-
1
-
-
0001025146
-
Query learning strategies using Boosting, and Bagging
-
Madison, WI
-
N. Abe, and H. Mamitsuka. Query learning strategies using Boosting, and Bagging. In Proceedings of the 15th International Conference onMachine Learning, pages 1-9, Madison, WI, 1998.
-
(1998)
Proceedings of the 15th International Conference onMachine Learning
, pp. 1-9
-
-
Abe, N.1
Mamitsuka, H.2
-
2
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for datamining applications
-
Seattle, WA
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for datamining applications. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 94-105, Seattle, WA, 1998.
-
(1998)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
3
-
-
0038809899
-
Use of Dempster-Shafer theory to combine classifiers which use different class boundaries
-
M. R. Ahmadzadeh, and M. Petrou. Use of Dempster-Shafer theory to combine classifiers which use different class boundaries. Pattern Analysis, and Application, 6(1): 41-46, 2003.
-
(2003)
Pattern Analysis, and Application
, vol.6
, Issue.1
, pp. 41-46
-
-
Ahmadzadeh, M.R.1
Petrou, M.2
-
4
-
-
4344710606
-
A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence
-
A. Al-Ani, and M. Deriche. A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence. Journal of Artificial Intelligence Research, 17(1): 333-361, 2002.
-
(2002)
Journal of Artificial Intelligence Research
, vol.17
, Issue.1
, pp. 333-361
-
-
Al-Ani, A.1
Deriche, M.2
-
5
-
-
0030235637
-
Error reduction through learning multiple descriptions
-
K. M. Ali, and M. J. Pazzani. Error reduction through learning multiple descriptions. Machine Learning, 24(3): 173-202, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.3
, pp. 173-202
-
-
Ali, K.M.1
Pazzani, M.J.2
-
9
-
-
0029484103
-
Survey, and critique of techniques for extracting rules from trained artificial neural networks
-
R. Andrews, J. Diederich, and A. B. Tickle. Survey, and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8(6): 373-389, 1995.
-
(1995)
Knowledge-Based Systems
, vol.8
, Issue.6
, pp. 373-389
-
-
Andrews, R.1
Diederich, J.2
Tickle, A.B.3
-
10
-
-
0347172110
-
OPTICS: Ordering points to identify the clustering structure
-
Philadelphia, PA
-
M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering points to identify the clustering structure. In Proceedings of the ACM SIGMOD International Conference onManagement of Data, pages 49-60, Philadelphia, PA, 1999.
-
(1999)
Proceedings of the ACM SIGMOD International Conference onManagement of Data
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.2
Kriegel, H.-P.3
Sander, J.4
-
12
-
-
33845633261
-
Ensemble forecasting of species distributions
-
M. B. Araújo, and M. New. Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1): 42-47, 2007.
-
(2007)
Trends in Ecology & Evolution
, vol.22
, Issue.1
, pp. 42-47
-
-
Araújo, M.B.1
New, M.2
-
13
-
-
0027873988
-
General bounds on statistical query learning, and PAC learning with noise via hypothesis boosting
-
Palo Alto, CA
-
J. A. Aslam, and S. E. Decatur. General bounds on statistical query learning, and PAC learning with noise via hypothesis boosting. In Proceedings of the 35th IEEE Annual Symposium on Foundations of Computer Science, pages 282-291, Palo Alto, CA, 1993.
-
(1993)
Proceedings of the 35th IEEE Annual Symposium on Foundations of Computer Science
, pp. 282-291
-
-
Aslam, J.A.1
Decatur, S.E.2
-
15
-
-
38049188202
-
Seeing the forest through the trees: Learning a comprehensible model froman ensemble
-
Warsaw, Poland
-
A. V. Assche, and H. Blockeel. Seeing the forest through the trees: Learning a comprehensible model froman ensemble. In Proceedings of the 18th European Conference onMachine Learning, pages 418-429, Warsaw, Poland, 2007.
-
(2007)
Proceedings of the 18th European Conference onMachine Learning
, pp. 418-429
-
-
Assche, A.V.1
Blockeel, H.2
-
17
-
-
61449214257
-
Fuzzy ensemble clustering based on random projections for DNA microarray data analysis
-
R. Avogadri, and G. Valentini. Fuzzy ensemble clustering based on random projections for DNA microarray data analysis. Artificial Intelligence in Medicine, 45(2-3): 173-183, 2009.
-
(2009)
Artificial Intelligence in Medicine
, vol.45
, Issue.2-3
, pp. 173-183
-
-
Avogadri, R.1
Valentini, G.2
-
19
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
Banff, Canada
-
F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In Proceedings of the 21st International Conference onMachine Learning, Banff, Canada, 2004.
-
(2004)
Proceedings of the 21st International Conference onMachine Learning
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
20
-
-
0037337904
-
Clustering ensembles of neural network models
-
B. Bakker, and T. Heskes. Clustering ensembles of neural network models. Neural Networks, 16(2): 261-269, 2003.
-
(2003)
Neural Networks
, vol.16
, Issue.2
, pp. 261-269
-
-
Bakker, B.1
Heskes, T.2
-
21
-
-
38049078541
-
Margin based active learning
-
San Diego, CA
-
M.-F. Balcan, A. Z. Broder, and T. Zhang. Margin based active learning. In Proceedings of the 20th Annual Conference on Learning Theory, pages 35-50, San Diego, CA, 2007.
-
(2007)
Proceedings of the 20th Annual Conference on Learning Theory
, pp. 35-50
-
-
Balcan, M.-F.1
Broder, A.Z.2
Zhang, T.3
-
22
-
-
10444241978
-
Ensemble diversitymeasures, and their application to thinning
-
R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. Ensemble diversitymeasures, and their application to thinning. Information Fusion, 6(1): 49-62, 2005.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 49-62
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
23
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
E. Bauer, and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2): 105-139, 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
24
-
-
0242456809
-
Exploiting unlabeled data in ensemble methods
-
Edmonton, Canada
-
K. Bennett, A. Demiriz, and R. Maclin. Exploiting unlabeled data in ensemble methods. In Proceedings of the 8th ACM SIGKDD International Conference on KnowledgeDiscovery, and DataMining, pages 289-296, Edmonton, Canada, 2002.
-
(2002)
Proceedings of the 8th ACM SIGKDD International Conference on KnowledgeDiscovery, and DataMining
, pp. 289-296
-
-
Bennett, K.1
Demiriz, A.2
Maclin, R.3
-
25
-
-
33751531805
-
Aggregate features, and AdaBoost for music classification
-
J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl. Aggregate features, and AdaBoost for music classification. Machine Learning, 65(2-3): 473-484, 2006.
-
(2006)
Machine Learning
, vol.65
, Issue.2-3
, pp. 473-484
-
-
Bergstra, J.1
Casagrande, N.2
Erhan, D.3
Eck, D.4
Kégl, B.5
-
26
-
-
50649109430
-
The combination of multiple classifiers using an evidential reasoning approach
-
Y. Bi, J. Guan, and D. Bell. The combination of multiple classifiers using an evidential reasoning approach. Artificial Intelligence, 172(15): 1731-1751, 2008.
-
(2008)
Artificial Intelligence
, vol.172
, Issue.15
, pp. 1731-1751
-
-
Bi, Y.1
Guan, J.2
Bell, D.3
-
28
-
-
0003857778
-
-
Technical Report TR-97-021, Department of Electrical Engineering, and Computer Science, University of California, Berkeley, CA
-
J. A. Bilmes. A gentle tutorial of the EM algorithm, and its applications to parameter estimation for Gaussian mixture, and hidden Markov models. Technical Report TR-97-021, Department of Electrical Engineering, and Computer Science, University of California, Berkeley, CA, 1998.
-
(1998)
A gentle tutorial of the EM algorithm, and its applications to parameter estimation for Gaussian mixture, and hidden Markov models
-
-
Bilmes, J.A.1
-
32
-
-
0031620208
-
Combining labeled, and unlabeled data with cotraining
-
Madison, WI
-
A. Blum, and T. Mitchell. Combining labeled, and unlabeled data with cotraining. In Proceedings of the 11th Annual Conference on Computational Learning Theory, pages 92-100, Madison, WI, 1998.
-
(1998)
Proceedings of the 11th Annual Conference on Computational Learning Theory
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
33
-
-
85162047207
-
FilterBoost: Regression, and classification on large datasets
-
J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, MIT Press, Cambridge, MA
-
J. K. Bradley, and R. E. Schapire. FilterBoost: Regression, and classification on large datasets. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 185-192. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems 20
, pp. 185-192
-
-
Bradley, J.K.1
Schapire, R.E.2
-
35
-
-
9444295412
-
Support vector machines with example dependent costs
-
Cavtat-Dubrovnik, Croatia
-
U. Brefeld, P. Geibel, and F. Wysotzki. Support vector machines with example dependent costs. In Proceedings of the 14th European Conference on Machine Learning, pages 23-34, Cavtat-Dubrovnik, Croatia, 2003.
-
(2003)
Proceedings of the 14th European Conference on Machine Learning
, pp. 23-34
-
-
Brefeld, U.1
Geibel, P.2
Wysotzki, F.3
-
36
-
-
0003619255
-
-
Technical Report, Statistics Department, University of California, Berkeley, CA
-
L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department, University of California, Berkeley, CA, 1996a.
-
(1996)
Bias, variance, and arcing classifiers
, pp. 460
-
-
Breiman, L.1
-
37
-
-
0030196364
-
Stacked regressions
-
L. Breiman. Stacked regressions. Machine Learning, 24(1): 49-64, 1996b.
-
(1996)
Machine Learning
, vol.24
, Issue.1
, pp. 49-64
-
-
Breiman, L.1
-
38
-
-
0004140497
-
-
Technical report, Department of Statistics, University of California
-
L. Breiman. Out-of-bag estimation. Technical report, Department of Statistics, University of California, 1996c.
-
(1996)
Out-of-bag estimation
-
-
Breiman, L.1
-
39
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, 1996d.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
40
-
-
0000275022
-
Prediction games, and arcing algorithms
-
L. Breiman. Prediction games, and arcing algorithms. Neural Computation, 11(7): 1493-1517, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
41
-
-
0034276320
-
Randomizing outputs to increase prediction accuracy
-
L. Breiman. Randomizing outputs to increase prediction accuracy. Machine Learning, 40(3): 113-120, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.3
, pp. 113-120
-
-
Breiman, L.1
-
42
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1): 5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
43
-
-
14644395930
-
Population theory for boosting ensembles
-
L. Breiman. Population theory for boosting ensembles. Annals of Statistics, 32(1): 1-11, 2004.
-
(2004)
Annals of Statistics
, vol.32
, Issue.1
, pp. 1-11
-
-
Breiman, L.1
-
44
-
-
0003802343
-
-
Chapman, and Hall/CRC, Boca Raton, FL
-
L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification, and Regression Trees. Chapman, and Hall/CRC, Boca Raton, FL, 1984.
-
(1984)
Classification, and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Stone, C.J.3
Olshen, R.A.4
-
47
-
-
10444221886
-
Diversity creation methods: A survey, and categorisation
-
G. Brown, J. L. Wyatt, R. Harris, and X. Yao. Diversity creation methods: A survey, and categorisation. Information Fusion, 6(1): 5-20, 2005a.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.L.2
Harris, R.3
Yao, X.4
-
50
-
-
0043245810
-
Boosting with the l2 loss: Regression, and classification
-
P. Bühlmann, and B. Yu. Boosting with the l2 loss: Regression, and classification. Journal of the American Statistical Association, 98(462): 324-339, 2003.
-
(2003)
Journal of the American Statistical Association
, vol.98
, Issue.462
, pp. 324-339
-
-
Bühlmann, P.1
Yu, B.2
-
51
-
-
0043115283
-
The effect of bagging on variance, bias, and mean squared error
-
AT&T Labs-Research
-
A. Buja, and W. Stuetzle. The effect of bagging on variance, bias, and mean squared error. Technical report, AT&T Labs-Research, 2000a.
-
(2000)
Technical report
-
-
Buja, A.1
Stuetzle, W.2
-
53
-
-
33746171809
-
Observations on bagging
-
A. Buja, and W. Stuetzle. Observations on bagging. Statistica Sinica, 16(2): 323-351, 2006.
-
(2006)
Statistica Sinica
, vol.16
, Issue.2
, pp. 323-351
-
-
Buja, A.1
Stuetzle, W.2
-
54
-
-
33745797526
-
Ensemble selection from libraries of models
-
Banff, Canada
-
R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection from libraries of models. In Proceedings of the 21st International Conference onMachine Learning, pages 18-23, Banff, Canada, 2004.
-
(2004)
Proceedings of the 21st International Conference onMachine Learning
, pp. 18-23
-
-
Caruana, R.1
Niculescu-Mizil, A.2
Crew, G.3
Ksikes, A.4
-
55
-
-
26944481912
-
Designing ensembles of fuzzy classification systems: An immune-inspired approach
-
Banff, Canada
-
P. D. Castro, G. P. Coelho, M. F. Caetano, and F. J. V. Zuben. Designing ensembles of fuzzy classification systems: An immune-inspired approach. In Proceedings of the 4th International Conference on Artificial Immune Systems, pages 469-482, Banff, Canada, 2005.
-
(2005)
Proceedings of the 4th International Conference on Artificial Immune Systems
, pp. 469-482
-
-
Castro, P.D.1
Coelho, G.P.2
Caetano, M.F.3
Zuben, F.J.V.4
-
56
-
-
0000159863
-
Toward scalable learning with non-uniform class, and cost distributions: A case study in credit card fraud detection
-
New York, NY
-
P. Chan, and S. Stolfo. Toward scalable learning with non-uniform class, and cost distributions: A case study in credit card fraud detection. In Proceeding of the 4th International Conference on Knowledge Discovery, and Data Mining, pages 164-168, New York, NY, 1998.
-
(1998)
Proceeding of the 4th International Conference on Knowledge Discovery, and Data Mining
, pp. 164-168
-
-
Chan, P.1
Stolfo, S.2
-
57
-
-
0033336136
-
Distributed datamining in credit card fraud detection
-
P. K. Chan, W. Fan, A. L. Prodromidis, and S. J. Stolfo. Distributed datamining in credit card fraud detection. IEEE Intelligent Systems, 14(6): 67-74, 1999.
-
(1999)
IEEE Intelligent Systems
, vol.14
, Issue.6
, pp. 67-74
-
-
Chan, P.K.1
Fan, W.2
Prodromidis, A.L.3
Stolfo, S.J.4
-
58
-
-
68049121093
-
Anomaly detection: A survey
-
V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Computing Surveys, 41(3): 1-58, 2009.
-
(2009)
ACM Computing Surveys
, vol.41
, Issue.3
, pp. 1-58
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
60
-
-
33749252873
-
-
MIT Press, Cambridge, MA
-
O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press, Cambridge, MA, 2006.
-
(2006)
Semi-Supervised Learning
-
-
Chapelle, O.1
Schölkopf, B.2
Zien, A.3
-
61
-
-
37949004300
-
Datamining for imbalanced datasets: An overview
-
O. Maimon, and L. Rokach, editors, Springer, New York, NY
-
N. V. Chawla. Datamining for imbalanced datasets: An overview. In O. Maimon, and L. Rokach, editors, The Data Mining, and Knowledge Discovery Handbook, pages 853-867. Springer, New York, NY, 2006.
