메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1-218

Ensemble methods: Foundations and algorithms

(1)  Zhou, Zhi Hua a  

a NONE   (China)

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85055384819     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b12207     Document Type: Book
Times cited : (2835)

References (429)
  • 3
    • 0038809899 scopus 로고    scopus 로고
    • Use of Dempster-Shafer theory to combine classifiers which use different class boundaries
    • M. R. Ahmadzadeh, and M. Petrou. Use of Dempster-Shafer theory to combine classifiers which use different class boundaries. Pattern Analysis, and Application, 6(1): 41-46, 2003.
    • (2003) Pattern Analysis, and Application , vol.6 , Issue.1 , pp. 41-46
    • Ahmadzadeh, M.R.1    Petrou, M.2
  • 4
    • 4344710606 scopus 로고    scopus 로고
    • A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence
    • A. Al-Ani, and M. Deriche. A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence. Journal of Artificial Intelligence Research, 17(1): 333-361, 2002.
    • (2002) Journal of Artificial Intelligence Research , vol.17 , Issue.1 , pp. 333-361
    • Al-Ani, A.1    Deriche, M.2
  • 5
    • 0030235637 scopus 로고    scopus 로고
    • Error reduction through learning multiple descriptions
    • K. M. Ali, and M. J. Pazzani. Error reduction through learning multiple descriptions. Machine Learning, 24(3): 173-202, 1996.
    • (1996) Machine Learning , vol.24 , Issue.3 , pp. 173-202
    • Ali, K.M.1    Pazzani, M.J.2
  • 6
  • 9
    • 0029484103 scopus 로고
    • Survey, and critique of techniques for extracting rules from trained artificial neural networks
    • R. Andrews, J. Diederich, and A. B. Tickle. Survey, and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8(6): 373-389, 1995.
    • (1995) Knowledge-Based Systems , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 12
    • 33845633261 scopus 로고    scopus 로고
    • Ensemble forecasting of species distributions
    • M. B. Araújo, and M. New. Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1): 42-47, 2007.
    • (2007) Trends in Ecology & Evolution , vol.22 , Issue.1 , pp. 42-47
    • Araújo, M.B.1    New, M.2
  • 15
    • 38049188202 scopus 로고    scopus 로고
    • Seeing the forest through the trees: Learning a comprehensible model froman ensemble
    • Warsaw, Poland
    • A. V. Assche, and H. Blockeel. Seeing the forest through the trees: Learning a comprehensible model froman ensemble. In Proceedings of the 18th European Conference onMachine Learning, pages 418-429, Warsaw, Poland, 2007.
    • (2007) Proceedings of the 18th European Conference onMachine Learning , pp. 418-429
    • Assche, A.V.1    Blockeel, H.2
  • 17
    • 61449214257 scopus 로고    scopus 로고
    • Fuzzy ensemble clustering based on random projections for DNA microarray data analysis
    • R. Avogadri, and G. Valentini. Fuzzy ensemble clustering based on random projections for DNA microarray data analysis. Artificial Intelligence in Medicine, 45(2-3): 173-183, 2009.
    • (2009) Artificial Intelligence in Medicine , vol.45 , Issue.2-3 , pp. 173-183
    • Avogadri, R.1    Valentini, G.2
  • 20
    • 0037337904 scopus 로고    scopus 로고
    • Clustering ensembles of neural network models
    • B. Bakker, and T. Heskes. Clustering ensembles of neural network models. Neural Networks, 16(2): 261-269, 2003.
    • (2003) Neural Networks , vol.16 , Issue.2 , pp. 261-269
    • Bakker, B.1    Heskes, T.2
  • 22
  • 23
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer, and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2): 105-139, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 25
    • 33751531805 scopus 로고    scopus 로고
    • Aggregate features, and AdaBoost for music classification
    • J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl. Aggregate features, and AdaBoost for music classification. Machine Learning, 65(2-3): 473-484, 2006.
    • (2006) Machine Learning , vol.65 , Issue.2-3 , pp. 473-484
    • Bergstra, J.1    Casagrande, N.2    Erhan, D.3    Eck, D.4    Kégl, B.5
  • 26
    • 50649109430 scopus 로고    scopus 로고
    • The combination of multiple classifiers using an evidential reasoning approach
    • Y. Bi, J. Guan, and D. Bell. The combination of multiple classifiers using an evidential reasoning approach. Artificial Intelligence, 172(15): 1731-1751, 2008.
    • (2008) Artificial Intelligence , vol.172 , Issue.15 , pp. 1731-1751
    • Bi, Y.1    Guan, J.2    Bell, D.3
  • 33
    • 85162047207 scopus 로고    scopus 로고
    • FilterBoost: Regression, and classification on large datasets
    • J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, MIT Press, Cambridge, MA
    • J. K. Bradley, and R. E. Schapire. FilterBoost: Regression, and classification on large datasets. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 185-192. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems 20 , pp. 185-192
    • Bradley, J.K.1    Schapire, R.E.2
  • 36
    • 0003619255 scopus 로고    scopus 로고
    • Technical Report, Statistics Department, University of California, Berkeley, CA
    • L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department, University of California, Berkeley, CA, 1996a.
    • (1996) Bias, variance, and arcing classifiers , pp. 460
    • Breiman, L.1
  • 37
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • L. Breiman. Stacked regressions. Machine Learning, 24(1): 49-64, 1996b.
    • (1996) Machine Learning , vol.24 , Issue.1 , pp. 49-64
    • Breiman, L.1
  • 38
    • 0004140497 scopus 로고    scopus 로고
    • Technical report, Department of Statistics, University of California
    • L. Breiman. Out-of-bag estimation. Technical report, Department of Statistics, University of California, 1996c.
    • (1996) Out-of-bag estimation
    • Breiman, L.1
  • 39
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, 1996d.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 40
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games, and arcing algorithms
    • L. Breiman. Prediction games, and arcing algorithms. Neural Computation, 11(7): 1493-1517, 1999.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 41
    • 0034276320 scopus 로고    scopus 로고
    • Randomizing outputs to increase prediction accuracy
    • L. Breiman. Randomizing outputs to increase prediction accuracy. Machine Learning, 40(3): 113-120, 2000.
    • (2000) Machine Learning , vol.40 , Issue.3 , pp. 113-120
    • Breiman, L.1
  • 42
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1): 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 43
    • 14644395930 scopus 로고    scopus 로고
    • Population theory for boosting ensembles
    • L. Breiman. Population theory for boosting ensembles. Annals of Statistics, 32(1): 1-11, 2004.
