). Classification and computers: Shifting the focus. In COMPSTAT-96: Proceedings in Computational Statistics (A. Prat, ed.) 77-88. Physica, Berlin.
    • (1996) COMPSTAT-96: Proceedings in Computational Statistics , pp. 77-88
    • Hand, D.J.1
  • 14
    • 0032380355 scopus 로고    scopus 로고
    • Strategy, methods, and solving the right problems
    • HAND, D. J. (1998). Strategy, methods, and solving the right problems. Comput. Statist. 13 5-14.
    • (1998) Comput. Statist. , vol.13 , pp. 5-14
    • Hand, D.J.1
  • 15
    • 33745915192 scopus 로고    scopus 로고
    • Intelligent data analysis and deep understanding
    • (A. Gammerman, ed.). Springer, Berlin
    • HAND, D. J. (1999). Intelligent data analysis and deep understanding. In Causal Models and Intelligent Data Management (A. Gammerman, ed.) 67-80. Springer, Berlin.
    • (1999) Causal Models and Intelligent Data Management , pp. 67-80
    • Hand, D.J.1
  • 16
    • 0035480925 scopus 로고    scopus 로고
    • Modelling consumer credit risk
    • HAND, D. J. (2001). Modelling consumer credit risk. IMA J. Management Mathematics 12 139-155.
    • (2001) IMA J. Management Mathematics , vol.12 , pp. 139-155
    • Hand, D.J.1
  • 17
    • 17444364649 scopus 로고    scopus 로고
    • Reject inference in credit operations
    • (E. Mays, ed.). Glenlake, Chicago
    • HAND, D. J. (2001). Reject inference in credit operations. In Handbook of Credit Scoring (E. Mays, ed.) 225-240. Glenlake, Chicago.
    • (2001) Handbook of Credit Scoring , pp. 225-240
    • Hand, D.J.1
  • 18
    • 26444606587 scopus 로고    scopus 로고
    • Academic obsessions and classification realities: Ignoring practicalities in supervised classification
    • (D. Banks, L. House, F. R. McMorris, P. Arabie and W. Gaul, eds.). Springer, Berlin
    • HAND, D. J, (2004). Academic obsessions and classification realities: Ignoring practicalities in supervised classification. In Classification, Clustering and Data Mining Applications (D. Banks, L. House, F. R. McMorris, P. Arabie and W. Gaul, eds.) 209-232. Springer, Berlin.
    • (2004) Classification, Clustering and Data Mining Applications , pp. 209-232
    • Hand, D.J.1
  • 20
    • 0040453788 scopus 로고    scopus 로고
    • Statistical classification methods in consumer credit scoring: A review
    • HAND, D. J. and HENLEY, W. E. (1997). Statistical classification methods in consumer credit scoring: A review. J. Roy. Statist. Soc. Ser. A 160 523-541.
    • (1997) J. Roy. Statist. Soc. Ser. A , vol.160 , pp. 523-541
    • Hand, D.J.1    Henley, W.E.2
  • 21
    • 33745889878 scopus 로고    scopus 로고
    • Comment on "Statistical modeling: The two cultures" by L. Breiman
    • HOADLEY, B. (2001). Comment on "Statistical modeling: The two cultures," by L. Breiman. Statist. Sci. 16 220-224.
    • (2001) Statist. Sci. , vol.16 , pp. 220-224
    • Hoadley, B.1
  • 22
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • HOLTE, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 63-90.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 23
    • 19944408787 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Mathematics, Imperial College London
    • JAMAIN, A. (2004). Meta-analysis of classification methods. Ph.D. dissertation, Dept. Mathematics, Imperial College London.
    • (2004) Meta-analysis of Classification Methods
    • Jamain, A.1
  • 24
    • 33745893154 scopus 로고    scopus 로고
    • Mining supervised classification performance studies: A meta-analytic investigation
    • Dept. Mathematics, Imperial College London
    • JAMAIN, A. and HAND, D. J. (2005). Mining supervised classification performance studies: A meta-analytic investigation. Technical report, Dept. Mathematics, Imperial College London.
    • (2005) Technical Report
    • Jamain, A.1    Hand, D.J.2
  • 25
    • 84984734780 scopus 로고    scopus 로고
    • Credit scoring with uncertain class definitions
    • KELLY, M. G and HAND, D. J. (1999). Credit scoring with uncertain class definitions. IMA J. Mathematics Management 10331-345.
    • (1999) IMA J. Mathematics Management , vol.10 , pp. 331-345
    • Kelly, M.G.1    Hand, D.J.2
  • 26
    • 0002665505 scopus 로고    scopus 로고
    • Defining the goals to optimise data mining performance
    • (R. Agrawal, P. Stolorz and G. Piatetsky-Shapiro, eds.). AAAI Press, Menlo Park, CA
    • KELLY, M. G., HAND, D. J. and ADAMS, N. M. (1998). Defining the goals to optimise data mining performance. In Proc. Fourth International Conference on Knowledge Discovery and Data Mining (R. Agrawal, P. Stolorz and G. Piatetsky-Shapiro, eds.) 234-238. AAAI Press, Menlo Park, CA.