-
(2006)
The Data Mining, and Knowledge Discovery Handbook
, pp. 853-867
-
-
Chawla, N.V.1
-
62
-
-
0346586663
-
SMOTE: Synthetic minority oversampling technique
-
N. V. Chawla, K.W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic minority oversampling technique. Journal of Artificial Intelligence Research, 16: 321-357, 2002.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
63
-
-
9444297357
-
SMOTEBoost: Improving prediction of theminority class in boosting
-
Cavtat-Dubrovnik, Croatia
-
N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. SMOTEBoost: Improving prediction of theminority class in boosting. In Proceedings of the 7th European Conference on Principles, and Practice of Knowledge Discovery in Databases, pages 107-119, Cavtat-Dubrovnik, Croatia, 2003.
-
(2003)
Proceedings of the 7th European Conference on Principles, and Practice of Knowledge Discovery in Databases
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
64
-
-
40949161246
-
A probabilistic ensemble pruning algorithm
-
Hong Kong, China
-
H. Chen, P.Tiño, and X. Yao. A probabilistic ensemble pruning algorithm. In Working Notes of ICDM’06 Workshop on Optimization-Based Data Mining Techniques with Applications, pages 878-882, Hong Kong, China, 2006.
-
(2006)
Working Notes of ICDM’06 Workshop on Optimization-Based Data Mining Techniques with Applications
, pp. 878-882
-
-
Chen, H.1
Tiño, P.2
Yao, X.3
-
65
-
-
67749105990
-
Predictive ensemble pruning by expectation propagation
-
H. Chen, P. Tiňo, and X. Yao. Predictive ensemble pruning by expectation propagation. IEEE Transactions on Knowledge, and Data Engineering, 21(7): 999-1013, 2009.
-
(2009)
IEEE Transactions on Knowledge, and Data Engineering
, vol.21
, Issue.7
, pp. 999-1013
-
-
Chen, H.1
Tiňo, P.2
Yao, X.3
-
66
-
-
2542484580
-
Comparing Bayes model averaging, and stacking when model approximation error cannot be ignored
-
B. Clarke. Comparing Bayes model averaging, and stacking when model approximation error cannot be ignored. Journal ofMachine Learning Research, 4: 683-712, 2003.
-
(2003)
Journal ofMachine Learning Research
, vol.4
, pp. 683-712
-
-
Clarke, B.1
-
67
-
-
84856720362
-
GA-based selection of components for heterogeneous ensembles of support vector machines
-
Canberra, Australia
-
A. L. V. Coelho, C. A. M. Lima, and F. J. V. Zuben. GA-based selection of components for heterogeneous ensembles of support vector machines. In Proceedings of the Congress on Evolutionary Computation, pages 2238-2244, Canberra, Australia, 2003.
-
(2003)
Proceedings of the Congress on Evolutionary Computation
, pp. 2238-2244
-
-
Coelho, A.L.V.1
Lima, C.A.M.2
Zuben, F.J.V.3
-
68
-
-
84973587732
-
A coefficient of agreement for nominal scales
-
J. Cohen. A coefficient of agreement for nominal scales. Educational, and PsychologicalMeasurement, 20(1): 37-46, 1960.
-
(1960)
Educational, and PsychologicalMeasurement
, vol.20
, Issue.1
, pp. 37-46
-
-
Cohen, J.1
-
69
-
-
67349154442
-
Information fusion for computer security: State of the art, and open issues
-
I. Corona, G. Giacinto, C. Mazzariello, F. Roli, and C. Sansone. Information fusion for computer security: State of the art, and open issues. Information Fusion, 10(4): 274-284, 2009.
-
(2009)
Information Fusion
, vol.10
, Issue.4
, pp. 274-284
-
-
Corona, I.1
Giacinto, G.2
Mazzariello, C.3
Roli, F.4
Sansone, C.5
-
72
-
-
33750988502
-
On the use of selective ensembles for relevance classification in case-based web search
-
Fethiye, Turkey
-
M. Coyle, and B. Smyth. On the use of selective ensembles for relevance classification in case-based web search. In Proceedings of the 8th European Conference on Case-Based Reasoning, pages 370-384, Fethiye, Turkey, 2006.
-
(2006)
Proceedings of the 8th European Conference on Case-Based Reasoning
, pp. 370-384
-
-
Coyle, M.1
Smyth, B.2
-
73
-
-
0036568032
-
On the learnability, and design of output codes for multiclass problems
-
K. Crammer, and Y. Singer. On the learnability, and design of output codes for multiclass problems. Machine Learning, 47(2-3): 201-233, 2002.
-
(2002)
Machine Learning
, vol.47
, Issue.2-3
, pp. 201-233
-
-
Crammer, K.1
Singer, Y.2
-
74
-
-
0003798635
-
-
Cambridge University Press, Cambridge, UK
-
N. Cristianini, and J. Shawe-Taylor. An Introduction to Support Vector Machines, and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, UK, 2000.
-
(2000)
An Introduction to Support Vector Machines, and Other Kernel-Based Learning Methods
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
76
-
-
33646403804
-
PERT - perfect random tree ensembles
-
CostaMesa, CA
-
A. Cutler, and G. Zhao. PERT - perfect random tree ensembles. In Proceedings of the 33rd Symposium on the Interface of Computing Science, and Statistics, pages 490-497, CostaMesa, CA, 2001.
-
(2001)
Proceedings of the 33rd Symposium on the Interface of Computing Science, and Statistics
, pp. 490-497
-
-
Cutler, A.1
Zhao, G.2
-
78
-
-
28244499387
-
Semi-supervised marginboost
-
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, MIT Press, Cambridge, MA
-
F. d’Alché-Buc, Y. Grandvalet, and C. Ambroise. Semi-supervised marginboost. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 553-560. MIT Press, Cambridge, MA, 2002.
-
(2002)
Advances in Neural Information Processing Systems 14
, pp. 553-560
-
-
D’Alché-Buc, F.1
Grandvalet, Y.2
Ambroise, C.3
-
80
-
-
84898947320
-
Analysis of a greedy active learning strategy
-
L. Saul, Y. Weiss, and L. Bottou, editors, MIT Press, Cambridge, MA
-
S. Dasgupta. Analysis of a greedy active learning strategy. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 337-344. MIT Press, Cambridge, MA, 2005.
-
(2005)
Advances in Neural Information Processing Systems 17
, pp. 337-344
-
-
Dasgupta, S.1
-
81
-
-
71049162986
-
Coarse sample complexity bounds for active learning
-
Y. Weiss, B. Schölkopf, and J. Platt, editors, MIT Press, Cambridge, MA
-
S. Dasgupta. Coarse sample complexity bounds for active learning. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 235-242. MIT Press, Cambridge, MA, 2006.
-
(2006)
Advances in Neural Information Processing Systems 18
, pp. 235-242
-
-
Dasgupta, S.1
-
83
-
-
26944439047
-
Analysis of perceptron-based active learning
-
Bertinoro, Italy
-
S. Dasgupta, A. T. Kalai, and C. Monteleoni. Analysis of perceptron-based active learning. In Proceedings of the 18th Annual Conference on Learning Theory, pages 249-263, Bertinoro, Italy, 2005.
-
(2005)
Proceedings of the 18th Annual Conference on Learning Theory
, pp. 249-263
-
-
Dasgupta, S.1
Kalai, A.T.2
Monteleoni, C.3
-
84
-
-
34250727580
-
The relationship between precision-recall, and ROC curves
-
Pittsburgh, PA
-
J. Davis, and M. Goadrich. The relationship between precision-recall, and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, pages 233-240, Pittsburgh, PA, 2006.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 233-240
-
-
Davis, J.1
Goadrich, M.2
-
85
-
-
0002546287
-
Efficient algorithms for agglomerative hierarchical clustering methods
-
W. H. E. Day, and H. Edelsbrunner. Efficient algorithms for agglomerative hierarchical clustering methods. Journal of Classification, 1: 7-24, 1984.
-
(1984)
Journal of Classification
, vol.1
, pp. 7-24
-
-
Day, W.H.E.1
Edelsbrunner, H.2
-
87
-
-
0036161257
-
Linear programming boosting via column generation
-
A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column generation. Machine Learning, 46(1-3): 225-254, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 225-254
-
-
Demiriz, A.1
Bennett, K.P.2
Shawe-Taylor, J.3
-
88
-
-
0000516376
-
Upper, and lower probabilities induced by a multivalued mapping
-
A. P. Dempster. Upper, and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38(2): 325-339, 1967.
-
(1967)
Annals of Mathematical Statistics
, vol.38
, Issue.2
, pp. 325-339
-
-
Dempster, A.P.1
-
89
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Soceity, Series B, 39(1): 1-38, 1977.
-
(1977)
Journal of the Royal Statistical Soceity, Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
90
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal ofMachine Learning Research, 7: 1-30, 2006.
-
(2006)
Journal ofMachine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
91
-
-
24044449939
-
A study on the performances of dynamic classifier selection based on local accuracy estimation
-
L. Didaci, G. Giacinto, F. Roli, and G. L. Marcialis. A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recognition, 38(11): 2188-2191, 2005.
-
(2005)
Pattern Recognition
, vol.38
, Issue.11
, pp. 2188-2191
-
-
Didaci, L.1
Giacinto, G.2
Roli, F.3
Marcialis, G.L.4
-
92
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7): 1895-1923, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
94
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2): 139-157, 2000b.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
98
-
-
0002426982
-
Knowledge discovery via multiple models
-
P. Domingos. Knowledge discovery via multiple models. Intelligent Data Analysis, 2(1-4): 187-202, 1998.
-
(1998)
Intelligent Data Analysis
, vol.2
, Issue.1-4
, pp. 187-202
-
-
Domingos, P.1
-
100
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
P. Domingos, and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2-3): 103-137, 1997.
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-137
-
-
Domingos, P.1
Pazzani, M.2
-
102
-
-
33748991193
-
Cost curves: An improved method for visualizing classifier performance
-
C. Drummond, and R. C. Holte. Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1): 95-130, 2006.
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 95-130
-
-
Drummond, C.1
Holte, R.C.2
-
103
-
-
0003922190
-
-
Wiley, New York, NY, 2nd edition
-
R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, New York, NY, 2nd edition, 2000.
-
(2000)
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
106
-
-
34447532140
-
Boosted landmarks of contextual descriptors, and Forest-ECOC: A novel framework to detect, and classify objects in clutter scenes
-
S. Escalera, O. Pujol, and P. Radeva. Boosted landmarks of contextual descriptors, and Forest-ECOC: A novel framework to detect, and classify objects in clutter scenes. Pattern Recognition Letters, 28(13): 1759-1768, 2007.
-
(2007)
Pattern Recognition Letters
, vol.28
, Issue.13
, pp. 1759-1768
-
-
Escalera, S.1
Pujol, O.2
Radeva, P.3
-
108
-
-
84871533042
-
On the decoding process in ternary error-correcting output codes
-
S. Escalera, O. Pujol, and P. Radeva. On the decoding process in ternary error-correcting output codes. IEEE Transaction on Pattern Analysis, and Machine Intelligence, 32(1): 120-134, 2010b.
-
(2010)
IEEE Transaction on Pattern Analysis, and Machine Intelligence
, vol.32
, Issue.1
, pp. 120-134
-
-
Escalera, S.1
Pujol, O.2
Radeva, P.3
-
109
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
A. Estabrooks, T. Jo, and N. Japkowicz. A multiple resampling method for learning from imbalanced data sets. Computational Intelligence, 20(1): 18-36, 2004.
-
(2004)
Computational Intelligence
, vol.20
, Issue.1
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
110
-
-
0000550189
-
A density-based algorithm for discovering clusters in large spatial databases
-
Portland, OR
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. In Proceedings of the 2nd International Conference on Knowledge Discovery, and Data Mining, pages 226-231, Portland, OR, 1996.
-
(1996)
Proceedings of the 2nd International Conference on Knowledge Discovery, and Data Mining
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
111
-
-
0012834533
-
Why so many clustering algorithms - A position paper
-
V. Estivill-Castro. Why so many clustering algorithms - A position paper. SIGKDD Explorations, 4(1): 65-75, 2002.
-
(2002)
SIGKDD Explorations
, vol.4
, Issue.1
, pp. 65-75
-
-
Estivill-Castro, V.1
-
113
-
-
0013316935
-
AdaCost: Misclassification costsensitive boosting
-
Bled, Slovenia
-
W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. AdaCost: Misclassification costsensitive boosting. In Proceedings of the 16th International Conference on Machine Learning, pages 97-105, Bled, Slovenia, 1999.
-
(1999)
Proceedings of the 16th International Conference on Machine Learning
, pp. 97-105
-
-
Fan, W.1
Stolfo, S.J.2
Zhang, J.3
Chan, P.K.4
-
114
-
-
0036931834
-
Pruning, and dynamic scheduling of cost-sensitive ensembles
-
Edmonton, Canada
-
W. Fan, F. Chu, H. Wang, and P. S. Yu. Pruning, and dynamic scheduling of cost-sensitive ensembles. In Proceedings of the 18th National Conference on Artificial Intelligence, pages 146-151, Edmonton, Canada, 2002.
-
(2002)
Proceedings of the 18th National Conference on Artificial Intelligence
, pp. 146-151
-
-
Fan, W.1
Chu, F.2
Wang, H.3
Yu, P.S.4
-
115
-
-
33750313729
-
Is random model better? On its accuracy, and efficiency
-
Melbourne, FL
-
W. Fan, H. Wang, P. S. Yu, and S. Ma. Is random model better? On its accuracy, and efficiency. In Proceedings of the 3rd IEEE International Conferenceon Data Mining, pages 51-58, Melbourne, FL, 2003.
-
(2003)
Proceedings of the 3rd IEEE International Conferenceon Data Mining
, pp. 51-58
-
-
Fan, W.1
Wang, H.2
Yu, P.S.3
Ma, S.4
-
117
-
-
33646017973
-
ROC graphs with instance varying costs
-
T. Fawcett. ROC graphs with instance varying costs. Pattern Recognition Letters, 27(8): 882-891, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.8
, pp. 882-891
-
-
Fawcett, T.1
-
121
-
-
84949787320
-
From ensemble methods to comprehensible models
-
Lübeck, Germany
-
C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. From ensemble methods to comprehensible models. In Proceedings of the 5th International Conference onDiscovery Science, pages 165-177, Lübeck, Germany, 2002.
-
(2002)
Proceedings of the 5th International Conference onDiscovery Science
, pp. 165-177
-
-
Ferri, C.1
Hernández-Orallo, J.2
Ramírez-Quintana, M.J.3
-
123
-
-
0003877646
-
-
JohnWiley & Sons, New York, NY, 2nd edition
-
J. L. Fleiss. StatisticalMethods for Rates, and Proportions. JohnWiley & Sons, New York, NY, 2nd edition, 1981.
-
(1981)
StatisticalMethods for Rates, and Proportions
-
-
Fleiss, J.L.1
-
124
-
-
9444222046
-
Visualizing class probability estimators
-
Cavtat-Dubrovnik, Croatia
-
E. Frank, and M. Hall. Visualizing class probability estimators. In Proceedings of the 7th European Conference on Principles, and Practice of Knowledge Discovery in Databases, pages 168-179, Cavtat-Dubrovnik, Croatia, 2003.