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 1-11
    • Breiman, L.1
  • 47
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey, and categorisation
    • G. Brown, J. L. Wyatt, R. Harris, and X. Yao. Diversity creation methods: A survey, and categorisation. Information Fusion, 6(1): 5-20, 2005a.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.L.2    Harris, R.3    Yao, X.4
  • 49
  • 50
    • 0043245810 scopus 로고    scopus 로고
    • Boosting with the l2 loss: Regression, and classification
    • P. Bühlmann, and B. Yu. Boosting with the l2 loss: Regression, and classification. Journal of the American Statistical Association, 98(462): 324-339, 2003.
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.462 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 51
    • 0043115283 scopus 로고    scopus 로고
    • The effect of bagging on variance, bias, and mean squared error
    • AT&T Labs-Research
    • A. Buja, and W. Stuetzle. The effect of bagging on variance, bias, and mean squared error. Technical report, AT&T Labs-Research, 2000a.
    • (2000) Technical report
    • Buja, A.1    Stuetzle, W.2
  • 53
    • 33746171809 scopus 로고    scopus 로고
    • Observations on bagging
    • A. Buja, and W. Stuetzle. Observations on bagging. Statistica Sinica, 16(2): 323-351, 2006.
    • (2006) Statistica Sinica , vol.16 , Issue.2 , pp. 323-351
    • Buja, A.1    Stuetzle, W.2
  • 56
    • 0000159863 scopus 로고    scopus 로고
    • Toward scalable learning with non-uniform class, and cost distributions: A case study in credit card fraud detection
    • New York, NY
    • P. Chan, and S. Stolfo. Toward scalable learning with non-uniform class, and cost distributions: A case study in credit card fraud detection. In Proceeding of the 4th International Conference on Knowledge Discovery, and Data Mining, pages 164-168, New York, NY, 1998.
    • (1998) Proceeding of the 4th International Conference on Knowledge Discovery, and Data Mining , pp. 164-168
    • Chan, P.1    Stolfo, S.2
  • 61
    • 37949004300 scopus 로고    scopus 로고
    • Datamining for imbalanced datasets: An overview
    • O. Maimon, and L. Rokach, editors, Springer, New York, NY
    • N. V. Chawla. Datamining for imbalanced datasets: An overview. In O. Maimon, and L. Rokach, editors, The Data Mining, and Knowledge Discovery Handbook, pages 853-867. Springer, New York, NY, 2006.
    • (2006) The Data Mining, and Knowledge Discovery Handbook , pp. 853-867
    • Chawla, N.V.1
  • 66
    • 2542484580 scopus 로고    scopus 로고
    • Comparing Bayes model averaging, and stacking when model approximation error cannot be ignored
    • B. Clarke. Comparing Bayes model averaging, and stacking when model approximation error cannot be ignored. Journal ofMachine Learning Research, 4: 683-712, 2003.
    • (2003) Journal ofMachine Learning Research , vol.4 , pp. 683-712
    • Clarke, B.1
  • 67
    • 84856720362 scopus 로고    scopus 로고
    • GA-based selection of components for heterogeneous ensembles of support vector machines
    • Canberra, Australia
    • A. L. V. Coelho, C. A. M. Lima, and F. J. V. Zuben. GA-based selection of components for heterogeneous ensembles of support vector machines. In Proceedings of the Congress on Evolutionary Computation, pages 2238-2244, Canberra, Australia, 2003.
    • (2003) Proceedings of the Congress on Evolutionary Computation , pp. 2238-2244
    • Coelho, A.L.V.1    Lima, C.A.M.2    Zuben, F.J.V.3
  • 68
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • J. Cohen. A coefficient of agreement for nominal scales. Educational, and PsychologicalMeasurement, 20(1): 37-46, 1960.
    • (1960) Educational, and PsychologicalMeasurement , vol.20 , Issue.1 , pp. 37-46
    • Cohen, J.1
  • 69
    • 67349154442 scopus 로고    scopus 로고
    • Information fusion for computer security: State of the art, and open issues
    • I. Corona, G. Giacinto, C. Mazzariello, F. Roli, and C. Sansone. Information fusion for computer security: State of the art, and open issues. Information Fusion, 10(4): 274-284, 2009.
    • (2009) Information Fusion , vol.10 , Issue.4 , pp. 274-284
    • Corona, I.1    Giacinto, G.2    Mazzariello, C.3    Roli, F.4    Sansone, C.5
  • 72
    • 33750988502 scopus 로고    scopus 로고
    • On the use of selective ensembles for relevance classification in case-based web search
    • Fethiye, Turkey
    • M. Coyle, and B. Smyth. On the use of selective ensembles for relevance classification in case-based web search. In Proceedings of the 8th European Conference on Case-Based Reasoning, pages 370-384, Fethiye, Turkey, 2006.
    • (2006) Proceedings of the 8th European Conference on Case-Based Reasoning , pp. 370-384
    • Coyle, M.1    Smyth, B.2
  • 73
    • 0036568032 scopus 로고    scopus 로고
    • On the learnability, and design of output codes for multiclass problems
    • K. Crammer, and Y. Singer. On the learnability, and design of output codes for multiclass problems. Machine Learning, 47(2-3): 201-233, 2002.
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 201-233
    • Crammer, K.1    Singer, Y.2
  • 78
  • 80
    • 84898947320 scopus 로고    scopus 로고
    • Analysis of a greedy active learning strategy
    • L. Saul, Y. Weiss, and L. Bottou, editors, MIT Press, Cambridge, MA
    • S. Dasgupta. Analysis of a greedy active learning strategy. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 337-344. MIT Press, Cambridge, MA, 2005.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 337-344
    • Dasgupta, S.1
  • 81
    • 71049162986 scopus 로고    scopus 로고
    • Coarse sample complexity bounds for active learning
    • Y. Weiss, B. Schölkopf, and J. Platt, editors, MIT Press, Cambridge, MA
    • S. Dasgupta. Coarse sample complexity bounds for active learning. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 235-242. MIT Press, Cambridge, MA, 2006.
    • (2006) Advances in Neural Information Processing Systems 18 , pp. 235-242
    • Dasgupta, S.1
  • 85
    • 0002546287 scopus 로고
    • Efficient algorithms for agglomerative hierarchical clustering methods
    • W. H. E. Day, and H. Edelsbrunner. Efficient algorithms for agglomerative hierarchical clustering methods. Journal of Classification, 1: 7-24, 1984.