    • (1998) Proc. Fourth International Conference on Knowledge Discovery and Data Mining , pp. 234-238
    • Kelly, M.G.1    Hand, D.J.2    Adams, N.M.3
  • 29
    • 0141804082 scopus 로고    scopus 로고
    • Detecting concept drift with support vector machines
    • (P. Langley, ed.). Morgan Kaufmann, San Francisco
    • KLINKENBERG, R. and THORSTEN, J. (2000). Detecting concept drift with support vector machines. In Proc. 17th International Conference on Machine Learning (P. Langley, ed.) 487-494. Morgan Kaufmann, San Francisco.
    • (2000) Proc. 17th International Conference on Machine Learning , pp. 487-494
    • Klinkenberg, R.1    Thorsten, J.2
  • 30
    • 85166317163 scopus 로고    scopus 로고
    • Approaches to online learning and concept drift for user identification in computer security
    • (R. Agrawal, P. Stolorz and G. Piatetsky-Shapiro, eds.). AAAI Press, Menlo Park, CA
    • LANE, T. and BRODLEY, C. E. (1998). Approaches to online learning and concept drift for user identification in computer security. In Proc. Fourth International Conference on Knowledge Discovery and Data Mining (R. Agrawal, P. Stolorz and G. Piatetsky-Shapiro, eds.) 259-263. AAAI Press, Menlo Park, CA.
    • (1998) Proc. Fourth International Conference on Knowledge Discovery and Data Mining , pp. 259-263
    • Lane, T.1    Brodley, C.E.2
  • 32
    • 0036602708 scopus 로고    scopus 로고
    • Direct versus indirect credit scoring classifications
    • LI, H. G. and HAND, D. J. (2002). Direct versus indirect credit scoring classifications. J. Operational Research Society 53 647-654.
    • (2002) J. Operational Research Society , vol.53 , pp. 647-654
    • Li, H.G.1    Hand, D.J.2
  • 34
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • MINGERS, J. (1989). An empirical comparison of pruning methods for decision tree induction. Machine Learning 4 227-243.
    • (1989) Machine Learning , vol.4 , pp. 227-243
    • Mingers, J.1
  • 36
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • PROVOST, F. and FAWCETT, T. (2001). Robust classification for imprecise environments. Machine Learning 42 203-231.
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 37
    • 0000686085 scopus 로고
    • Learning hard concepts through constructive induction: Framework and rationale
    • RENDELL, A. L. and SESHU, R. (1990). Learning hard concepts through constructive induction: Framework and rationale. Computational Intelligence 6 247-270.
    • (1990) Computational Intelligence , vol.6 , pp. 247-270
    • Rendell, A.L.1    Seshu, R.2
  • 39
    • 0001384863 scopus 로고
    • Quantitative methods in credit management: A survey
    • ROSENBERG, E. and GLEIT, A. (1994). Quantitative methods in credit management: A survey. Oper. Res. 42 589-613.
    • (1994) Oper. Res. , vol.42 , pp. 589-613
    • Rosenberg, E.1    Gleit, A.2
  • 40
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • SALZBERG, S. L. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1 317-328.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-328
    • Salzberg, S.L.1
  • 41
    • 0026119038 scopus 로고
    • Symbolic and neural learning algorithms: An experimental comparison
    • SHAVLIK, J., MOONEY, R. J. and TOWELL, G. (1991). Symbolic and neural learning algorithms: An experimental comparison. Machine Learning 6 111-143.
    • (1991) Machine Learning , vol.6 , pp. 111-143
    • Shavlik, J.1    Mooney, R.J.2    Towell, G.3
  • 42
    • 0001466281 scopus 로고    scopus 로고
    • A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers
    • THOMAS, L. C. (2000). A survey of credit and behavioural scoring: Forecasting financial risk of lending to consumers. International J. Forecasting 16 149-172.
    • (2000) International J. Forecasting , vol.16 , pp. 149-172
    • Thomas, L.C.1
  • 46
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • WIDMER, G. and KUBAT, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine Learning 2369-101.
    • (1996) Machine Learning , pp. 2369-3101
    • Widmer, G.1    Kubat, M.2
  • 47
    • 0002082928 scopus 로고    scopus 로고
    • Issues and problems in applying neural computing to target marketing
    • ZAHAVI, J. and LEVIN, N. (1997). Issues and problems in applying neural computing to target marketing. J. Direct Marketing 11(4) 63-75.
    • (1997) J. Direct Marketing , vol.11 , Issue.4 , pp. 63-75
    • Zahavi, J.1    Levin, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.