-
(2003)
Proceedings of the 7th European Conference on Principles, and Practice of Knowledge Discovery in Databases
, pp. 168-179
-
-
Frank, E.1
Hall, M.2
-
126
-
-
21244468777
-
Combining multiple clusterings using evidence accumulation
-
A. Fred, and A. K. Jain. Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 27(6): 835-850, 2005.
-
(2005)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.27
, Issue.6
, pp. 835-850
-
-
Fred, A.1
Jain, A.K.2
-
127
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Y. Freund. Boosting a weak learning algorithm by majority. Information, and Computation, 121(2): 256-285, 1995.
-
(1995)
Information, and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
128
-
-
0035371148
-
An adaptive version of the boost bymajority algorithm
-
Y. Freund. An adaptive version of the boost bymajority algorithm. Machine Learning, 43(3): 293-318, 2001.
-
(2001)
Machine Learning
, vol.43
, Issue.3
, pp. 293-318
-
-
Freund, Y.1
-
129
-
-
85055380521
-
A more robust boosting algorithm
-
abs/0905.2138
-
Y. Freund. A more robust boosting algorithm. CORR abs/0905.2138, 2009.
-
(2009)
CORR
-
-
Freund, Y.1
-
130
-
-
84983110889
-
A decision-theoretic generalization of online learning, and an application to boosting
-
Barcelona, Spain
-
Y. Freund, and R. E. Schapire. A decision-theoretic generalization of online learning, and an application to boosting. In Proceedings of the 2nd European Conference on Computational Learning Theory, pages 23-37, Barcelona, Spain, 1995.
-
(1995)
Proceedings of the 2nd European Conference on Computational Learning Theory
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.E.2
-
131
-
-
0031211090
-
A decision-theoretic generalization of on-line learning, and an application to boosting
-
Y. Freund, and R. E. Schapire. A decision-theoretic generalization of on-line learning, and an application to boosting. Journal of Computer, and System Sciences, 55(1): 119-139, 1997.
-
(1997)
Journal of Computer, and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
132
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3): 133-168, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.2-3
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
133
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting (with discussions)
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting (with discussions). Annals of Statistics, 28(2): 337-407, 2000.
-
(2000)
Annals of Statistics
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
134
-
-
33750494541
-
On bagging, and nonlinear estimation
-
J. H. Friedman, and P. Hall. On bagging, and nonlinear estimation. Journal of Statistical Planning, and Inference, 137(3): 669-683, 2007.
-
(2007)
Journal of Statistical Planning, and Inference
, vol.137
, Issue.3
, pp. 669-683
-
-
Friedman, J.H.1
Hall, P.2
-
136
-
-
0031276011
-
Bayesian network classifiers
-
N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29(2): 131-163, 1997.
-
(1997)
Machine Learning
, vol.29
, Issue.2
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
137
-
-
21244501361
-
A theoretical, and experimental analysis of linear combiners for multiple classifier systems
-
G. Fumera, and F. Roli. A theoretical, and experimental analysis of linear combiners for multiple classifier systems. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 27(6): 942-956, 2005.
-
(2005)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.27
, Issue.6
, pp. 942-956
-
-
Fumera, G.1
Roli, F.2
-
138
-
-
78249262911
-
Approximation stability, and boosting
-
Canberra, Australia
-
W. Gao, and Z.-H. Zhou. Approximation stability, and boosting. In Proceedings of the 21st International Conference on Algorithmic Learning Theory, pages 59-73, Canberra, Australia, 2010a.
-
(2010)
Proceedings of the 21st International Conference on Algorithmic Learning Theory
, pp. 59-73
-
-
Gao, W.1
Zhou, Z.-H.2
-
141
-
-
0001942829
-
Neural networks, and the bias/variance dilemma
-
S. Geman, E. Bienenstock, and R. Doursat. Neural networks, and the bias/variance dilemma. Neural Computation, 4(1): 1-58, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
142
-
-
33646430006
-
Extremely randomized trees
-
P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning, 63(1): 3-42, 2006.
-
(2006)
Machine Learning
, vol.63
, Issue.1
, pp. 3-42
-
-
Geurts, P.1
Ernst, D.2
Wehenkel, L.3
-
143
-
-
84957662017
-
Adaptive selection of image classifiers
-
Florence, Italy
-
G. Giacinto, and F. Roli. Adaptive selection of image classifiers. In Proceedings of the 9th International Conference on Image Analysis, and Processing, pages 38-45, Florence, Italy, 1997.
-
(1997)
Proceedings of the 9th International Conference on Image Analysis, and Processing
, pp. 38-45
-
-
Giacinto, G.1
Roli, F.2
-
146
-
-
0035420134
-
Design of effective neural network ensembles for image classification purposes
-
G. Giacinto, and F. Roli. Design of effective neural network ensembles for image classification purposes. Image, and Vision Computing, 19(9-10): 699-707, 2001.
-
(2001)
Image, and Vision Computing
, vol.19
, Issue.9-10
, pp. 699-707
-
-
Giacinto, G.1
Roli, F.2
-
147
-
-
0342838353
-
Design of effective multiple classifier systems by clustering of classifiers
-
Barcelona, Spain
-
G. Giacinto, F. Roli, and G. Fumera. Design of effective multiple classifier systems by clustering of classifiers. In Proceedings of the 15th International Conference on Pattern Recognition, pages 160-163, Barcelona, Spain, 2000.
-
(2000)
Proceedings of the 15th International Conference on Pattern Recognition
, pp. 160-163
-
-
Giacinto, G.1
Roli, F.2
Fumera, G.3
-
148
-
-
0038330235
-
Fusion of multiple classifiers for intrusion detection in computer networks
-
G. Giacinto, F. Roli, and L. Didaci. Fusion of multiple classifiers for intrusion detection in computer networks. Pattern Recognition Letters, 24(12): 1795-1803, 2003.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.12
, pp. 1795-1803
-
-
Giacinto, G.1
Roli, F.2
Didaci, L.3
-
149
-
-
35348821822
-
Intrusion detection in computer networks by a modular ensemble of one-class classifiers
-
G. Giacinto, R. Perdisci, M. D. Rio, and F. Roli. Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Information Fusion, 9(1): 69-82, 2008.
-
(2008)
Information Fusion
, vol.9
, Issue.1
, pp. 69-82
-
-
Giacinto, G.1
Perdisci, R.2
Rio, M.D.3
Roli, F.4
-
150
-
-
26844438590
-
Atmospheric science: Weather forecasting with ensemble methods
-
T. Gneiting, and A. E. Raftery. Atmospheric science: Weather forecasting with ensemble methods. Science, 310(5746): 248-249, 2005.
-
(2005)
Science
, vol.310
, Issue.5746
, pp. 248-249
-
-
Gneiting, T.1
Raftery, A.E.2
-
151
-
-
0034432120
-
Diagnostic information fusion: Requirements flowdown, and interface issues
-
Big Sky, MT
-
K. Goebel, M. Krok, and H. Sutherland. Diagnostic information fusion: Requirements flowdown, and interface issues. In Proceedings of the IEEE Aerospace Conference, volume 6, pages 155-162, Big Sky, MT, 2000.
-
(2000)
Proceedings of the IEEE Aerospace Conference
, vol.6
, pp. 155-162
-
-
Goebel, K.1
Krok, M.2
Sutherland, H.3
-
152
-
-
0003722376
-
-
Addison-Wesley, Boston, MA
-
D. E. Goldberg. Genetic Algorithm in Search, Optimization, and Machine Learning. Addison-Wesley, Boston, MA, 1989.
-
(1989)
Genetic Algorithm in Search, Optimization, and Machine Learning
-
-
Goldberg, D.E.1
-
153
-
-
0003407830
-
-
John Wiley & Sons, New York, NY
-
D. M. Green, and J. M. Swets. Signal Detection Theory, and Psychophysics. John Wiley & Sons, New York, NY, 1966.
-
(1966)
Signal Detection Theory, and Psychophysics
-
-
Green, D.M.1
Swets, J.M.2
-
155
-
-
0032652570
-
ROCK: A robust clustering algorithm for categorical attributes
-
Sydney, Australia
-
S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for categorical attributes. In Proceedings of the 15th International Conference on Data Engineering, pages 512-521, Sydney, Australia, 1999.
-
(1999)
Proceedings of the 15th International Conference on Data Engineering
, pp. 512-521
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
156
-
-
27144479454
-
Learning from imbalanced data sets with boosting, and data generation: The DataBoost-IM approach
-
H. Guo, and H. L. Viktor. Learning from imbalanced data sets with boosting, and data generation: The DataBoost-IM approach. SIGKDD Explorations, 6(1): 30-39, 2004.
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 30-39
-
-
Guo, H.1
Viktor, H.L.2
-
157
-
-
85162003602
-
Discriminative batch mode active learning
-
J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
-
Y. Guo, and D. Schuurmans. Discriminative batch mode active learning. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 593-600. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems 20
, pp. 593-600
-
-
Guo, Y.1
Schuurmans, D.2
-
160
-
-
33744920539
-
Moderate diversity for better cluster ensembles
-
S. T. Hadjitodorov, L. I. Kuncheva, and L. P. Todorova. Moderate diversity for better cluster ensembles. Information Fusion, 7(3): 264-275, 2006.
-
(2006)
Information Fusion
, vol.7
, Issue.3
, pp. 264-275
-
-
Hadjitodorov, S.T.1
Kuncheva, L.I.2
Todorova, L.P.3
-
161
-
-
0035676057
-
On clustering validation techniques
-
M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation techniques. Journal of Intelligent Information Systems, 17(2-3): 107-145, 2001.
-
(2001)
Journal of Intelligent Information Systems
, vol.17
, Issue.2-3
, pp. 107-145
-
-
Halkidi, M.1
Batistakis, Y.2
Vazirgiannis, M.3
-
162
-
-
0003585297
-
-
Morgan Kaufmann, San Francisco, CA, 2nd edition
-
J. Han, and M. Kamber. Data Mining: Concepts, and Techniques. Morgan Kaufmann, San Francisco, CA, 2nd edition, 2006.
-
(2006)
Data Mining: Concepts, and Techniques
-
-
Han, J.1
Kamber, M.2
-
163
-
-
0003987805
-
-
MITPress, Cambridge, MA
-
D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MITPress, Cambridge, MA, 2001.
-
(2001)
Principles of Data Mining
-
-
Hand, D.1
Mannila, H.2
Smyth, P.3
-
164
-
-
69549133517
-
Measuring classifier performance: A coherent alternative to the area under the ROC curve
-
D. J. Hand. Measuring classifier performance: A coherent alternative to the area under the ROC curve. Machine Learning, 77(1): 103-123, 2009.
-
(2009)
Machine Learning
, vol.77
, Issue.1
, pp. 103-123
-
-
Hand, D.J.1
-
165
-
-
0003562954
-
A simple generalization of the area under the ROC curve to multiple classification problems
-
D. J. Hand, and R. J. Till. A simple generalization of the area under the ROC curve to multiple classification problems. Machine Learning, 45(2): 171-186, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.2
, pp. 171-186
-
-
Hand, D.J.1
Till, R.J.2
-
166
-
-
0020524559
-
A method of comparing the areas under receiver operating characteristic curves derived from the same cases
-
J. A. Hanley, and B. J. McNeil. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148(3): 839-843, 1983.
-
(1983)
Radiology
, vol.148
, Issue.3
, pp. 839-843
-
-
Hanley, J.A.1
McNeil, B.J.2
-
167
-
-
0025507176
-
Neural network ensembles
-
L. K. Hansen, and P. Salamon. Neural network ensembles. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 12(10): 993-1001, 1990.
-
(1990)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.12
, Issue.10
, pp. 993-1001
-
-
Hansen, L.K.1
Salamon, P.2
-
169
-
-
0032355984
-
Classification by pairwise coupling
-
T. Hastie, and R. Tibshirani. Classification by pairwise coupling. Annals of Statistics, 26(2): 451-471, 1998.
-
(1998)
Annals of Statistics
, vol.26
, Issue.2
, pp. 451-471
-
-
Hastie, T.1
Tibshirani, R.2
-
170
-
-
0003684449
-
-
Springer, New York, NY
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, New York, NY, 2001.
-
(2001)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
172
-
-
68549133155
-
Learning from imbalanced data
-
H. He, and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on Knowledge, and Data Engineering, 21(9): 1263-1284, 2009.
-
(2009)
IEEE Transactions on Knowledge, and Data Engineering
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
173
-
-
13444273324
-
A cluster ensemble method for clustering categorical data
-
Z. He, X. Xu, and S. Deng. A cluster ensemble method for clustering categorical data. Information Fusion, 6(2): 143-151, 2005.
-
(2005)
Information Fusion
, vol.6
, Issue.2
, pp. 143-151
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
174
-
-
84915005479
-
Probability of error, equivocation, and the Chernoff bound
-
M. Hellman, and J. Raviv. Probability of error, equivocation, and the Chernoff bound. IEEE Transactions on Information Theory, 16(4): 368-372, 1970.
-
(1970)
IEEE Transactions on Information Theory
, vol.16
, Issue.4
, pp. 368-372
-
-
Hellman, M.1
Raviv, J.2
-
175
-
-
62249197666
-
Statistical instance-based pruning in ensembles of independent classifiers
-
D. Hernández-Lobato, G. Martínez-Muñoz, and A. Suárez. Statistical instance-based pruning in ensembles of independent classifiers. IEEE Transaction on Pattern Analysis, and Machine Intelligence, 31(2): 364-369, 2009.
-
(2009)
IEEE Transaction on Pattern Analysis, and Machine Intelligence
, vol.31
, Issue.2
, pp. 364-369
-
-
Hernández-Lobato, D.1
Martínez-Muñoz, G.2
Suárez, A.3
-
176
-
-
79956208533
-
Empirical analysis, and evaluation of approximate techniques for pruning regression bagging ensembles
-
D. Hernández-Lobato, G. Martínez-Muñoz, and A. Suárez. Empirical analysis, and evaluation of approximate techniques for pruning regression bagging ensembles. Neurocomputing, 74(12-13): 2250-2264, 2011.
-
(2011)
Neurocomputing
, vol.74
, Issue.12-13
, pp. 2250-2264
-
-
Hernández-Lobato, D.1
Martínez-Muñoz, G.2
Suárez, A.3
-
177
-
-
0002084001
-
An efficient approach to clustering in large multimedia databases with noise
-
New York, NY
-
A. Hinneburg, and D. A. Keim. An efficient approach to clustering in large multimedia databases with noise. In Proceedings of the 4th International Conference on Knowledge Discovery, and Data Mining, pages 58-65, New York, NY, 1998.