    • (1984) Journal of Classification , vol.1 , pp. 7-24
    • Day, W.H.E.1    Edelsbrunner, H.2
  • 87
    • 0036161257 scopus 로고    scopus 로고
    • Linear programming boosting via column generation
    • A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column generation. Machine Learning, 46(1-3): 225-254, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 225-254
    • Demiriz, A.1    Bennett, K.P.2    Shawe-Taylor, J.3
  • 88
    • 0000516376 scopus 로고
    • Upper, and lower probabilities induced by a multivalued mapping
    • A. P. Dempster. Upper, and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38(2): 325-339, 1967.
    • (1967) Annals of Mathematical Statistics , vol.38 , Issue.2 , pp. 325-339
    • Dempster, A.P.1
  • 90
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal ofMachine Learning Research, 7: 1-30, 2006.
    • (2006) Journal ofMachine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 91
    • 24044449939 scopus 로고    scopus 로고
    • A study on the performances of dynamic classifier selection based on local accuracy estimation
    • L. Didaci, G. Giacinto, F. Roli, and G. L. Marcialis. A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recognition, 38(11): 2188-2191, 2005.
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 2188-2191
    • Didaci, L.1    Giacinto, G.2    Roli, F.3    Marcialis, G.L.4
  • 92
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7): 1895-1923, 1998.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 94
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2): 139-157, 2000b.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 95
  • 98
    • 0002426982 scopus 로고    scopus 로고
    • Knowledge discovery via multiple models
    • P. Domingos. Knowledge discovery via multiple models. Intelligent Data Analysis, 2(1-4): 187-202, 1998.
    • (1998) Intelligent Data Analysis , vol.2 , Issue.1-4 , pp. 187-202
    • Domingos, P.1
  • 100
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos, and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2-3): 103-137, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-137
    • Domingos, P.1    Pazzani, M.2
  • 102
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves: An improved method for visualizing classifier performance
    • C. Drummond, and R. C. Holte. Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1): 95-130, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 95-130
    • Drummond, C.1    Holte, R.C.2
  • 106
    • 34447532140 scopus 로고    scopus 로고
    • Boosted landmarks of contextual descriptors, and Forest-ECOC: A novel framework to detect, and classify objects in clutter scenes
    • S. Escalera, O. Pujol, and P. Radeva. Boosted landmarks of contextual descriptors, and Forest-ECOC: A novel framework to detect, and classify objects in clutter scenes. Pattern Recognition Letters, 28(13): 1759-1768, 2007.
    • (2007) Pattern Recognition Letters , vol.28 , Issue.13 , pp. 1759-1768
    • Escalera, S.1    Pujol, O.2    Radeva, P.3
  • 109
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • A. Estabrooks, T. Jo, and N. Japkowicz. A multiple resampling method for learning from imbalanced data sets. Computational Intelligence, 20(1): 18-36, 2004.
    • (2004) Computational Intelligence , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 111
    • 0012834533 scopus 로고    scopus 로고
    • Why so many clustering algorithms - A position paper
    • V. Estivill-Castro. Why so many clustering algorithms - A position paper. SIGKDD Explorations, 4(1): 65-75, 2002.
    • (2002) SIGKDD Explorations , vol.4 , Issue.1 , pp. 65-75
    • Estivill-Castro, V.1
  • 117
    • 33646017973 scopus 로고    scopus 로고
    • ROC graphs with instance varying costs
    • T. Fawcett. ROC graphs with instance varying costs. Pattern Recognition Letters, 27(8): 882-891, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 882-891
    • Fawcett, T.1
  • 127
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund. Boosting a weak learning algorithm by majority. Information, and Computation, 121(2): 256-285, 1995.
    • (1995) Information, and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 128
    • 0035371148 scopus 로고    scopus 로고
    • An adaptive version of the boost bymajority algorithm
    • Y. Freund. An adaptive version of the boost bymajority algorithm. Machine Learning, 43(3): 293-318, 2001.
    • (2001) Machine Learning , vol.43 , Issue.3 , pp. 293-318
    • Freund, Y.1
  • 129
    • 85055380521 scopus 로고    scopus 로고
    • A more robust boosting algorithm
    • abs/0905.2138
    • Y. Freund. A more robust boosting algorithm. CORR abs/0905.2138, 2009.
    • (2009) CORR
    • Freund, Y.1
  • 131
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning, and an application to boosting
    • Y. Freund, and R. E. Schapire. A decision-theoretic generalization of on-line learning, and an application to boosting. Journal of Computer, and System Sciences, 55(1): 119-139, 1997.
    • (1997) Journal of Computer, and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 132
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3): 133-168, 1997.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 133
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussions)
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting (with discussions). Annals of Statistics, 28(2): 337-407, 2000.
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 137
    • 21244501361 scopus 로고    scopus 로고
    • A theoretical, and experimental analysis of linear combiners for multiple classifier systems
    • G. Fumera, and F. Roli. A theoretical, and experimental analysis of linear combiners for multiple classifier systems. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 27(6): 942-956, 2005.
    • (2005) IEEE Transactions on Pattern Analysis, and Machine Intelligence , vol.27 , Issue.6 , pp. 942-956
    • Fumera, G.1    Roli, F.2
  • 141
    • 0001942829 scopus 로고
    • Neural networks, and the bias/variance dilemma
    • S. Geman, E. Bienenstock, and R. Doursat. Neural networks, and the bias/variance dilemma. Neural Computation, 4(1): 1-58, 1992.
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 146
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification purposes
    • G. Giacinto, and F. Roli. Design of effective neural network ensembles for image classification purposes. Image, and Vision Computing, 19(9-10): 699-707, 2001.
    • (2001) Image, and Vision Computing , vol.19 , Issue.9-10 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 148
    • 0038330235 scopus 로고    scopus 로고
    • Fusion of multiple classifiers for intrusion detection in computer networks
    • G. Giacinto, F. Roli, and L. Didaci. Fusion of multiple classifiers for intrusion detection in computer networks. Pattern Recognition Letters, 24(12): 1795-1803, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1795-1803
    • Giacinto, G.1    Roli, F.2    Didaci, L.3
  • 149
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • G. Giacinto, R. Perdisci, M. D. Rio, and F. Roli. Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Information Fusion, 9(1): 69-82, 2008.
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Rio, M.D.3    Roli, F.4
  • 150
    • 26844438590 scopus 로고    scopus 로고
    • Atmospheric science: Weather forecasting with ensemble methods
    • T. Gneiting, and A. E. Raftery. Atmospheric science: Weather forecasting with ensemble methods. Science, 310(5746): 248-249, 2005.
