메뉴 건너뛰기




Volumn 26, Issue 15, 2005, Pages 2463-2473

On naive Bayesian fusion of dependent classifiers

Author keywords

Best dependent classifiers; Classifier fusion; Independent classifiers; Naive Bayesian fusion

Indexed keywords

COMPUTATIONAL COMPLEXITY; PROBABILITY;

EID: 25844518769     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2005.05.003     Document Type: Article
Times cited : (22)

References (14)
  • 1
    • 0029756565 scopus 로고    scopus 로고
    • Information combination operators for data fusion: A comparative review with classification
    • I. Bloch Information combination operators for data fusion: A comparative review with classification IEEE Trans. Systems Man Cybernet. 26 1 1996 52 67
    • (1996) IEEE Trans. Systems Man Cybernet. , vol.26 , Issue.1 , pp. 52-67
    • Bloch, I.1
  • 2
    • 0035458249 scopus 로고    scopus 로고
    • A comparison of decision-level sensor-fusion methods for anti-personnel landmine detection
    • F. Cremer, K. Schutte, J.G.M. Schavemaker, and E. den Breejen A comparison of decision-level sensor-fusion methods for anti-personnel landmine detection Inform. Fusion 2 2001 187 208
    • (2001) Inform. Fusion , vol.2 , pp. 187-208
    • Cremer, F.1    Schutte, K.2    Schavemaker, J.G.M.3    Den Breejen, E.4
  • 3
    • 0036833267 scopus 로고    scopus 로고
    • Plurality voting based multiple classifier systems: Statistically independent with respect to dependent classifier sets
    • M. Demirekler, and H. AltInçay Plurality voting based multiple classifier systems: Statistically independent with respect to dependent classifier sets Pattern Recogn. 35 11 2002 2365 2379
    • (2002) Pattern Recogn. , vol.35 , Issue.11 , pp. 2365-2379
    • Demirekler, M.1    Altinçay, H.2
  • 5
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos, and M. Pazzani On the optimality of the simple Bayesian classifier under zero-one loss Mach. Learning 29 1997 103 130
    • (1997) Mach. Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 7
    • 0031169205 scopus 로고    scopus 로고
    • Optimal approximation of discrete probability distribution with kth-order dependency and its application to combining multiple classifiers
    • H.J. Kang, K. Kim, and J.H. Kim Optimal approximation of discrete probability distribution with kth-order dependency and its application to combining multiple classifiers Pattern Recogn. Lett. 18 1997 515 523
    • (1997) Pattern Recogn. Lett. , vol.18 , pp. 515-523
    • Kang, H.J.1    Kim, K.2    Kim, J.H.3
  • 10
    • 84957069091 scopus 로고    scopus 로고
    • Naive (Bayes) at forty: The independence assumption in information retrieval
    • C. Nédellec C. Rouveirol Springer-Verlag Heidelberg, DE
    • D.D. Lewis Naive (Bayes) at forty: The independence assumption in information retrieval C. Nédellec C. Rouveirol Proceedings of ECML-98, 10th European Conference on Machine Learning, Chemnitz, DE vol. 1398 1998 Springer-Verlag Heidelberg, DE 4 15
    • (1998) Proceedings of ECML-98, 10th European Conference on Machine Learning, Chemnitz, de , vol.1398 , pp. 4-15
    • Lewis, D.D.1
  • 13
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • L. Xu, A. Krzyzak, and C.Y. Suen Methods of combining multiple classifiers and their applications to handwriting recognition IEEE Trans. Systems Man Cybernet. 22 1992 418 435
    • (1992) IEEE Trans. Systems Man Cybernet. , vol.22 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.