-
(1998)
Proceedings of the 4th International Conference on Knowledge Discovery, and Data Mining
, pp. 58-65
-
-
Hinneburg, A.1
Keim, D.A.2
-
180
-
-
0028259890
-
Decision combination inmultiple classifier systems
-
T. K. Ho, J. J. Hull, and S. N. Srihari. Decision combination inmultiple classifier systems. IEEE Transaction on Pattern Analysis, and Machine Intelligence, 16(1): 66-75, 1994.
-
(1994)
IEEE Transaction on Pattern Analysis, and Machine Intelligence
, vol.16
, Issue.1
, pp. 66-75
-
-
Ho, T.K.1
Hull, J.J.2
Srihari, S.N.3
-
181
-
-
7544223741
-
A survey of outlier detection methodologies
-
V. Hodge, and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2): 85-126, 2004.
-
(2004)
Artificial Intelligence Review
, vol.22
, Issue.2
, pp. 85-126
-
-
Hodge, V.1
Austin, J.2
-
182
-
-
68549086546
-
Semisupervised SVMbatchmode active learning with applications to image retrieval
-
S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Semisupervised SVMbatchmode active learning with applications to image retrieval. ACMTransactions on Information Systems, 27(3): 1-29, 2009.
-
(2009)
ACMTransactions on Information Systems
, vol.27
, Issue.3
, pp. 1-29
-
-
Hoi, S.C.H.1
Jin, R.2
Zhu, J.3
Lyu, M.R.4
-
183
-
-
85055381565
-
Resampling-based selective clustering ensembles
-
Y. Hong, S. Kwong, H. Wang, and Q. Ren. Resampling-based selective clustering ensembles. Pattern Recognition Letters, 41(9): 2742-2756, 2009.
-
(2009)
Pattern Recognition Letters
, vol.41
, Issue.9
, pp. 2742-2756
-
-
Hong, Y.1
Kwong, S.2
Wang, H.3
Ren, Q.4
-
184
-
-
34548139373
-
Acluster ensembleframework for large data sets
-
Taipei, Taiwan, ROC
-
P. Hore, L. Hall, and D. Goldgof. Acluster ensembleframework for large data sets. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pages 3342-3347, Taipei, Taiwan, ROC, 2006.
-
(2006)
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics
, pp. 3342-3347
-
-
Hore, P.1
Hall, L.2
Goldgof, D.3
-
185
-
-
58249083148
-
A scalable framework for cluster ensembles
-
P. Hore, L. O. Hall, and D. B. Goldgof. A scalable framework for cluster ensembles. Pattern Recognition, 42(5): 676-688, 2009.
-
(2009)
Pattern Recognition
, vol.42
, Issue.5
, pp. 676-688
-
-
Hore, P.1
Hall, L.O.2
Goldgof, D.B.3
-
186
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
C.-W. Hsu, and C.-J. Lin. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13(2): 415-425, 2002.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
187
-
-
70349416588
-
Microarray gene cluster identification, and annotation through cluster ensemble, and EM-based informative textual summarization
-
X. Hu, E. K. Park, and X. Zhang. Microarray gene cluster identification, and annotation through cluster ensemble, and EM-based informative textual summarization. IEEE Transactions on Information Technology in Biomedicine, 13(5): 832-840, 2009.
-
(2009)
IEEE Transactions on Information Technology in Biomedicine
, vol.13
, Issue.5
, pp. 832-840
-
-
Hu, X.1
Park, E.K.2
Zhang, X.3
-
188
-
-
84905371122
-
Pose invariant face recognition
-
Grenoble, France
-
F.-J. Huang, Z.-H. Zhou, H.-J. Zhang, and T. Chen. Pose invariant face recognition. In Proceedings of the 4th IEEE International Conference on Automatic Face, and Gesture Recognition, pages 245-250, Grenoble, France, 2000.
-
(2000)
Proceedings of the 4th IEEE International Conference on Automatic Face, and Gesture Recognition
, pp. 245-250
-
-
Huang, F.-J.1
Zhou, Z.-H.2
Zhang, H.-J.3
Chen, T.4
-
189
-
-
85162011798
-
Active learning by querying informative, and representative examples
-
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, MIT Press, Cambridge, MA
-
S.-J. Huang, R. Jin, and Z.-H. Zhou. Active learning by querying informative, and representative examples. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 892-900. MIT Press, Cambridge, MA, 2010.
-
(2010)
Advances in Neural Information Processing Systems 23
, pp. 892-900
-
-
Huang, S.-J.1
Jin, R.2
Zhou, Z.-H.3
-
190
-
-
0029230267
-
A method of combiningmultiple experts for the recognition of unconstrained handwritten numerals
-
Y. S. Huang, and C. Y. Suen. A method of combiningmultiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 17(1): 90-94, 1995.
-
(1995)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.17
, Issue.1
, pp. 90-94
-
-
Huang, Y.S.1
Suen, C.Y.2
-
191
-
-
27144536001
-
Extensions to the k-means algorithm for clustering large data sets with categorical values
-
Z. Huang. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining, and Knowledge Discovery, 2(3): 283-304, 1998.
-
(1998)
Data Mining, and Knowledge Discovery
, vol.2
, Issue.3
, pp. 283-304
-
-
Huang, Z.1
-
192
-
-
80055061923
-
Incorporating boosted regression trees into ecological latent variable models
-
San Francisco, CA
-
R. A. Hutchinson, L.-P. Liu, and T. G. Dietterich. Incorporating boosted regression trees into ecological latent variable models. In Proceedings of the 25th AAAI Conference on Artificial Intelligence, pages 1343-1348, San Francisco, CA, 2011.
-
(2011)
Proceedings of the 25th AAAI Conference on Artificial Intelligence
, pp. 1343-1348
-
-
Hutchinson, R.A.1
Liu, L.-P.2
Dietterich, T.G.3
-
193
-
-
0001940458
-
Adaptivemixtures of local experts
-
R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptivemixtures of local experts. Neural Computation, 3(1): 79-87, 1991.
-
(1991)
Neural Computation
, vol.3
, Issue.1
, pp. 79-87
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
195
-
-
84893405732
-
Data clustering: A review
-
A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3): 264-323, 1999.
-
(1999)
ACM Computing Surveys
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
196
-
-
0037403462
-
Variance, and bias for general loss functions
-
G. M. James. Variance, and bias for general loss functions. Machine Learning, 51(2): 115-135, 2003.
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 115-135
-
-
James, G.M.1
-
197
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Bled, Slovenia
-
T. Joachims. Transductive inference for text classification using support vector machines. In Proceedings of the 16th International Conference on Machine Learning, pages 200-209, Bled, Slovenia, 1999.
-
(1999)
Proceedings of the 16th International Conference on Machine Learning
, pp. 200-209
-
-
Joachims, T.1
-
200
-
-
0001632132
-
Hierarchies of adaptive experts
-
J. E. Moody, S. J. Hanson, and R. Lippmann, editors, Morgan Kaufmann, San Francisco, CA
-
M. I. Jordan, and R. A. Jacobs. Hierarchies of adaptive experts. In J. E. Moody, S. J. Hanson, and R. Lippmann, editors, Advances in Neural Information Processing Systems 4, pages 985-992. Morgan Kaufmann, San Francisco, CA, 1992.
-
(1992)
Advances in Neural Information Processing Systems 4
, pp. 985-992
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
201
-
-
0029617280
-
Convergence results for theEMapproach tomixtures of experts architectures
-
M. I. Jordan, and L. Xu. Convergence results for theEMapproach tomixtures of experts architectures. Neural Networks, 8(9): 1409-1431, 1995.
-
(1995)
Neural Networks
, vol.8
, Issue.9
, pp. 1409-1431
-
-
Jordan, M.I.1
Xu, L.2
-
202
-
-
0032131147
-
A fast, and high quality multilevel scheme for partitioning irregular graphs
-
G. Karypis, and V. Kumar. A fast, and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1): 359-392, 1998.
-
(1998)
SIAM Journal on Scientific Computing
, vol.20
, Issue.1
, pp. 359-392
-
-
Karypis, G.1
Kumar, V.2
-
203
-
-
0030686036
-
Multilevel hypergraph partitioning: Application in VLSI domain
-
Anaheim, CA
-
G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning: Application in VLSI domain. In Proceedings of the 34th Annual Design Automation Conference, pages 526-529, Anaheim, CA, 1997.
-
(1997)
Proceedings of the 34th Annual Design Automation Conference
, pp. 526-529
-
-
Karypis, G.1
Aggarwal, R.2
Kumar, V.3
Shekhar, S.4
-
205
-
-
0032202014
-
Efficient noise tolerant learning fromstatistical queries
-
M. Kearns. Efficient noise tolerant learning fromstatistical queries. Journal of the ACM, 45(6): 983-1006, 1998.
-
(1998)
Journal of the ACM
, vol.45
, Issue.6
, pp. 983-1006
-
-
Kearns, M.1
-
206
-
-
0024863228
-
Cryptographic limitations on learning Boolean formulae, and finite automata
-
Seattle, WA
-
M. Kearns, and L. G. Valiant. Cryptographic limitations on learning Boolean formulae, and finite automata. In Proceedings of the 21st Annual ACM Symposiumon Theory of Computing, pages 433-444, Seattle, WA, 1989.
-
(1989)
Proceedings of the 21st Annual ACM Symposiumon Theory of Computing
, pp. 433-444
-
-
Kearns, M.1
Valiant, L.G.2
-
208
-
-
0037251061
-
Sum versus vote fusion inmultiple classifier systems
-
J. Kittler, and F.M. Alkoot. Sum versus vote fusion inmultiple classifier systems. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 25(1): 110-115, 2003.
-
(2003)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.25
, Issue.1
, pp. 110-115
-
-
Kittler, J.1
Alkoot, F.M.2
-
209
-
-
0032021555
-
On combining classifiers
-
J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 20(3): 226-239, 1998.
-
(1998)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.3
Matas, J.4
-
211
-
-
0003657590
-
-
Addison-Wesley, Reading, MA, 2nd edition
-
D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting, and Searching. Addison-Wesley, Reading, MA, 2nd edition, 1997.
-
(1997)
The Art of Computer Programming, Volume 3: Sorting, and Searching
-
-
Knuth, D.E.1
-
212
-
-
38349135448
-
From dynamic classifier selection to dynamic ensemble selection
-
A. H. Ko, R. Sabourin, and J. A. S. Britto. From dynamic classifier selection to dynamic ensemble selection. Pattern Recognition, 41(5): 1718-1731, 2008.
-
(2008)
Pattern Recognition
, vol.41
, Issue.5
, pp. 1718-1731
-
-
Ko, A.H.1
Sabourin, R.2
Britto, J.A.S.3
-
215
-
-
0000670848
-
Back propagation is sensitive to initial conditions
-
R. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Morgan Kaufmann, San Francisco, CA
-
J. F. Kolen, and J. B. Pollack. Back propagation is sensitive to initial conditions. In R. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances inNeural Information Processing Systems 3, pages 860-867. Morgan Kaufmann, San Francisco, CA, 1991.
-
(1991)
Advances inNeural Information Processing Systems 3
, pp. 860-867
-
-
Kolen, J.F.1
Pollack, J.B.2
-
216
-
-
33845768389
-
Learning to detect, and classify malicious executables in the wild
-
J. Z. Kolter, and M. A. Maloof. Learning to detect, and classify malicious executables in the wild. Journal ofMachine Learning Research, 7: 2721-2744, 2006.
-
(2006)
Journal ofMachine Learning Research
, vol.7
, pp. 2721-2744
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
217
-
-
84992322729
-
Error-correcting output coding corrects bias, and variance
-
Tahoe City, CA
-
E. B. Kong, and T. G. Dietterich. Error-correcting output coding corrects bias, and variance. In Proceedings of the 12th International Conference on Machine Learning, pages 313-321, Tahoe City, CA, 1995.
-
(1995)
Proceedings of the 12th International Conference on Machine Learning
, pp. 313-321
-
-
Kong, E.B.1
Dietterich, T.G.2
-
218
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, MIT Press, Cambridge, MA
-
A. Krogh, and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances inNeural Information Processing Systems 7, pages 231-238. MIT Press, Cambridge, MA, 1995.
-
(1995)
Advances inNeural Information Processing Systems 7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
220
-
-
0002719797
-
The Hungarian method for the assignment problem
-
H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2: 83-79, 1955.
-
(1955)
Naval Research Logistics Quarterly
, vol.2
, pp. 83-179
-
-
Kuhn, H.W.1
-
225
-
-
15744388753
-
Using diversity in cluster ensembles
-
Hague, The Netherlands
-
L. I. Kuncheva, and S. T. Hadjitodorov. Using diversity in cluster ensembles. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pages 1214-1219, Hague, The Netherlands, 2004.
-
(2004)
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics
, pp. 1214-1219
-
-
Kuncheva, L.I.1
Hadjitodorov, S.T.2
-
226
-
-
33947159574
-
Evaluation of stability of k-means cluster ensembles with respect to random initialization
-
L. I. Kuncheva, and D. P. Vetrov. Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 28(11): 1798-1808, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.28
, Issue.11
, pp. 1798-1808
-
-
Kuncheva, L.I.1
Vetrov, D.P.2
-
227
-
-
0037403516
-
Measures of diversity in classifier ensembles, and their relationship with the ensemble accuracy
-
L. I. Kuncheva, and C. J. Whitaker. Measures of diversity in classifier ensembles, and their relationship with the ensemble accuracy. Machine Learning, 51(2): 181-207, 2003.
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
228
-
-
0034830461
-
Decision templates formultiple classifier fusion: An experimental comparison
-
L. I. Kuncheva, J. C. Bezdek, and R. P. Duin. Decision templates formultiple classifier fusion: An experimental comparison. Pattern Recognition, 34(2): 299-314, 2001.
-
(2001)
Pattern Recognition
, vol.34
, Issue.2
, pp. 299-314
-
-
Kuncheva, L.I.1
Bezdek, J.C.2
Duin, R.P.3
-
229
-
-
0038133019
-
Limits on themajority vote accuracy in classifier fusion
-
L. I. Kuncheva, C. J. Whitaker, C. Shipp, and R. Duin. Limits on themajority vote accuracy in classifier fusion. Pattern Analysis, and Applications, 6(1): 22-31, 2003.
-
(2003)
Pattern Analysis, and Applications
, vol.6
, Issue.1
, pp. 22-31
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
Shipp, C.3
Duin, R.4
-
230
-
-
50149121796
-
Experimental comparison of cluster ensemblemethods
-
Florence, Italy
-
L. I. Kuncheva, S. T. Hadjitodorov, and L. P. Todorova. Experimental comparison of cluster ensemblemethods. In Proceedings of the 9th International Conference on Information Fusion, pages 1-7, Florence, Italy, 2006.
-
(2006)
Proceedings of the 9th International Conference on Information Fusion
, pp. 1-7
-
-
Kuncheva, L.I.1
Hadjitodorov, S.T.2
Todorova, L.P.3
-
231
-
-
3142674150
-
Almost-everywhere algorithmic stability, and generalization error
-
Edmonton, Canada
-
S. Kutin, and P. Niyogi. Almost-everywhere algorithmic stability, and generalization error. In Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pages 275-282, Edmonton, Canada, 2002.