    • (2005) Science , vol.310 , Issue.5746 , pp. 248-249
    • Gneiting, T.1    Raftery, A.E.2
  • 151
    • 0034432120 scopus 로고    scopus 로고
    • Diagnostic information fusion: Requirements flowdown, and interface issues
    • Big Sky, MT
    • K. Goebel, M. Krok, and H. Sutherland. Diagnostic information fusion: Requirements flowdown, and interface issues. In Proceedings of the IEEE Aerospace Conference, volume 6, pages 155-162, Big Sky, MT, 2000.
    • (2000) Proceedings of the IEEE Aerospace Conference , vol.6 , pp. 155-162
    • Goebel, K.1    Krok, M.2    Sutherland, H.3
  • 156
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting, and data generation: The DataBoost-IM approach
    • H. Guo, and H. L. Viktor. Learning from imbalanced data sets with boosting, and data generation: The DataBoost-IM approach. SIGKDD Explorations, 6(1): 30-39, 2004.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 157
    • 85162003602 scopus 로고    scopus 로고
    • Discriminative batch mode active learning
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
    • Y. Guo, and D. Schuurmans. Discriminative batch mode active learning. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 593-600. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems 20 , pp. 593-600
    • Guo, Y.1    Schuurmans, D.2
  • 158
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable, and feature selection
    • I. Guyon, and A. Elisseeff. An introduction to variable, and feature selection. Journal ofMachine Learning Research, 3: 1157-1182, 2003.
    • (2003) Journal ofMachine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 164
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • D. J. Hand. Measuring classifier performance: A coherent alternative to the area under the ROC curve. Machine Learning, 77(1): 103-123, 2009.
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 103-123
    • Hand, D.J.1
  • 165
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalization of the area under the ROC curve to multiple classification problems
    • D. J. Hand, and R. J. Till. A simple generalization of the area under the ROC curve to multiple classification problems. Machine Learning, 45(2): 171-186, 2001.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 166
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • J. A. Hanley, and B. J. McNeil. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148(3): 839-843, 1983.
    • (1983) Radiology , vol.148 , Issue.3 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 169
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie, and R. Tibshirani. Classification by pairwise coupling. Annals of Statistics, 26(2): 451-471, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 173
    • 13444273324 scopus 로고    scopus 로고
    • A cluster ensemble method for clustering categorical data
    • Z. He, X. Xu, and S. Deng. A cluster ensemble method for clustering categorical data. Information Fusion, 6(2): 143-151, 2005.
    • (2005) Information Fusion , vol.6 , Issue.2 , pp. 143-151
    • He, Z.1    Xu, X.2    Deng, S.3
  • 174
    • 84915005479 scopus 로고
    • Probability of error, equivocation, and the Chernoff bound
    • M. Hellman, and J. Raviv. Probability of error, equivocation, and the Chernoff bound. IEEE Transactions on Information Theory, 16(4): 368-372, 1970.
    • (1970) IEEE Transactions on Information Theory , vol.16 , Issue.4 , pp. 368-372
    • Hellman, M.1    Raviv, J.2
  • 176
    • 79956208533 scopus 로고    scopus 로고
    • Empirical analysis, and evaluation of approximate techniques for pruning regression bagging ensembles
    • D. Hernández-Lobato, G. Martínez-Muñoz, and A. Suárez. Empirical analysis, and evaluation of approximate techniques for pruning regression bagging ensembles. Neurocomputing, 74(12-13): 2250-2264, 2011.
    • (2011) Neurocomputing , vol.74 , Issue.12-13 , pp. 2250-2264
    • Hernández-Lobato, D.1    Martínez-Muñoz, G.2    Suárez, A.3
  • 181
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. Hodge, and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2): 85-126, 2004.
    • (2004) Artificial Intelligence Review , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 182
    • 68549086546 scopus 로고    scopus 로고
    • Semisupervised SVMbatchmode active learning with applications to image retrieval
    • S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Semisupervised SVMbatchmode active learning with applications to image retrieval. ACMTransactions on Information Systems, 27(3): 1-29, 2009.
    • (2009) ACMTransactions on Information Systems , vol.27 , Issue.3 , pp. 1-29
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 183
    • 85055381565 scopus 로고    scopus 로고
    • Resampling-based selective clustering ensembles
    • Y. Hong, S. Kwong, H. Wang, and Q. Ren. Resampling-based selective clustering ensembles. Pattern Recognition Letters, 41(9): 2742-2756, 2009.
    • (2009) Pattern Recognition Letters , vol.41 , Issue.9 , pp. 2742-2756
    • Hong, Y.1    Kwong, S.2    Wang, H.3    Ren, Q.4
  • 185
    • 58249083148 scopus 로고    scopus 로고
    • A scalable framework for cluster ensembles
    • P. Hore, L. O. Hall, and D. B. Goldgof. A scalable framework for cluster ensembles. Pattern Recognition, 42(5): 676-688, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 676-688
    • Hore, P.1    Hall, L.O.2    Goldgof, D.B.3
  • 186
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • C.-W. Hsu, and C.-J. Lin. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13(2): 415-425, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 187
    • 70349416588 scopus 로고    scopus 로고
    • Microarray gene cluster identification, and annotation through cluster ensemble, and EM-based informative textual summarization
    • X. Hu, E. K. Park, and X. Zhang. Microarray gene cluster identification, and annotation through cluster ensemble, and EM-based informative textual summarization. IEEE Transactions on Information Technology in Biomedicine, 13(5): 832-840, 2009.
    • (2009) IEEE Transactions on Information Technology in Biomedicine , vol.13 , Issue.5 , pp. 832-840
    • Hu, X.1    Park, E.K.2    Zhang, X.3
  • 189
    • 85162011798 scopus 로고    scopus 로고
    • Active learning by querying informative, and representative examples
    • J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, MIT Press, Cambridge, MA
    • S.-J. Huang, R. Jin, and Z.-H. Zhou. Active learning by querying informative, and representative examples. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 892-900. MIT Press, Cambridge, MA, 2010.
    • (2010) Advances in Neural Information Processing Systems 23 , pp. 892-900
    • Huang, S.-J.1    Jin, R.2    Zhou, Z.-H.3
  • 190
    • 0029230267 scopus 로고
    • A method of combiningmultiple experts for the recognition of unconstrained handwritten numerals
    • Y. S. Huang, and C. Y. Suen. A method of combiningmultiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 17(1): 90-94, 1995.
    • (1995) IEEE Transactions on Pattern Analysis, and Machine Intelligence , vol.17 , Issue.1 , pp. 90-94
    • Huang, Y.S.1    Suen, C.Y.2
  • 191
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z. Huang. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining, and Knowledge Discovery, 2(3): 283-304, 1998.
    • (1998) Data Mining, and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 196
    • 0037403462 scopus 로고    scopus 로고
    • Variance, and bias for general loss functions
    • G. M. James. Variance, and bias for general loss functions. Machine Learning, 51(2): 115-135, 2003.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 115-135
    • James, G.M.1
  • 197
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Bled, Slovenia
    • T. Joachims. Transductive inference for text classification using support vector machines. In Proceedings of the 16th International Conference on Machine Learning, pages 200-209, Bled, Slovenia, 1999.
    • (1999) Proceedings of the 16th International Conference on Machine Learning , pp. 200-209
    • Joachims, T.1
  • 200
    • 0001632132 scopus 로고
    • Hierarchies of adaptive experts
    • J. E. Moody, S. J. Hanson, and R. Lippmann, editors, Morgan Kaufmann, San Francisco, CA
    • M. I. Jordan, and R. A. Jacobs. Hierarchies of adaptive experts. In J. E. Moody, S. J. Hanson, and R. Lippmann, editors, Advances in Neural Information Processing Systems 4, pages 985-992. Morgan Kaufmann, San Francisco, CA, 1992.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 985-992
    • Jordan, M.I.1    Jacobs, R.A.2
  • 201
    • 0029617280 scopus 로고
    • Convergence results for theEMapproach tomixtures of experts architectures
    • M. I. Jordan, and L. Xu. Convergence results for theEMapproach tomixtures of experts architectures. Neural Networks, 8(9): 1409-1431, 1995.
    • (1995) Neural Networks , vol.8 , Issue.9 , pp. 1409-1431
    • Jordan, M.I.1    Xu, L.2
  • 202
    • 0032131147 scopus 로고    scopus 로고
    • A fast, and high quality multilevel scheme for partitioning irregular graphs
    • G. Karypis, and V. Kumar. A fast, and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1): 359-392, 1998.
    • (1998) SIAM Journal on Scientific Computing , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 205
    • 0032202014 scopus 로고    scopus 로고
    • Efficient noise tolerant learning fromstatistical queries
    • M. Kearns. Efficient noise tolerant learning fromstatistical queries. Journal of the ACM, 45(6): 983-1006, 1998.
    • (1998) Journal of the ACM , vol.45 , Issue.6 , pp. 983-1006
    • Kearns, M.1
  • 212
    • 38349135448 scopus 로고    scopus 로고
    • From dynamic classifier selection to dynamic ensemble selection
    • A. H. Ko, R. Sabourin, and J. A. S. Britto. From dynamic classifier selection to dynamic ensemble selection. Pattern Recognition, 41(5): 1718-1731, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1718-1731
    • Ko, A.H.1    Sabourin, R.2    Britto, J.A.S.3
  • 215
    • 0000670848 scopus 로고
    • Back propagation is sensitive to initial conditions
    • R. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Morgan Kaufmann, San Francisco, CA
    • J. F. Kolen, and J. B. Pollack. Back propagation is sensitive to initial conditions. In R. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances inNeural Information Processing Systems 3, pages 860-867. Morgan Kaufmann, San Francisco, CA, 1991.
    • (1991) Advances inNeural Information Processing Systems 3 , pp. 860-867
    • Kolen, J.F.1    Pollack, J.B.2
  • 216
    • 33845768389 scopus 로고    scopus 로고
    • Learning to detect, and classify malicious executables in the wild
    • J. Z. Kolter, and M. A. Maloof. Learning to detect, and classify malicious executables in the wild. Journal ofMachine Learning Research, 7: 2721-2744, 2006.
    • (2006) Journal ofMachine Learning Research , vol.7 , pp. 2721-2744
    • Kolter, J.Z.1    Maloof, M.A.2
  • 218
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, MIT Press, Cambridge, MA
    • A. Krogh, and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances inNeural Information Processing Systems 7, pages 231-238. MIT Press, Cambridge, MA, 1995.
    • (1995) Advances inNeural Information Processing Systems 7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 220
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2: 83-79, 1955.
    • (1955) Naval Research Logistics Quarterly , vol.2 , pp. 83-179
    • Kuhn, H.W.1
  • 226
    • 33947159574 scopus 로고    scopus 로고
    • Evaluation of stability of k-means cluster ensembles with respect to random initialization
    • L. I. Kuncheva, and D. P. Vetrov. Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 28(11): 1798-1808, 2006.
    • (2006) IEEE Transactions on Pattern Analysis, and Machine Intelligence , vol.28 , Issue.11 , pp. 1798-1808
    • Kuncheva, L.I.1    Vetrov, D.P.2
  • 227
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles, and their relationship with the ensemble accuracy
    • L. I. Kuncheva, and C. J. Whitaker. Measures of diversity in classifier ensembles, and their relationship with the ensemble accuracy. Machine Learning, 51(2): 181-207, 2003.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 228
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates formultiple classifier fusion: An experimental comparison
    • L. I. Kuncheva, J. C. Bezdek, and R. P. Duin. Decision templates formultiple classifier fusion: An experimental comparison. Pattern Recognition, 34(2): 299-314, 2001.
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.3
  • 237
    • 76149138033 scopus 로고    scopus 로고
    • Exploiting remote learners in internet environment with agents
    • M. Li, W. Wang, and Z.-H. Zhou. Exploiting remote learners in internet environment with agents. Science China: Information Sciences, 53(1): 64-76, 2010.
    • (2010) Science China: Information Sciences , vol.53 , Issue.1 , pp. 64-76
    • Li, M.1    Wang, W.2    Zhou, Z.-H.3
  • 241
    • 41549137738 scopus 로고    scopus 로고
    • Support vector machinery for infinite ensemble learning
    • H.-T. Lin, and L. Li. Support vector machinery for infinite ensemble learning. Journal ofMachine Learning Research, 9: 285-312, 2008.
    • (2008) Journal ofMachine Learning Research , vol.9 , pp. 285-312
    • Lin, H.-T.1    Li, L.2
  • 242
    • 0038667775 scopus 로고    scopus 로고
    • Performance analysis of pattern classifier combination by plurality voting
    • X. Lin, S. Yacoub, J. Burns, and S. Simske. Performance analysis of pattern classifier combination by plurality voting. Pattern Recognition Letters, 24(12): 1959-1969, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1959-1969
    • Lin, X.1    Yacoub, S.2    Burns, J.3    Simske, S.4
  • 243
    • 0036161029 scopus 로고    scopus 로고
    • Support vectormachines for classification in nonstandard situations
    • Y. M. Lin, Y. Lee, and G. Wahba. Support vectormachines for classification in nonstandard situations. Machine Learning, 46(1): 191-202, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 191-202
    • Lin, Y.M.1    Lee, Y.2    Wahba, G.3
  • 251
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y. Liu, and X. Yao. Ensemble learning via negative correlation. Neural Networks, 12(10): 1399-1404, 1999.