-
(2002)
Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence
, pp. 275-282
-
-
Kutin, S.1
Niyogi, P.2
-
233
-
-
0031238275
-
Application ofmajority voting to pattern recognition: An analysis of its behavior, and performance
-
L. Lam, and S. Y. Suen. Application ofmajority voting to pattern recognition: An analysis of its behavior, and performance. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems, and Humans, 27(5): 553-568, 1997.
-
(1997)
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems, and Humans
, vol.27
, Issue.5
, pp. 553-568
-
-
Lam, L.1
Suen, S.Y.2
-
235
-
-
85013879626
-
A sequential algorithm for training text classifiers
-
Dublin, Ireland
-
D. Lewis, and W. Gale. A sequential algorithm for training text classifiers. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research, and Development in Information Retrieval, pages 3-12, Dublin, Ireland, 1994.
-
(1994)
Proceedings of the 17th Annual International ACM SIGIR Conference on Research, and Development in Information Retrieval
, pp. 3-12
-
-
Lewis, D.1
Gale, W.2
-
236
-
-
36249007597
-
Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
-
M. Li, and Z.-H. Zhou. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems, and Humans, 37(6): 1088-1098, 2007.
-
(2007)
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems, and Humans
, vol.37
, Issue.6
, pp. 1088-1098
-
-
Li, M.1
Zhou, Z.-H.2
-
237
-
-
76149138033
-
Exploiting remote learners in internet environment with agents
-
M. Li, W. Wang, and Z.-H. Zhou. Exploiting remote learners in internet environment with agents. Science China: Information Sciences, 53(1): 64-76, 2010.
-
(2010)
Science China: Information Sciences
, vol.53
, Issue.1
, pp. 64-76
-
-
Li, M.1
Wang, W.2
Zhou, Z.-H.3
-
239
-
-
0034851944
-
Kernel machine based learning for multi-view face detection, and pose estimation
-
Vancouver, Canada
-
S. Z. Li, Q. Fu, L. Gu, B. Schölkopf, and H. J. Zhang. Kernel machine based learning for multi-view face detection, and pose estimation. In Proceedings of the 8th International Conference on Computer Vision, pages 674-679, Vancouver, Canada, 2001.
-
(2001)
Proceedings of the 8th International Conference on Computer Vision
, pp. 674-679
-
-
Li, S.Z.1
Fu, Q.2
Gu, L.3
Schölkopf, B.4
Zhang, H.J.5
-
241
-
-
41549137738
-
Support vector machinery for infinite ensemble learning
-
H.-T. Lin, and L. Li. Support vector machinery for infinite ensemble learning. Journal ofMachine Learning Research, 9: 285-312, 2008.
-
(2008)
Journal ofMachine Learning Research
, vol.9
, pp. 285-312
-
-
Lin, H.-T.1
Li, L.2
-
242
-
-
0038667775
-
Performance analysis of pattern classifier combination by plurality voting
-
X. Lin, S. Yacoub, J. Burns, and S. Simske. Performance analysis of pattern classifier combination by plurality voting. Pattern Recognition Letters, 24(12): 1959-1969, 2003.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.12
, pp. 1959-1969
-
-
Lin, X.1
Yacoub, S.2
Burns, J.3
Simske, S.4
-
243
-
-
0036161029
-
Support vectormachines for classification in nonstandard situations
-
Y. M. Lin, Y. Lee, and G. Wahba. Support vectormachines for classification in nonstandard situations. Machine Learning, 46(1): 191-202, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 191-202
-
-
Lin, Y.M.1
Lee, Y.2
Wahba, G.3
-
244
-
-
26944434312
-
Maximizing tree diversity by building complete-random decision trees
-
Hanoi, Vietnam
-
F. T. Liu, K. M. Ting, and W. Fan. Maximizing tree diversity by building complete-random decision trees. In Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery, and Data Mining, pages 605-610, Hanoi, Vietnam, 2005.
-
(2005)
Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery, and Data Mining
, pp. 605-610
-
-
Liu, F.T.1
Ting, K.M.2
Fan, W.3
-
245
-
-
52249099075
-
Spectrum of variable-random trees
-
F. T. Liu, K. M. Ting, Y. Yu, and Z.-H. Zhou. Spectrum of variable-random trees. Journal of Artificial Intelligence Research, 32(1): 355-384, 2008a.
-
(2008)
Journal of Artificial Intelligence Research
, vol.32
, Issue.1
, pp. 355-384
-
-
Liu, F.T.1
Ting, K.M.2
Yu, Y.3
Zhou, Z.-H.4
-
246
-
-
67049142378
-
Isolation forest
-
Pisa, Italy
-
F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In Proceedings of the 8th IEEE International Conference on Data Mining, pages 413-422, Pisa, Italy, 2008b.
-
(2008)
Proceedings of the 8th IEEE International Conference on Data Mining
, pp. 413-422
-
-
Liu, F.T.1
Ting, K.M.2
Zhou, Z.-H.3
-
247
-
-
78049398347
-
On detecting clustered anomalies using SCiForest
-
Barcelona, Spain
-
F. T. Liu, K.M. Ting, and Z.-H. Zhou. On detecting clustered anomalies using SCiForest. In Proceedings of the European Conference on Machine Learning, and Principles, and Practice of Knowledge Discovery in Databases, pages 274-290, Barcelona, Spain, 2010.
-
(2010)
Proceedings of the European Conference on Machine Learning, and Principles, and Practice of Knowledge Discovery in Databases
, pp. 274-290
-
-
Liu, F.T.1
Ting, K.M.2
Zhou, Z.-H.3
-
249
-
-
77956202105
-
Learning with cost intervals
-
Washington, DC
-
X.-Y. Liu, and Z.-H. Zhou. Learning with cost intervals. In Proceedings of the 16th ACMSIGKDD International Conference on Knowledge Discovery, and Data Mining, pages 403-412, Washington, DC, 2010.
-
(2010)
Proceedings of the 16th ACMSIGKDD International Conference on Knowledge Discovery, and Data Mining
, pp. 403-412
-
-
Liu, X.-Y.1
Zhou, Z.-H.2
-
250
-
-
64049108468
-
Exploratory undersampling for classimbalance learning
-
X.-Y. Liu, J. Wu, and Z.-H. Zhou. Exploratory undersampling for classimbalance learning. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 39(2): 539-550, 2009.
-
(2009)
IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics
, vol.39
, Issue.2
, pp. 539-550
-
-
Liu, X.-Y.1
Wu, J.2
Zhou, Z.-H.3
-
251
-
-
0033485370
-
Ensemble learning via negative correlation
-
Y. Liu, and X. Yao. Ensemble learning via negative correlation. Neural Networks, 12(10): 1399-1404, 1999.
-
(1999)
Neural Networks
, vol.12
, Issue.10
, pp. 1399-1404
-
-
Liu, Y.1
Yao, X.2
-
253
-
-
38949161848
-
AUC: Amisleadingmeasure of the performance of predictive distribution models
-
J. M. Lobo, A. Jiménez-Valverde, and R. Real. AUC: Amisleadingmeasure of the performance of predictive distribution models. Global Ecology, and Biogeography, 17(2): 145-151, 2008.
-
(2008)
Global Ecology, and Biogeography
, vol.17
, Issue.2
, pp. 145-151
-
-
Lobo, J.M.1
Jiménez-Valverde, A.2
Real, R.3
-
254
-
-
34548569516
-
Combiningmultiple clusterings by soft correspondence
-
Brighton, UK
-
B. Long, Z. Zhang, and P. S. Yu. Combiningmultiple clusterings by soft correspondence. In Proceedings of the 4th IEEE International Conference on Data Mining, pages 282-289, Brighton, UK, 2005.
-
(2005)
Proceedings of the 4th IEEE International Conference on Data Mining
, pp. 282-289
-
-
Long, B.1
Zhang, Z.2
Yu, P.S.3
-
255
-
-
70349871686
-
Semiboost: Boosting for semi-supervised learning
-
P. K. Mallapragada, R. Jin, A. K. Jain, and Y. Liu. Semiboost: Boosting for semi-supervised learning. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 30(11): 2000-2014, 2009.
-
(2009)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.30
, Issue.11
, pp. 2000-2014
-
-
Mallapragada, P.K.1
Jin, R.2
Jain, A.K.3
Liu, Y.4
-
256
-
-
3142666177
-
An ensemble of neural networks for weather forecasting
-
I. Maqsood, M. R. Khan, and A. Abraham. An ensemble of neural networks for weather forecasting. Neural Computing & Applications, 13(2): 112-122, 2004.
-
(2004)
Neural Computing & Applications
, vol.13
, Issue.2
, pp. 112-122
-
-
Maqsood, I.1
Khan, M.R.2
Abraham, A.3
-
258
-
-
84995186518
-
Portfolio selection
-
H. Markowitz. Portfolio selection. Journal of Finance, 7(1): 77-91, 1952.
-
(1952)
Journal of Finance
, vol.7
, Issue.1
, pp. 77-91
-
-
Markowitz, H.1
-
259
-
-
11144281845
-
Aggregation ordering in bagging
-
Innsbruck, Austria
-
G. Martínez-Muñoz, and A. Suárez. Aggregation ordering in bagging. In Proceedings of the IASTED International Conference on Artifical Intelligence, and Applications, pages 258-263, Innsbruck, Austria, 2004.
-
(2004)
Proceedings of the IASTED International Conference on Artifical Intelligence, and Applications
, pp. 258-263
-
-
Martínez-Muñoz, G.1
Suárez, A.2
-
262
-
-
60349092310
-
An analysis of ensemble pruning techniques based on ordered aggregation
-
G. Martínez-Muñoz, D. Hernández-Lobato, and A. Suárez. An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Transaction on Pattern Analysis, and Machine Intelligence, 31(2): 245-259, 2009.
-
(2009)
IEEE Transaction on Pattern Analysis, and Machine Intelligence
, vol.31
, Issue.2
, pp. 245-259
-
-
Martínez-Muñoz, G.1
Hernández-Lobato, D.2
Suárez, A.3
-
264
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
P. J. Bartlett, B. Schölkopf, D. Schuurmans, and A. J. Smola, editors, MIT Press, Cambridge, MA
-
L. Mason, J. Baxter, P. L. Bartlett, and M. Frean. Functional gradient techniques for combining hypotheses. In P. J. Bartlett, B. Schölkopf, D. Schuurmans, and A. J. Smola, editors, Advances in Large-Margin Classifiers, pages 221-246. MIT Press, Cambridge, MA, 2000.
-
(2000)
Advances in Large-Margin Classifiers
, pp. 221-246
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.4
-
267
-
-
33846991416
-
An empirical comparison of three boosting algorithms on real data sets with artificial class noise
-
Guilford, UK
-
R. A. McDonald, D. J. Hand, and I. A. Eckley. An empirical comparison of three boosting algorithms on real data sets with artificial class noise. In Proceedings of the 4th International Workshop on Multiple Classifier Systems, pages 35-44, Guilford, UK, 2003.
-
(2003)
Proceedings of the 4th International Workshop on Multiple Classifier Systems
, pp. 35-44
-
-
McDonald, R.A.1
Hand, D.J.2
Eckley, I.A.3
-
268
-
-
84937351341
-
Multivariate information transmission
-
W. McGill. Multivariate information transmission. IEEE Transactions on Information Theory, 4(4): 93-111, 1954.
-
(1954)
IEEE Transactions on Information Theory
, vol.4
, Issue.4
, pp. 93-111
-
-
McGill, W.1
-
269
-
-
41549131613
-
Evidence contrary to the statistical view of boosting (with discussions)
-
D. Mease, and A. Wyner. Evidence contrary to the statistical view of boosting (with discussions). Journal ofMachine Learning Research, 9: 131-201, 2008.
-
(2008)
Journal ofMachine Learning Research
, vol.9
, pp. 131-201
-
-
Mease, D.1
Wyner, A.2
-
271
-
-
10444259853
-
Creating diversity in ensembles using artificial data
-
P. Melville, and R. J. Mooney. Creating diversity in ensembles using artificial data. Information Fusion, 6(1): 99-111, 2005.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 99-111
-
-
Melville, P.1
Mooney, R.J.2
-
272
-
-
0018079655
-
Basic principles of ROC analysis
-
C. E. Metz. Basic principles of ROC analysis. Seminars in NuclearMedicine, 8(4): 283-298, 1978.
-
(1978)
Seminars in NuclearMedicine
, vol.8
, Issue.4
, pp. 283-298
-
-
Metz, C.E.1
-
273
-
-
84898980291
-
A mixture of experts classifier with learning based on both labelled, and unlabelled data
-
M. Mozer, M. I. Jordan, and T. Petsche, editors, MIT Press, Cambridge, MA
-
D. J. Miller, and H. S. Uyar. A mixture of experts classifier with learning based on both labelled, and unlabelled data. In M. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 571-577. MIT Press, Cambridge, MA, 1997.
-
(1997)
Advances in Neural Information Processing Systems 9
, pp. 571-577
-
-
Miller, D.J.1
Uyar, H.S.2
-
275
-
-
62649153786
-
Analysis of a plurality voting-based combination of classifiers
-
X. Mu, P. Watta, and M. H. Hassoun. Analysis of a plurality voting-based combination of classifiers. Neural Processing Letters, 29(2): 89-107, 2009.
-
(2009)
Neural Processing Letters
, vol.29
, Issue.2
, pp. 89-107
-
-
Mu, X.1
Watta, P.2
Hassoun, M.H.3
-
276
-
-
85162059054
-
A theory of multiclass boosting
-
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, MIT Press, Cambridge, MA
-
I. Mukherjee, and R. Schapire. A theory of multiclass boosting. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1714-1722. MIT Press, Cambridge, MA, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 1714-1722
-
-
Mukherjee, I.1
Schapire, R.2
-
279
-
-
30144441888
-
Theoretical bounds of majority voting performance for a binary classification problem
-
A. Narasimhamurthy. Theoretical bounds of majority voting performance for a binary classification problem. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 27(12): 1988-1995, 2005.
-
(2005)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.27
, Issue.12
, pp. 1988-1995
-
-
Narasimhamurthy, A.1
-
280
-
-
0004182779
-
-
McGraw-Hill, New York, NY
-
S. Nash, and A. Sofer. Linear, and Nonlinear Programming. McGraw-Hill, New York, NY, 1996.
-
(1996)
Linear, and Nonlinear Programming
-
-
Nash, S.1
Sofer, A.2
-
281
-
-
0003136237
-
Efficient, and effective clustering method for spatial data mining
-
Santiago, Chile
-
R. Ng, and J. Han. Efficient, and effective clustering method for spatial data mining. In Proceedings of the 20th International Conference on Very Large Data Bases, pages 144-155, Santiago, Chile, 1994.
-
(1994)
Proceedings of the 20th International Conference on Very Large Data Bases
, pp. 144-155
-
-
Ng, R.1
Han, J.2
-
283
-
-
0033886806
-
Text classification from labeled, and unlabeled documents using EM
-
K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled, and unlabeled documents using EM. Machine Learning, 39(2-3): 103-134, 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.2
Thrun, S.3
Mitchell, T.4
-
286
-
-
67349218861
-
Credit card fraud detection: A fusion approach using Dempster-Shafer theory, and Bayesian learning
-
S. Panigrahi, A. Kundu, S. Sural, and A. K. Majumdar. Credit card fraud detection: A fusion approach using Dempster-Shafer theory, and Bayesian learning. Information Fusion, 10(4): 354-363, 2009.