    • (1999) Neural Networks , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 253
    • 38949161848 scopus 로고    scopus 로고
    • AUC: Amisleadingmeasure of the performance of predictive distribution models
    • J. M. Lobo, A. Jiménez-Valverde, and R. Real. AUC: Amisleadingmeasure of the performance of predictive distribution models. Global Ecology, and Biogeography, 17(2): 145-151, 2008.
    • (2008) Global Ecology, and Biogeography , vol.17 , Issue.2 , pp. 145-151
    • Lobo, J.M.1    Jiménez-Valverde, A.2    Real, R.3
  • 256
    • 3142666177 scopus 로고    scopus 로고
    • An ensemble of neural networks for weather forecasting
    • I. Maqsood, M. R. Khan, and A. Abraham. An ensemble of neural networks for weather forecasting. Neural Computing & Applications, 13(2): 112-122, 2004.
    • (2004) Neural Computing & Applications , vol.13 , Issue.2 , pp. 112-122
    • Maqsood, I.1    Khan, M.R.2    Abraham, A.3
  • 258
    • 84995186518 scopus 로고
    • Portfolio selection
    • H. Markowitz. Portfolio selection. Journal of Finance, 7(1): 77-91, 1952.
    • (1952) Journal of Finance , vol.7 , Issue.1 , pp. 77-91
    • Markowitz, H.1
  • 264
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • P. J. Bartlett, B. Schölkopf, D. Schuurmans, and A. J. Smola, editors, MIT Press, Cambridge, MA
    • L. Mason, J. Baxter, P. L. Bartlett, and M. Frean. Functional gradient techniques for combining hypotheses. In P. J. Bartlett, B. Schölkopf, D. Schuurmans, and A. J. Smola, editors, Advances in Large-Margin Classifiers, pages 221-246. MIT Press, Cambridge, MA, 2000.
    • (2000) Advances in Large-Margin Classifiers , pp. 221-246
    • Mason, L.1    Baxter, J.2    Bartlett, P.L.3    Frean, M.4
  • 268
  • 269
    • 41549131613 scopus 로고    scopus 로고
    • Evidence contrary to the statistical view of boosting (with discussions)
    • D. Mease, and A. Wyner. Evidence contrary to the statistical view of boosting (with discussions). Journal ofMachine Learning Research, 9: 131-201, 2008.
    • (2008) Journal ofMachine Learning Research , vol.9 , pp. 131-201
    • Mease, D.1    Wyner, A.2
  • 271
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • P. Melville, and R. J. Mooney. Creating diversity in ensembles using artificial data. Information Fusion, 6(1): 99-111, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 99-111
    • Melville, P.1    Mooney, R.J.2
  • 272
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • C. E. Metz. Basic principles of ROC analysis. Seminars in NuclearMedicine, 8(4): 283-298, 1978.
    • (1978) Seminars in NuclearMedicine , vol.8 , Issue.4 , pp. 283-298
    • Metz, C.E.1
  • 273
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled, and unlabelled data
    • M. Mozer, M. I. Jordan, and T. Petsche, editors, MIT Press, Cambridge, MA
    • D. J. Miller, and H. S. Uyar. A mixture of experts classifier with learning based on both labelled, and unlabelled data. In M. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 571-577. MIT Press, Cambridge, MA, 1997.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 275
    • 62649153786 scopus 로고    scopus 로고
    • Analysis of a plurality voting-based combination of classifiers
    • X. Mu, P. Watta, and M. H. Hassoun. Analysis of a plurality voting-based combination of classifiers. Neural Processing Letters, 29(2): 89-107, 2009.
    • (2009) Neural Processing Letters , vol.29 , Issue.2 , pp. 89-107
    • Mu, X.1    Watta, P.2    Hassoun, M.H.3
  • 276
    • 85162059054 scopus 로고    scopus 로고
    • A theory of multiclass boosting
    • J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, MIT Press, Cambridge, MA
    • I. Mukherjee, and R. Schapire. A theory of multiclass boosting. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1714-1722. MIT Press, Cambridge, MA, 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 1714-1722
    • Mukherjee, I.1    Schapire, R.2
  • 279
    • 30144441888 scopus 로고    scopus 로고
    • Theoretical bounds of majority voting performance for a binary classification problem
    • A. Narasimhamurthy. Theoretical bounds of majority voting performance for a binary classification problem. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 27(12): 1988-1995, 2005.
    • (2005) IEEE Transactions on Pattern Analysis, and Machine Intelligence , vol.27 , Issue.12 , pp. 1988-1995
    • Narasimhamurthy, A.1
  • 283
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled, and unlabeled documents using EM
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled, and unlabeled documents using EM. Machine Learning, 39(2-3): 103-134, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 286
    • 67349218861 scopus 로고    scopus 로고
    • Credit card fraud detection: A fusion approach using Dempster-Shafer theory, and Bayesian learning
    • S. Panigrahi, A. Kundu, S. Sural, and A. K. Majumdar. Credit card fraud detection: A fusion approach using Dempster-Shafer theory, and Bayesian learning. Information Fusion, 10(4): 354-363, 2009.
    • (2009) Information Fusion , vol.10 , Issue.4 , pp. 354-363
    • Panigrahi, S.1    Kundu, A.2    Sural, S.3    Majumdar, A.K.4
  • 287
    • 61849098236 scopus 로고    scopus 로고
    • Pruning an ensemble of classifiers via reinforcement learning
    • I. Partalas, G. Tsoumakas, and I. Vlahavas. Pruning an ensemble of classifiers via reinforcement learning. Neurocomputing, 72(7-9): 1900-1909, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1900-1909
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 288
    • 0031244715 scopus 로고    scopus 로고
    • Software diversity: Practical statistics for its measurement, and exploitation
    • D. Partridge, and W. J. Krzanowski. Software diversity: Practical statistics for its measurement, and exploitation. Information & Software Technology, 39(10): 707-717, 1997.
    • (1997) Information & Software Technology , vol.39 , Issue.10 , pp. 707-717
    • Partridge, D.1    Krzanowski, W.J.2
  • 290
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble method for neural networks
    • R. J. Mammone, editor, Chapman & Hall, New York, NY
    • M. P. Perrone, and L. N. Cooper. When networks disagree: Ensemble method for neural networks. In R. J. Mammone, editor, Artificial Neural Networks for Spech, and Vision, pages 126-142. Chapman & Hall, New York, NY, 1993.