-
(2009)
Information Fusion
, vol.10
, Issue.4
, pp. 354-363
-
-
Panigrahi, S.1
Kundu, A.2
Sural, S.3
Majumdar, A.K.4
-
287
-
-
61849098236
-
Pruning an ensemble of classifiers via reinforcement learning
-
I. Partalas, G. Tsoumakas, and I. Vlahavas. Pruning an ensemble of classifiers via reinforcement learning. Neurocomputing, 72(7-9): 1900-1909, 2009.
-
(2009)
Neurocomputing
, vol.72
, Issue.7-9
, pp. 1900-1909
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
288
-
-
0031244715
-
Software diversity: Practical statistics for its measurement, and exploitation
-
D. Partridge, and W. J. Krzanowski. Software diversity: Practical statistics for its measurement, and exploitation. Information & Software Technology, 39(10): 707-717, 1997.
-
(1997)
Information & Software Technology
, vol.39
, Issue.10
, pp. 707-717
-
-
Partridge, D.1
Krzanowski, W.J.2
-
289
-
-
1242263799
-
New results on error correcting output codes of kernel machines
-
A. Passerini, M. Pontil, and P. Frasconi. New results on error correcting output codes of kernel machines. IEEE Transactions on Neural Networks, 15(1): 45-54, 2004.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.1
, pp. 45-54
-
-
Passerini, A.1
Pontil, M.2
Frasconi, P.3
-
290
-
-
0000926506
-
When networks disagree: Ensemble method for neural networks
-
R. J. Mammone, editor, Chapman & Hall, New York, NY
-
M. P. Perrone, and L. N. Cooper. When networks disagree: Ensemble method for neural networks. In R. J. Mammone, editor, Artificial Neural Networks for Spech, and Vision, pages 126-142. Chapman & Hall, New York, NY, 1993.
-
(1993)
Artificial Neural Networks for Spech, and Vision
, pp. 126-142
-
-
Perrone, M.P.1
Cooper, L.N.2
-
291
-
-
0003243224
-
Probabilities for SVmachines
-
MIT Press, Cambridge, MA
-
J. C. Platt. Probabilities for SVmachines. In Advances in LargeMargin Classifiers, pages 61-74. MIT Press, Cambridge, MA, 2000.
-
(2000)
Advances in LargeMargin Classifiers
, pp. 61-74
-
-
Platt, J.C.1
-
292
-
-
35348887748
-
An ensemble based data fusion approach for early diagnosis of Alzheimer’s disease
-
R. Polikar, A. Topalis, D. Parikh, D. Green, J. Frymiare, J. Kounios, and C.M. Clark. An ensemble based data fusion approach for early diagnosis of Alzheimer’s disease. Information Fusion, 9(1): 83-95, 2008.
-
(2008)
Information Fusion
, vol.9
, Issue.1
, pp. 83-95
-
-
Polikar, R.1
Topalis, A.2
Parikh, D.3
Green, D.4
Frymiare, J.5
Kounios, J.6
Clark, C.M.7
-
294
-
-
33645963453
-
Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes
-
O. Pujol, P. Radeva, and J. Vitrià. Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 28(6): 1007-1012, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.28
, Issue.6
, pp. 1007-1012
-
-
Pujol, O.1
Radeva, P.2
Vitrià, J.3
-
295
-
-
34948906283
-
An incremental node embedding technique for error correcting output codes
-
O. Pujol, S. Escalera, and P. Radeva. An incremental node embedding technique for error correcting output codes. Pattern Recognition, 41(2): 713-725, 2008.
-
(2008)
Pattern Recognition
, vol.41
, Issue.2
, pp. 713-725
-
-
Pujol, O.1
Escalera, S.2
Radeva, P.3
-
297
-
-
33744584654
-
Induction of decision trees
-
J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1): 81-106, 1998.
-
(1998)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
298
-
-
27244453282
-
The behavior knowledge space fusion method: Analysis of generalization error, and strategies for performance improvement
-
Guildford, UK
-
Š. Raudys, and F. Roli. The behavior knowledge space fusion method: Analysis of generalization error, and strategies for performance improvement. In Proceedings of the 4th International Workshop on Multiple Classifier Systems, pages 55-64, Guildford, UK, 2003.
-
(2003)
Proceedings of the 4th International Workshop on Multiple Classifier Systems
, pp. 55-64
-
-
Raudys, J.1
Roli, F.2
-
299
-
-
0021404166
-
Mixture densities, maximum likelihood, and the EMalgorithm
-
R. A. Redner, and H. F. Walker. Mixture densities, maximum likelihood, and the EMalgorithm. SIAMReview, 26(2): 195-239, 1984.
-
(1984)
SIAMReview
, vol.26
, Issue.2
, pp. 195-239
-
-
Redner, R.A.1
Walker, H.F.2
-
303
-
-
33750095186
-
Rotation forest: A new classifier ensemble method
-
J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso. Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 28(10): 1619-1630, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodriguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
304
-
-
0027961797
-
Combining the results of several neural network classifiers
-
G. Rogova. Combining the results of several neural network classifiers. Neural Networks, 7(5): 777-781, 1994.
-
(1994)
Neural Networks
, vol.7
, Issue.5
, pp. 777-781
-
-
Rogova, G.1
-
306
-
-
0000646059
-
Learning internal representations by error propagation
-
D. E. Rumelhart, and J. L. McClelland, editors, MIT Press, Cambridge, MA
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart, and J. L. McClelland, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, volume 1, pages 318-362. MIT Press, Cambridge, MA, 1986.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
307
-
-
84956988905
-
Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting
-
Cambridge, UK
-
D. Ruta, and B. Gabrys. Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting. In Proceedings of the 2nd InternationalWorkshop onMultiple Classifier Systems, pages 399-408, Cambridge, UK, 2001.
-
(2001)
Proceedings of the 2nd InternationalWorkshop onMultiple Classifier Systems
, pp. 399-408
-
-
Ruta, D.1
Gabrys, B.2
-
308
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2): 197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
309
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R. E. Schapire, and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3): 297-336, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
310
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of votingmethods
-
R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of votingmethods. Annals of Statistics, 26(5): 1651-1686, 1998.
-
(1998)
Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
311
-
-
0003246430
-
A classification approach incorporating misclassification costs
-
J. Schiffers. A classification approach incorporating misclassification costs. Intelligent Data Analysis, 1(1): 59-68, 1997.
-
(1997)
Intelligent Data Analysis
, vol.1
, Issue.1
, pp. 59-68
-
-
Schiffers, J.1
-
313
-
-
0003798627
-
-
MIT Press, Cambridge, MA
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
-
-
Schölkopf, B.1
Burges, C.J.C.2
Smola, A.J.3
-
314
-
-
0034838197
-
Data mining methods for detection of new malicious executables
-
Oakland, CA
-
M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining methods for detection of new malicious executables. In Proceedings of the IEEE Symposiumon Security, and Privacy, pages 38-49, Oakland, CA, 2001.
-
(2001)
Proceedings of the IEEE Symposiumon Security, and Privacy
, pp. 38-49
-
-
Schultz, M.G.1
Eskin, E.2
Zadok, E.3
Stolfo, S.J.4
-
315
-
-
8444229122
-
How to make stacking better, and faster while also taking care of an unknown weakness
-
Sydney, Australia
-
A. K. Seewald. How to make stacking better, and faster while also taking care of an unknown weakness. In Proceedings of the 19th International Conference onMachine Learning, pages 554-561, Sydney, Australia, 2002.
-
(2002)
Proceedings of the 19th International Conference onMachine Learning
, pp. 554-561
-
-
Seewald, A.K.1
-
316
-
-
68949137209
-
-
Technical Report 1648, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI
-
B. Settles. Active learning literature survey. Technical Report 1648, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, 2009.
-
(2009)
Active learning literature survey
-
-
Settles, B.1
-
317
-
-
0026981853
-
Query by committee
-
Pittsburgh, PA
-
H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the 5th Annual ACM Conference on Computational Learning Theory, pages 287-294, Pittsburgh, PA, 1992.
-
(1992)
Proceedings of the 5th Annual ACM Conference on Computational Learning Theory
, pp. 287-294
-
-
Seung, H.S.1
Opper, M.2
Sompolinsky, H.3
-
319
-
-
0003052357
-
WaveCluster: A multiresolution clustering approach for very large spatial databases
-
New York, NY
-
G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multiresolution clustering approach for very large spatial databases. In Proceedings of the 24th International Conference on Very Large Data Bases, pages 428-439, New York, NY, 1998.
-
(1998)
Proceedings of the 24th International Conference on Very Large Data Bases
, pp. 428-439
-
-
Sheikholeslami, G.1
Chatterjee, S.2
Zhang, A.3
-
320
-
-
33747880465
-
Ensemble classifier for protein fold pattern recognition
-
H. B. Shen, and K. C. Chou. Ensemble classifier for protein fold pattern recognition. Bioinformatics, 22(14): 1717-1722, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.14
, pp. 1717-1722
-
-
Shen, H.B.1
Chou, K.C.2
-
321
-
-
0034244751
-
Normalized cuts, and image segmentation
-
J. Shi, and J. Malik. Normalized cuts, and image segmentation. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 22(8): 888-905, 2000.
-
(2000)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
322
-
-
0036609602
-
Relationships between combination methods, and measures of diversity in combining classifiers
-
C. A. Shipp, and L. I. Kuncheva. Relationships between combination methods, and measures of diversity in combining classifiers. Information Fusion, 3(2): 135-148, 2002.
-
(2002)
Information Fusion
, vol.3
, Issue.2
, pp. 135-148
-
-
Shipp, C.A.1
Kuncheva, L.I.2
-
324
-
-
33745827787
-
Multivariate information bottleneck
-
N. Slonim, N. Friedman, and N. Tishby. Multivariate information bottleneck. Neural Computation, 18(8): 1739-1789, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.8
, pp. 1739-1789
-
-
Slonim, N.1
Friedman, N.2
Tishby, N.3
-
325
-
-
84872441718
-
Stacked density estimation
-
M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, MIT Press, Cambridge, MA
-
P. Smyth, and D. Wolpert. Stacked density estimation. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 668-674. MIT Press, Cambridge, MA, 1998.
-
(1998)
Advances in Neural Information Processing Systems 10
, pp. 668-674
-
-
Smyth, P.1
Wolpert, D.2
-
326
-
-
0004069901
-
-
W. H. Freeman, San Francisco, CA
-
P. H. A. Sneath, and R. R. Sokal. Numerical Taxonomy: The Principles, and Practice of Numerical Classification. W. H. Freeman, San Francisco, CA, 1973.
-
(1973)
Numerical Taxonomy: The Principles, and Practice of Numerical Classification
-
-
Sneath, P.H.A.1
Sokal, R.R.2
-
327
-
-
77952082871
-
A double pruning algorithm for classification ensembles
-
Cairo, Egypt
-
V. Soto, G. Martínez-Muñoz, D. Hernández-Lobato, and A. Suárez. A double pruning algorithm for classification ensembles. In Proceedings of 9th International Workshop Multiple Classifier Systems, pages 104-113, Cairo, Egypt, 2010.
-
(2010)
Proceedings of 9th International Workshop Multiple Classifier Systems
, pp. 104-113
-
-
Soto, V.1
Martínez-Muñoz, G.2
Hernández-Lobato, D.3
Suárez, A.4
-
329
-
-
0041965980
-
Cluster ensembles - A knowledge reuse framework for combiningmultiple partitions
-
A. Strehl, and J. Ghosh. Cluster ensembles - A knowledge reuse framework for combiningmultiple partitions. Journal ofMachine Learning Research, 3: 583-617, 2002.
-
(2002)
Journal ofMachine Learning Research
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
330
-
-
0002788820
-
Impact of similaritymeasures onwebpage clustering
-
Austin, TX
-
A. Strehl, J. Ghosh, and R. J. Mooney. Impact of similaritymeasures onwebpage clustering. In Proceedings of the AAAI’2000Workshop on AI for Web Search, pages 58-64, Austin, TX, 2000.
-
(2000)
Proceedings of the AAAI’2000Workshop on AI for Web Search
, pp. 58-64
-
-
Strehl, A.1
Ghosh, J.2
Mooney, R.J.3
-
331
-
-
0041529506
-
The multi-information function as a tool for measuring stochastic dependence
-
M. I. Jordan, editor, Kluwer, Norwell, MA
-
M. Studeny, and J. Vejnarova. The multi-information function as a tool for measuring stochastic dependence. In M. I. Jordan, editor, Learning in Graphical Models, pages 261-298. Kluwer, Norwell, MA, 1998.
-
(1998)
Learning in Graphical Models
, pp. 261-298
-
-
Studeny, M.1
Vejnarova, J.2
-
332
-
-
26944447463
-
Parameter inference of cost-sensitive boosting algorithms
-
Leipzig, Germany
-
Y. Sun, A. K. C. Wong, and Y. Wang. Parameter inference of cost-sensitive boosting algorithms. In Proceedings of the 4th International Conference on Machine Learning, and Data Mining in Pattern Recognition, pages 21-30, Leipzig, Germany, 2005.
-
(2005)
Proceedings of the 4th International Conference on Machine Learning, and Data Mining in Pattern Recognition
, pp. 21-30
-
-
Sun, Y.1
Wong, A.K.C.2
Wang, Y.3
-
334
-
-
14944354760
-
Multi-class protein fold classification using a new ensemblemachine learning approach
-
A. C. Tan, D. Gilbert, and Y. Deville. Multi-class protein fold classification using a new ensemblemachine learning approach. Genome Informatics, 14: 206-217, 2003.
-
(2003)
Genome Informatics
, vol.14
, pp. 206-217
-
-
Tan, A.C.1
Gilbert, D.2
Deville, Y.3
-
335
-
-
25144439604
-
-
Addison-Wesley, Upper Saddle River, NJ
-
P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-Wesley, Upper Saddle River, NJ, 2006.
-
(2006)
Introduction to Data Mining
-
-
Tan, P.-N.1
Steinbach, M.2
Kumar, V.3
-
336
-
-
33749018252
-
An analysis of diversity measures
-
E. K. Tang, P. N. Suganthan, and X. Yao. An analysis of diversity measures. Machine Learning, 65(1): 247-271, 2006.
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 247-271
-
-
Tang, E.K.1
Suganthan, P.N.2
Yao, X.3
-
337
-
-
0036699869
-
Neural network load forecasting with weather ensemble predictions
-
J. W. Taylor, and R. Buizza. Neural network load forecasting with weather ensemble predictions. IEEE Transactions on Power Systems, 17(3): 626-632, 2002.