    • (1993) Artificial Neural Networks for Spech, and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 291
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for SVmachines
    • MIT Press, Cambridge, MA
    • J. C. Platt. Probabilities for SVmachines. In Advances in LargeMargin Classifiers, pages 61-74. MIT Press, Cambridge, MA, 2000.
    • (2000) Advances in LargeMargin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 294
    • 33645963453 scopus 로고    scopus 로고
    • Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes
    • O. Pujol, P. Radeva, and J. Vitrià. Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 28(6): 1007-1012, 2006.
    • (2006) IEEE Transactions on Pattern Analysis, and Machine Intelligence , vol.28 , Issue.6 , pp. 1007-1012
    • Pujol, O.1    Radeva, P.2    Vitrià, J.3
  • 295
    • 34948906283 scopus 로고    scopus 로고
    • An incremental node embedding technique for error correcting output codes
    • O. Pujol, S. Escalera, and P. Radeva. An incremental node embedding technique for error correcting output codes. Pattern Recognition, 41(2): 713-725, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.2 , pp. 713-725
    • Pujol, O.1    Escalera, S.2    Radeva, P.3
  • 297
    • 33744584654 scopus 로고    scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1): 81-106, 1998.
    • (1998) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 298
    • 27244453282 scopus 로고    scopus 로고
    • The behavior knowledge space fusion method: Analysis of generalization error, and strategies for performance improvement
    • Guildford, UK
    • Š. Raudys, and F. Roli. The behavior knowledge space fusion method: Analysis of generalization error, and strategies for performance improvement. In Proceedings of the 4th International Workshop on Multiple Classifier Systems, pages 55-64, Guildford, UK, 2003.
    • (2003) Proceedings of the 4th International Workshop on Multiple Classifier Systems , pp. 55-64
    • Raudys, J.1    Roli, F.2
  • 299
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the EMalgorithm
    • R. A. Redner, and H. F. Walker. Mixture densities, maximum likelihood, and the EMalgorithm. SIAMReview, 26(2): 195-239, 1984.
    • (1984) SIAMReview , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 304
    • 0027961797 scopus 로고
    • Combining the results of several neural network classifiers
    • G. Rogova. Combining the results of several neural network classifiers. Neural Networks, 7(5): 777-781, 1994.
    • (1994) Neural Networks , vol.7 , Issue.5 , pp. 777-781
    • Rogova, G.1
  • 307
    • 84956988905 scopus 로고    scopus 로고
    • Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting
    • Cambridge, UK
    • D. Ruta, and B. Gabrys. Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting. In Proceedings of the 2nd InternationalWorkshop onMultiple Classifier Systems, pages 399-408, Cambridge, UK, 2001.
    • (2001) Proceedings of the 2nd InternationalWorkshop onMultiple Classifier Systems , pp. 399-408
    • Ruta, D.1    Gabrys, B.2
  • 308
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2): 197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 309
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire, and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3): 297-336, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 310
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of votingmethods
    • R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of votingmethods. Annals of Statistics, 26(5): 1651-1686, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 311
    • 0003246430 scopus 로고    scopus 로고
    • A classification approach incorporating misclassification costs
    • J. Schiffers. A classification approach incorporating misclassification costs. Intelligent Data Analysis, 1(1): 59-68, 1997.
    • (1997) Intelligent Data Analysis , vol.1 , Issue.1 , pp. 59-68
    • Schiffers, J.1
  • 315
    • 8444229122 scopus 로고    scopus 로고
    • How to make stacking better, and faster while also taking care of an unknown weakness
    • Sydney, Australia
    • A. K. Seewald. How to make stacking better, and faster while also taking care of an unknown weakness. In Proceedings of the 19th International Conference onMachine Learning, pages 554-561, Sydney, Australia, 2002.
    • (2002) Proceedings of the 19th International Conference onMachine Learning , pp. 554-561
    • Seewald, A.K.1
  • 316
    • 68949137209 scopus 로고    scopus 로고
    • Technical Report 1648, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI
    • B. Settles. Active learning literature survey. Technical Report 1648, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, 2009.
    • (2009) Active learning literature survey
    • Settles, B.1
  • 320
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • H. B. Shen, and K. C. Chou. Ensemble classifier for protein fold pattern recognition. Bioinformatics, 22(14): 1717-1722, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 1717-1722
    • Shen, H.B.1    Chou, K.C.2
  • 322
    • 0036609602 scopus 로고    scopus 로고
    • Relationships between combination methods, and measures of diversity in combining classifiers
    • C. A. Shipp, and L. I. Kuncheva. Relationships between combination methods, and measures of diversity in combining classifiers. Information Fusion, 3(2): 135-148, 2002.
    • (2002) Information Fusion , vol.3 , Issue.2 , pp. 135-148
    • Shipp, C.A.1    Kuncheva, L.I.2
  • 324
    • 33745827787 scopus 로고    scopus 로고
    • Multivariate information bottleneck
    • N. Slonim, N. Friedman, and N. Tishby. Multivariate information bottleneck. Neural Computation, 18(8): 1739-1789, 2006.
    • (2006) Neural Computation , vol.18 , Issue.8 , pp. 1739-1789
    • Slonim, N.1    Friedman, N.2    Tishby, N.3
  • 325
    • 84872441718 scopus 로고    scopus 로고
    • Stacked density estimation
    • M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, MIT Press, Cambridge, MA
    • P. Smyth, and D. Wolpert. Stacked density estimation. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 668-674. MIT Press, Cambridge, MA, 1998.
    • (1998) Advances in Neural Information Processing Systems 10 , pp. 668-674
    • Smyth, P.1    Wolpert, D.2
  • 329
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combiningmultiple partitions
    • A. Strehl, and J. Ghosh. Cluster ensembles - A knowledge reuse framework for combiningmultiple partitions. Journal ofMachine Learning Research, 3: 583-617, 2002.
    • (2002) Journal ofMachine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 331
    • 0041529506 scopus 로고    scopus 로고
    • The multi-information function as a tool for measuring stochastic dependence
    • M. I. Jordan, editor, Kluwer, Norwell, MA
    • M. Studeny, and J. Vejnarova. The multi-information function as a tool for measuring stochastic dependence. In M. I. Jordan, editor, Learning in Graphical Models, pages 261-298. Kluwer, Norwell, MA, 1998.
    • (1998) Learning in Graphical Models , pp. 261-298
    • Studeny, M.1    Vejnarova, J.2
  • 334
    • 14944354760 scopus 로고    scopus 로고
    • Multi-class protein fold classification using a new ensemblemachine learning approach
    • A. C. Tan, D. Gilbert, and Y. Deville. Multi-class protein fold classification using a new ensemblemachine learning approach. Genome Informatics, 14: 206-217, 2003.