-
(2002)
IEEE Transactions on Power Systems
, vol.17
, Issue.3
, pp. 626-632
-
-
Taylor, J.W.1
Buizza, R.2
-
338
-
-
85013709368
-
-
AcademicPress, New York, NY, 4th edition
-
S. Theodoridis, and K. Koutroumbas. Pattern Recognition. AcademicPress, New York, NY, 4th edition, 2009.
-
(2009)
Pattern Recognition
-
-
Theodoridis, S.1
Koutroumbas, K.2
-
340
-
-
0003667773
-
-
Technical report, Department of Statistics, University of Toronto
-
R. Tibshirani. Bias, variance, and prediction error for classification rules. Technical report, Department of Statistics, University of Toronto, 1996b.
-
(1996)
Bias, variance, and prediction error for classification rules
-
-
Tibshirani, R.1
-
341
-
-
0032208720
-
The truth will come to light: Directions, and challenges in extracting the knowledge embedded within trained artificial neural networks
-
A. B. Tickle, R. Andrews, M. Golea, and J. Diederich. The truth will come to light: Directions, and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Transactions on Neural Networks, 9(6): 1057-1067, 1998.
-
(1998)
IEEE Transactions on Neural Networks
, vol.9
, Issue.6
, pp. 1057-1067
-
-
Tickle, A.B.1
Andrews, R.2
Golea, M.3
Diederich, J.4
-
343
-
-
0036565589
-
An instance-weighting method to induce cost-sensitive trees
-
K. M. Ting. An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge, and Data Engineering, 14(3): 659-665, 2002.
-
(2002)
IEEE Transactions on Knowledge, and Data Engineering
, vol.14
, Issue.3
, pp. 659-665
-
-
Ting, K.M.1
-
345
-
-
0017024036
-
Two modifications of CNN
-
I. Tomek. Two modifications of CNN. IEEE Transactions on Systems, Man, and Cybernetics, 6(11): 769-772, 1976.
-
(1976)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.6
, Issue.11
, pp. 769-772
-
-
Tomek, I.1
-
346
-
-
0003007938
-
Support vectormachine active learning with applications to text classification
-
San Francisco, CA
-
S. Tong, and D. Koller. Support vectormachine active learning with applications to text classification. In Proceedings of the 17th International Conference onMachine Learning, pages 999-1006, San Francisco, CA, 2000.
-
(2000)
Proceedings of the 17th International Conference onMachine Learning
, pp. 999-1006
-
-
Tong, S.1
Koller, D.2
-
347
-
-
70349238123
-
Combining multiple weak clusterings
-
Melbourne, FL
-
A. Topchy, A. K. Jain, and W. Punch. Combining multiple weak clusterings. In Proceedings of the 3rd IEEE International Conference on Data Mining, pages 331-338, Melbourne, FL, 2003.
-
(2003)
Proceedings of the 3rd IEEE International Conference on Data Mining
, pp. 331-338
-
-
Topchy, A.1
Jain, A.K.2
Punch, W.3
-
348
-
-
2942558961
-
Amixturemodel for clustering ensembles
-
Lake Buena Vista, FL
-
A. Topchy, A. K. Jain, and W. Punch. Amixturemodel for clustering ensembles. In Proceedings of the 4th SIAM International Conference on Data Mining, pages 379-390, Lake Buena Vista, FL, 2004a.
-
(2004)
Proceedings of the 4th SIAM International Conference on Data Mining
, pp. 379-390
-
-
Topchy, A.1
Jain, A.K.2
Punch, W.3
-
349
-
-
10044266281
-
Adaptive clustering ensembles
-
Cambridge, UK
-
A. Topchy, B. Minaei-Bidgoli, A. K. Jain, and W. F. Punch. Adaptive clustering ensembles. In Proceedings of the 17th InternationalConference on Pattern Recognition, pages 272-275, Cambridge, UK, 2004b.
-
(2004)
Proceedings of the 17th InternationalConference on Pattern Recognition
, pp. 272-275
-
-
Topchy, A.1
Minaei-Bidgoli, B.2
Jain, A.K.3
Punch, W.F.4
-
350
-
-
19544373948
-
Analysis of consensus partition in cluster ensemble
-
Brighton, UK
-
A. P. Topchy, M. H. C. Law, A. K. Jain, and A. L. Fred. Analysis of consensus partition in cluster ensemble. In Proceedings of the 4th IEEE International Conference on Data Mining, pages 225-232, Brighton, UK, 2004c.
-
(2004)
Proceedings of the 4th IEEE International Conference on Data Mining
, pp. 225-232
-
-
Topchy, A.P.1
Law, M.H.C.2
Jain, A.K.3
Fred, A.L.4
-
351
-
-
22944467518
-
Effective voting of heterogeneous classifiers
-
Pisa, Italy
-
G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective voting of heterogeneous classifiers. In Proceedings of the 15th European Conference on Machine Learning, pages 465-476, Pisa, Italy, 2004.
-
(2004)
Proceedings of the 15th European Conference on Machine Learning
, pp. 465-476
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
352
-
-
27944435917
-
Selective fusion of heterogeneous classifiers
-
G. Tsoumakas, L. Angelis, and I. P. Vlahavas. Selective fusion of heterogeneous classifiers. Intelligent Data Analysis, 9(6): 511-525, 2005.
-
(2005)
Intelligent Data Analysis
, vol.9
, Issue.6
, pp. 511-525
-
-
Tsoumakas, G.1
Angelis, L.2
Vlahavas, I.P.3
-
353
-
-
84919771094
-
An ensemble pruning primer
-
O. Okun, and G. Valentini, editors, Springer, Berlin
-
G. Tsoumakas, I. Partalas, and I. Vlahavas. An ensemble pruning primer. In O. Okun, and G. Valentini, editors, Applications of Supervised, and Unsupervised Ensemble Methods, pages 155-165. Springer, Berlin, 2009.
-
(2009)
Applications of Supervised, and Unsupervised Ensemble Methods
, pp. 155-165
-
-
Tsoumakas, G.1
Partalas, I.2
Vlahavas, I.3
-
355
-
-
0003789589
-
-
Technical Report TR-95-02-98, Computer, and Vision Research Center, University of Texas, Austin
-
K. Tumer, and J. Ghosh. Theoretical foundations of linear, and order statistics combiners for neural pattern classifiers. Technical Report TR-95-02-98, Computer, and Vision Research Center, University of Texas, Austin, 1995.
-
(1995)
Theoretical foundations of linear, and order statistics combiners for neural pattern classifiers
-
-
Tumer, K.1
Ghosh, J.2
-
356
-
-
0030085913
-
Analysis of decision boundaries in linearly combined neural classifiers
-
K. Tumer, and J. Ghosh. Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition, 29(2): 341-348, 1996.
-
(1996)
Pattern Recognition
, vol.29
, Issue.2
, pp. 341-348
-
-
Tumer, K.1
Ghosh, J.2
-
359
-
-
0035350036
-
Stochastic organization of output codes in multiclass learning problems
-
W. Utschick, and W. Weichselberger. Stochastic organization of output codes in multiclass learning problems. Neural Computation, 13(5): 1065-1102, 2004.
-
(2004)
Neural Computation
, vol.13
, Issue.5
, pp. 1065-1102
-
-
Utschick, W.1
Weichselberger, W.2
-
360
-
-
0021518106
-
A theory of the learnable
-
L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11): 1134-1142, 1984.
-
(1984)
Communications of the ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
-
361
-
-
56049114479
-
Semi-supervised boosting for multiclass classification
-
Antwerp, Belgium
-
H. Valizadegan, R. Jin, and A. K. Jain. Semi-supervised boosting for multiclass classification. In Proceedings of the 19th European Conference on Machine Learning, pages 522-537, Antwerp, Belgium, 2008.
-
(2008)
Proceedings of the 19th European Conference on Machine Learning
, pp. 522-537
-
-
Valizadegan, H.1
Jin, R.2
Jain, A.K.3
-
364
-
-
0035680116
-
Rapid object detection using a boosted cascade of simple features
-
Kauai, HI
-
P. Viola, and M. Jones. Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE Computer Society Conference on Computer Vision, and Pattern Recognition, pages 511-518, Kauai, HI, 2001.
-
(2001)
Proceedings of the IEEE Computer Society Conference on Computer Vision, and Pattern Recognition
, pp. 511-518
-
-
Viola, P.1
Jones, M.2
-
365
-
-
84898979550
-
Fast, and robust classification using asymmetric Adaboost, and a detector cascade
-
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, MIT Press, Cambridge, MA
-
P. Viola, and M. Jones. Fast, and robust classification using asymmetric Adaboost, and a detector cascade. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 1311-1318. MIT Press, Cambridge, MA, 2002.
-
(2002)
Advances in Neural Information Processing Systems 14
, pp. 1311-1318
-
-
Viola, P.1
Jones, M.2
-
367
-
-
80053436012
-
On the margin explanation of boosting algorithm
-
Helsinki, Finland
-
L. Wang, M. Sugiyama, C. Yang, Z.-H. Zhou, and J. Feng. On the margin explanation of boosting algorithm. In Proceedings of the 21st Annual Conference on Learning Theory, pages 479-490, Helsinki, Finland, 2008.
-
(2008)
Proceedings of the 21st Annual Conference on Learning Theory
, pp. 479-490
-
-
Wang, L.1
Sugiyama, M.2
Yang, C.3
Zhou, Z.-H.4
Feng, J.5
-
368
-
-
56449102315
-
On multi-view active learning, and the combination with semi-supervised learning
-
Helsinki, Finland
-
W. Wang, and Z.-H. Zhou. On multi-view active learning, and the combination with semi-supervised learning. In Proceedings of the 25th International Conference on Machine Learning, pages 1152-1159, Helsinki, Finland, 2008.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 1152-1159
-
-
Wang, W.1
Zhou, Z.-H.2
-
369
-
-
85161974295
-
Multi-view active learning in the non-realizable case
-
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, MIT Press, Cambridge, MA
-
W. Wang, and Z.-H. Zhou. Multi-view active learning in the non-realizable case. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances inNeural Information Processing Systems 23, pages 2388-2396. MIT Press, Cambridge, MA, 2010.
-
(2010)
Advances inNeural Information Processing Systems 23
, pp. 2388-2396
-
-
Wang, W.1
Zhou, Z.-H.2
-
370
-
-
84994158589
-
STING: A statistical information grid approach to spatial data mining
-
Athens, Greece
-
W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid approach to spatial data mining. In Proceedings of the 23rd International Conference on Very Large Data Bases, pages 186-195, Athens, Greece, 1997.
-
(1997)
Proceedings of the 23rd International Conference on Very Large Data Bases
, pp. 186-195
-
-
Wang, W.1
Yang, J.2
Muntz, R.3
-
371
-
-
56749106067
-
Entropy regularized LPBoost
-
Budapest, Hungary
-
M. K. Warmuth, K. A. Glocer, and S. V. Vishwanathan. Entropy regularized LPBoost. In Proceedings of the 19th International Conference on Algorithmic Learning Theory, pages 256-271, Budapest, Hungary, 2008.
-
(2008)
Proceedings of the 19th International Conference on Algorithmic Learning Theory
, pp. 256-271
-
-
Warmuth, M.K.1
Glocer, K.A.2
Vishwanathan, S.V.3
-
372
-
-
0345997703
-
Information theoretical analysis of multivariate correlation
-
S. Watanabe. Information theoretical analysis of multivariate correlation. IBMJournal of Research, and Development, 4(1): 66-82, 1960.
-
(1960)
IBMJournal of Research, and Development
, vol.4
, Issue.1
, pp. 66-82
-
-
Watanabe, S.1
-
373
-
-
85156191859
-
Bayesian methods for mixtures of experts
-
D. S. Touretzky, M. Mozer, and M. E. Hasselmo, editors, MIT Press, Cambridge, MA
-
S. Waterhouse, D. Mackay, and T. Robinson. Bayesian methods for mixtures of experts. In D. S. Touretzky, M. Mozer, and M. E. Hasselmo, editors, Advances inNeural Information Processing Systems 8, pages 351-357. MIT Press, Cambridge, MA, 1996.
-
(1996)
Advances inNeural Information Processing Systems 8
, pp. 351-357
-
-
Waterhouse, S.1
Mackay, D.2
Robinson, T.3
-
374
-
-
85156220253
-
Constructive algorithms for hierarchical mixtures of experts
-
D. S. Touretzky, M. Mozer, and M. E. Hasselmo, editors, MIT Press, Cambridge, MA
-
S. R. Waterhouse, and A. J. Robinson. Constructive algorithms for hierarchical mixtures of experts. In D. S. Touretzky, M. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 584-590. MIT Press, Cambridge, MA, 1996.
-
(1996)
Advances in Neural Information Processing Systems 8
, pp. 584-590
-
-
Waterhouse, S.R.1
Robinson, A.J.2
-
376
-
-
4344706336
-
Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
-
G. I. Webb, and Z. Zheng. Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques. IEEE Transactions on Knowledge, and Data Engineering, 16(8): 980-991, 2004.
-
(2004)
IEEE Transactions on Knowledge, and Data Engineering
, vol.16
, Issue.8
, pp. 980-991
-
-
Webb, G.I.1
Zheng, Z.2
-
377
-
-
14844351034
-
Not so naïve Bayes: Aggregating one-dependence estimators
-
G. I. Webb, J. R. Boughton, and Z. Wang. Not so naïve Bayes: Aggregating one-dependence estimators. Machine Learning, 58(1): 5-24, 2005.
-
(2005)
Machine Learning
, vol.58
, Issue.1
, pp. 5-24
-
-
Webb, G.I.1
Boughton, J.R.2
Wang, Z.3
-
378
-
-
0003529238
-
-
PhD thesis, Harvard University, Cambridge, MA
-
P. Werbos. Beyond regression: New tools for prediction, and analysis in the behavior science. PhD thesis, Harvard University, Cambridge, MA, 1974.
-
(1974)
Beyond regression: New tools for prediction, and analysis in the behavior science
-
-
Werbos, P.1
-
379
-
-
13544268431
-
Neural network ensemble strategies for financial decision applications
-
D. West, S. Dellana, and J. Qian. Neural network ensemble strategies for financial decision applications. Computers & Operations Research, 32(10): 2543-2559, 2005.
-
(2005)
Computers & Operations Research
, vol.32
, Issue.10
, pp. 2543-2559
-
-
West, D.1
Dellana, S.2
Qian, J.3
-
380
-
-
0037368938
-
Coding, and decoding strategies formulti-class learning problems
-
T. Windeatt, and R. Ghaderi. Coding, and decoding strategies formulti-class learning problems. Information Fusion, 4(1): 11-21, 2003.
-
(2003)
Information Fusion
, vol.4
, Issue.1
, pp. 11-21
-
-
Windeatt, T.1
Ghaderi, R.2
-
381
-
-
0026692226
-
Stacked generalization
-
D.H. Wolpert. Stacked generalization. Neural Networks, 5(2): 241-260, 1992.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-260
-
-
Wolpert, D.H.1
-
382
-
-
0000459353
-
The lack of a priori distinctions between learning algorithms
-
D.H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7): 1341-1390, 1996.
-
(1996)
Neural Computation
, vol.8
, Issue.7
, pp. 1341-1390
-
-
Wolpert, D.H.1
-
384
-
-
0032638640
-
An efficient method to estimate bagging’s generalization error
-
D. H. Wolpert, and W. G. Macready. An efficient method to estimate bagging’s generalization error. Machine Learning, 35(1): 41-55, 1999.
-
(1999)
Machine Learning
, vol.35
, Issue.1
, pp. 41-55
-
-
Wolpert, D.H.1
Macready, W.G.2
-
385
-
-
0031121318
-
Combination of multiple classifiers using local accuracy estimates
-
K. Woods, W. P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 19(4): 405-410, 1997.
-
(1997)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.19
, Issue.4
, pp. 405-410
-
-
Woods, K.1
Kegelmeyer, W.P.2
Bowyer, K.3
-
386
-
-
39549099075
-
Fast asymmetriclearning for cascade face detection
-
J. Wu, S. C. Brubaker, M.D. Mullin, and J.M. Rehg. Fast asymmetriclearning for cascade face detection. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 30(3): 369-382, 2008.
-
(2008)
IEEE Transactions on Pattern Analysis, and Machine Intelligence
, vol.30
, Issue.3
, pp. 369-382
-
-
Wu, J.1
Brubaker, S.C.2
Mullin, M.D.3
Rehg, J.M.4
-
387
-
-
77956465653
-
Combining classifiers, and learning mixture-of-experts
-
J. R. R. Dopico, J. Dorado, and A. Pazos, editors, IGI, Berlin
-
L. Xu, and S. Amari. Combining classifiers, and learning mixture-of-experts. In J. R. R. Dopico, J. Dorado, and A. Pazos, editors, Encyclopedia of Artificial Intelligence, pages 318-326. IGI, Berlin, 2009.
-
(2009)
Encyclopedia of Artificial Intelligence
, pp. 318-326
-
-
Xu, L.1
Amari, S.2
-
388
-
-
2342533082
-
On convergence properties of the EM algorithm for Gaussian mixtures
-
L. Xu, and M. I. Jordan. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 8(1): 129-151, 1996.
-
(1996)
Neural Computation
, vol.8
, Issue.1
, pp. 129-151
-
-
Xu, L.1
Jordan, M.I.2
-
389
-
-
0026860706
-
Methods of combiningmultiple classifiers, and their applications to handwriting recognition
-
L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combiningmultiple classifiers, and their applications to handwriting recognition. IEEE Transactions on SystemsMan, and Cybernetics, 22(3): 418-435, 1992.
-
(1992)
IEEE Transactions on SystemsMan, and Cybernetics
, vol.22
, Issue.3
, pp. 418-435
-
-
Xu, L.1
Krzyzak, A.2
Suen, C.Y.3
-
390
-
-
85140116568
-
An alternative model for mixtures of experts
-
G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, MIT Press, Cambridge, MA
-
L. Xu, M. I. Jordan, and G. E. Hinton. An alternative model for mixtures of experts. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, pages 633-640. MIT Press, Cambridge, MA, 1995.
-
(1995)
Advances in Neural Information Processing Systems 7
, pp. 633-640
-
-
Xu, L.1
Jordan, M.I.2
Hinton, G.E.3
-
391
-
-
1942451946
-
Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic
-
Washington, DC
-
L. Yan, R. H. Dodier, M. Mozer, and R. H. Wolniewicz. Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic. In Proceedings of the 20th International Conference on Machine Learning, pages 848-855, Washington, DC, 2003.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning
, pp. 848-855
-
-
Yan, L.1
Dodier, R.H.2
Mozer, M.3
Wolniewicz, R.H.4
-
392
-
-
56349124819
-
Jet engine gas path fault diagnosis using dynamic fusion ofmultiple classifiers
-
Hong Kong, China
-
W. Yan, and F. Xue. Jet engine gas path fault diagnosis using dynamic fusion ofmultiple classifiers. In Proceedings of the International Joint Conference on Neural Networks, pages 1585-1591, Hong Kong, China, 2008.
-
(2008)
Proceedings of the International Joint Conference on Neural Networks
, pp. 1585-1591
-
-
Yan, W.1
Xue, F.2
-
393
-
-
84865079075
-
Diversity regularizedmachine
-
Barcelona, Spain
-
Y. Yu, Y.-F. Li, and Z.-H. Zhou. Diversity regularizedmachine. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pages 1603-1608, Barcelona, Spain, 2011.
-
(2011)
Proceedings of the 22nd International Joint Conference on Artificial Intelligence
, pp. 1603-1608
-
-
Yu, Y.1
Li, Y.-F.2
Zhou, Z.-H.3
-
394
-
-
68949086993
-
Class discovery from gene expression data based on perturbation, and cluster ensemble
-
Z. Yu, and H.-S. Wong. Class discovery from gene expression data based on perturbation, and cluster ensemble. IEEE Transactions on NanoBioscience, 18(2): 147-160, 2009.
-
(2009)
IEEE Transactions on NanoBioscience
, vol.18
, Issue.2
, pp. 147-160
-
-
Yu, Z.1
Wong, H.-S.2
-
396
-
-
0035789316
-
Learning, and making decisions when costs, and probabilities are both unknown
-
San Francisco, CA
-
B. Zadrozny, and C. Elkan. Learning, and making decisions when costs, and probabilities are both unknown. In Proceedings of the 7th ACM SIGKDDInternational Conference on Knowledge Discovery, and DataMining, pages 204-213, San Francisco, CA, 2001a.
-
(2001)
Proceedings of the 7th ACM SIGKDDInternational Conference on Knowledge Discovery, and DataMining
, pp. 204-213
-
-
Zadrozny, B.1
Elkan, C.2
-
397
-
-
0003259364
-
Obtaining calibrated probability estimates from decision trees, and naive Bayesian classifiers
-
Williamstown, MA
-
B. Zadrozny, and C. Elkan. Obtaining calibrated probability estimates from decision trees, and naive Bayesian classifiers. In Proceedings of the 18th International Conference on Machine Learning, pages 609-616, Williamstown, MA, 2001b.
-
(2001)
Proceedings of the 18th International Conference on Machine Learning
, pp. 609-616
-
-
Zadrozny, B.1
Elkan, C.2
-
398
-
-
33749245586
-
Cost-sensitive learning by costproportionate example weighting
-
Melbourne, FL
-
B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by costproportionate example weighting. In Proceedings of the 3rd IEEE International Conference on Data Mining, pages 435-442, Melbourne, FL, 2003.
-
(2003)
Proceedings of the 3rd IEEE International Conference on Data Mining
, pp. 435-442
-
-
Zadrozny, B.1
Langford, J.2
Abe, N.3
-
401
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
Montreal, Canada
-
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 103-114, Montreal, Canada, 1996.
-
(1996)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
402
-
-
24644517147
-
Selective SVMs ensemble driven by immune clonal algorithm
-
Lausanne, Switzerland
-
X. Zhang, S. Wang, T. Shan, and L. Jiao. Selective SVMs ensemble driven by immune clonal algorithm. In Proceedings of the EvoWorkshops, pages 325-333, Lausanne, Switzerland, 2005.
-
(2005)
Proceedings of the EvoWorkshops
, pp. 325-333
-
-
Zhang, X.1
Wang, S.2
Shan, T.3
Jiao, L.4
-
403
-
-
45849119092
-
Spectral clustering ensemble applied to SAR image segmentation
-
X. Zhang, L. Jiao, F. Liu, L. Bo, and M. Gong. Spectral clustering ensemble applied to SAR image segmentation. IEEE Transactions onGeoscience, and Remote Sensing, 46(7): 2126-2136, 2008.
-
(2008)
IEEE Transactions onGeoscience, and Remote Sensing
, vol.46
, Issue.7
, pp. 2126-2136
-
-
Zhang, X.1
Jiao, L.2
Liu, F.3
Bo, L.4
Gong, M.5
-
405
-
-
0034301677
-
Laze learning of Bayesian rules
-
Z. Zheng, and G. I. Webb. Laze learning of Bayesian rules. Machine Learning, 41(1): 53-84, 2000.
-
(2000)
Machine Learning
, vol.41
, Issue.1
, pp. 53-84
-
-
Zheng, Z.1
Webb, G.I.2
-
406
-
-
84899006908
-
Learning with local, and global consistency
-
S. Thrun, L. Saul, and B. Schölkopf, editors, MIT Press, Cambridge, MA
-
D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local, and global consistency. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
-
(2004)
Advances in Neural Information Processing Systems 16
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
407
-
-
1642327509
-
Rule extraction: Using neural networks or for neural networks?
-
Z.-H. Zhou. Rule extraction: Using neural networks or for neural networks? Journal of Computer Science, and Technology, 19(2): 249-253, 2004.
-
(2004)
Journal of Computer Science, and Technology
, vol.19
, Issue.2
, pp. 249-253
-
-
Zhou, Z.-H.1
-
408
-
-
37249004259
-
Comprehensibility of data mining algorithms
-
J. Wang, editor, IGI, Hershey, PA
-
Z.-H. Zhou. Comprehensibility of data mining algorithms. In J. Wang, editor, Encyclopedia of Data Warehousing, and Mining, pages 190-195. IGI, Hershey, PA, 2005.
-
(2005)
Encyclopedia of Data Warehousing, and Mining
, pp. 190-195
-
-
Zhou, Z.-H.1
-
412
-
-
3042634798
-
NeC4.5: Neural ensemble based C4.5
-
Z.-H. Zhou, and Y. Jiang. NeC4.5: Neural ensemble based C4.5. IEEE Transactions on Knowledge, and Data Engineering, 16(6): 770-773, 2004.
-
(2004)
IEEE Transactions on Knowledge, and Data Engineering
, vol.16
, Issue.6
, pp. 770-773
-
-
Zhou, Z.-H.1
Jiang, Y.2
-
413
-
-
28244448186
-
Tri-training: Exploiting unlabeled data using three classifiers
-
Z.-H. Zhou, and M. Li. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on Knowledge, and Data Engineering, 17(11): 1529-1541, 2005.
-
(2005)
IEEE Transactions on Knowledge, and Data Engineering
, vol.17
, Issue.11
, pp. 1529-1541
-
-
Zhou, Z.-H.1
Li, M.2
-
414
-
-
35348881683
-
Semi-supervised regression with co-training style algorithms
-
Z.-H. Zhou, and M. Li. Semi-supervised regression with co-training style algorithms. IEEE Transactions on Knowledge, and Data Engineering, 19(11): 1479-1493, 2007.
-
(2007)
IEEE Transactions on Knowledge, and Data Engineering
, vol.19
, Issue.11
, pp. 1479-1493
-
-
Zhou, Z.-H.1
Li, M.2
-
415
-
-
77956708689
-
Semi-supervised learning by disagreement
-
Z.-H. Zhou, and M. Li. Semi-supervised learning by disagreement. Knowledge, and Information Systems, 24(3): 415-439, 2010a.
-
(2010)
Knowledge, and Information Systems
, vol.24
, Issue.3
, pp. 415-439
-
-
Zhou, Z.-H.1
Li, M.2
-
417
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
Z.-H. Zhou, and X.-Y. Liu. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge, and Data Engineering, 18(1): 63-77, 2006.
-
(2006)
IEEE Transactions on Knowledge, and Data Engineering
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.-H.1
Liu, X.-Y.2
-
418
-
-
77955034751
-
On multi-class cost-sensitive learning
-
Z.-H. Zhou, and X.-Y. Liu. On multi-class cost-sensitive learning. Computational Intelligence, 26(3): 232-257, 2010.
-
(2010)
Computational Intelligence
, vol.26
, Issue.3
, pp. 232-257
-
-
Zhou, Z.-H.1
Liu, X.-Y.2
-
419
-
-
8344279588
-
Selective ensemble of decision trees
-
Chongqing, China
-
Z.-H. Zhou, and W. Tang. Selective ensemble of decision trees. In Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, pages 476-483, Chongqing, China, 2003.
-
(2003)
Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing
, pp. 476-483
-
-
Zhou, Z.-H.1
Tang, W.2
-
421
-
-
24644441048
-
Ensembling local learners through multimodal perturbation
-
Z.-H. Zhou, and Y. Yu. Ensembling local learners through multimodal perturbation. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 35(4): 725-735, 2005.
-
(2005)
IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics
, vol.35
, Issue.4
, pp. 725-735
-
-
Zhou, Z.-H.1
Yu, Y.2
-
422
-
-
0036146402
-
Lung cancer cell identification based on artificial neural network ensembles
-
Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen. Lung cancer cell identification based on artificial neural network ensembles. Artificial Intelligence in Medicine, 24(1): 25-36, 2002a.
-
(2002)
Artificial Intelligence in Medicine
, vol.24
, Issue.1
, pp. 25-36
-
-
Zhou, Z.-H.1
Jiang, Y.2
Yang, Y.-B.3
Chen, S.-F.4
-
423
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137(1-2): 239-263, 2002b.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
-
424
-
-
0038030864
-
Extracting symbolic rules fromtrained neural network ensembles
-
Z.-H. Zhou, Y. Jiang, and S.-F. Chen. Extracting symbolic rules fromtrained neural network ensembles. AI Communications, 16(1): 3-15, 2003.
-
(2003)
AI Communications
, vol.16
, Issue.1
, pp. 3-15
-
-
Zhou, Z.-H.1
Jiang, Y.2
Chen, S.-F.3
-
425
-
-
33746834100
-
Enhancing relevance feedback in image retrieval using unlabeled data
-
Z.-H. Zhou, K.-J. Chen, and H.-B. Dai. Enhancing relevance feedback in image retrieval using unlabeled data. ACM Transactions on Information Systems, 24(2): 219-244, 2006.
-
(2006)
ACM Transactions on Information Systems
, vol.24
, Issue.2
, pp. 219-244
-
-
Zhou, Z.-H.1
Chen, K.-J.2
Dai, H.-B.3
-
426
-
-
34250749560
-
-
Technical report, Department of Statistics, University of Michigan, Ann Arbor, MI
-
J. Zhu, S. Rosset, H. Zou, and T. Hastie. Multi-class AdaBoost. Technical report, Department of Statistics, University of Michigan, Ann Arbor, MI, 2006.
-
(2006)
Multi-class AdaBoost
-
-
Zhu, J.1
Rosset, S.2
Zou, H.3
Hastie, T.4
-
427
-
-
33745456231
-
-
Technical Report, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI
-
X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, 2006. http://www.cs.wisc.edu/jerryzhu/pub/sslsurvey.pdf.
-
(2006)
Semi-supervised learning literature survey
, pp. 1530
-
-
Zhu, X.1
-
428
-
-
1942484430
-
Semi-supervised learning using Gaussian fields, and harmonic functions
-
Washington, DC
-
X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields, and harmonic functions. In Proceedings of the 20th International Conference on Machine Learning, pages 912-919, Washington, DC, 2003.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
-
429
-
-
19544364128
-
Dynamic classifier selection for effectivemining from noisy data streams
-
Brighton, UK
-
X. Zhu, X. Wu, and Y. Yang. Dynamic classifier selection for effectivemining from noisy data streams. In Proceedings of the 14th IEEE International Conference on Data Mining, pages 305-312, Brighton, UK, 2004.
-
(2004)
Proceedings of the 14th IEEE International Conference on Data Mining
, pp. 305-312
-
-
Zhu, X.1
Wu, X.2
Yang, Y.3
|