    • (2003) Genome Informatics , vol.14 , pp. 206-217
    • Tan, A.C.1    Gilbert, D.2    Deville, Y.3
  • 336
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • E. K. Tang, P. N. Suganthan, and X. Yao. An analysis of diversity measures. Machine Learning, 65(1): 247-271, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 337
    • 0036699869 scopus 로고    scopus 로고
    • Neural network load forecasting with weather ensemble predictions
    • J. W. Taylor, and R. Buizza. Neural network load forecasting with weather ensemble predictions. IEEE Transactions on Power Systems, 17(3): 626-632, 2002.
    • (2002) IEEE Transactions on Power Systems , vol.17 , Issue.3 , pp. 626-632
    • Taylor, J.W.1    Buizza, R.2
  • 341
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions, and challenges in extracting the knowledge embedded within trained artificial neural networks
    • A. B. Tickle, R. Andrews, M. Golea, and J. Diederich. The truth will come to light: Directions, and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Transactions on Neural Networks, 9(6): 1057-1067, 1998.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1057-1067
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 343
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • K. M. Ting. An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge, and Data Engineering, 14(3): 659-665, 2002.
    • (2002) IEEE Transactions on Knowledge, and Data Engineering , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 346
    • 0003007938 scopus 로고    scopus 로고
    • Support vectormachine active learning with applications to text classification
    • San Francisco, CA
    • S. Tong, and D. Koller. Support vectormachine active learning with applications to text classification. In Proceedings of the 17th International Conference onMachine Learning, pages 999-1006, San Francisco, CA, 2000.
    • (2000) Proceedings of the 17th International Conference onMachine Learning , pp. 999-1006
    • Tong, S.1    Koller, D.2
  • 356
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • K. Tumer, and J. Ghosh. Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition, 29(2): 341-348, 1996.
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 359
    • 0035350036 scopus 로고    scopus 로고
    • Stochastic organization of output codes in multiclass learning problems
    • W. Utschick, and W. Weichselberger. Stochastic organization of output codes in multiclass learning problems. Neural Computation, 13(5): 1065-1102, 2004.
    • (2004) Neural Computation , vol.13 , Issue.5 , pp. 1065-1102
    • Utschick, W.1    Weichselberger, W.2
  • 360
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11): 1134-1142, 1984.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 365
    • 84898979550 scopus 로고    scopus 로고
    • Fast, and robust classification using asymmetric Adaboost, and a detector cascade
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, MIT Press, Cambridge, MA
    • P. Viola, and M. Jones. Fast, and robust classification using asymmetric Adaboost, and a detector cascade. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 1311-1318. MIT Press, Cambridge, MA, 2002.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 1311-1318
    • Viola, P.1    Jones, M.2
  • 368
    • 56449102315 scopus 로고    scopus 로고
    • On multi-view active learning, and the combination with semi-supervised learning
    • Helsinki, Finland
    • W. Wang, and Z.-H. Zhou. On multi-view active learning, and the combination with semi-supervised learning. In Proceedings of the 25th International Conference on Machine Learning, pages 1152-1159, Helsinki, Finland, 2008.
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 1152-1159
    • Wang, W.1    Zhou, Z.-H.2
  • 369
    • 85161974295 scopus 로고    scopus 로고
    • Multi-view active learning in the non-realizable case
    • J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, MIT Press, Cambridge, MA
    • W. Wang, and Z.-H. Zhou. Multi-view active learning in the non-realizable case. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances inNeural Information Processing Systems 23, pages 2388-2396. MIT Press, Cambridge, MA, 2010.
    • (2010) Advances inNeural Information Processing Systems 23 , pp. 2388-2396
    • Wang, W.1    Zhou, Z.-H.2
  • 372
    • 0345997703 scopus 로고
    • Information theoretical analysis of multivariate correlation
    • S. Watanabe. Information theoretical analysis of multivariate correlation. IBMJournal of Research, and Development, 4(1): 66-82, 1960.
    • (1960) IBMJournal of Research, and Development , vol.4 , Issue.1 , pp. 66-82
    • Watanabe, S.1
  • 373
    • 85156191859 scopus 로고    scopus 로고
    • Bayesian methods for mixtures of experts
    • D. S. Touretzky, M. Mozer, and M. E. Hasselmo, editors, MIT Press, Cambridge, MA
    • S. Waterhouse, D. Mackay, and T. Robinson. Bayesian methods for mixtures of experts. In D. S. Touretzky, M. Mozer, and M. E. Hasselmo, editors, Advances inNeural Information Processing Systems 8, pages 351-357. MIT Press, Cambridge, MA, 1996.
    • (1996) Advances inNeural Information Processing Systems 8 , pp. 351-357
    • Waterhouse, S.1    Mackay, D.2    Robinson, T.3
  • 374
    • 85156220253 scopus 로고    scopus 로고
    • Constructive algorithms for hierarchical mixtures of experts
    • D. S. Touretzky, M. Mozer, and M. E. Hasselmo, editors, MIT Press, Cambridge, MA
    • S. R. Waterhouse, and A. J. Robinson. Constructive algorithms for hierarchical mixtures of experts. In D. S. Touretzky, M. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 584-590. MIT Press, Cambridge, MA, 1996.
    • (1996) Advances in Neural Information Processing Systems 8 , pp. 584-590
    • Waterhouse, S.R.1    Robinson, A.J.2
  • 376
    • 4344706336 scopus 로고    scopus 로고
    • Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
    • G. I. Webb, and Z. Zheng. Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques. IEEE Transactions on Knowledge, and Data Engineering, 16(8): 980-991, 2004.
    • (2004) IEEE Transactions on Knowledge, and Data Engineering , vol.16 , Issue.8 , pp. 980-991
    • Webb, G.I.1    Zheng, Z.2
  • 377
    • 14844351034 scopus 로고    scopus 로고
    • Not so naïve Bayes: Aggregating one-dependence estimators
    • G. I. Webb, J. R. Boughton, and Z. Wang. Not so naïve Bayes: Aggregating one-dependence estimators. Machine Learning, 58(1): 5-24, 2005.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.R.2    Wang, Z.3
  • 379
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision applications
    • D. West, S. Dellana, and J. Qian. Neural network ensemble strategies for financial decision applications. Computers & Operations Research, 32(10): 2543-2559, 2005.
    • (2005) Computers & Operations Research , vol.32 , Issue.10 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 380
    • 0037368938 scopus 로고    scopus 로고
    • Coding, and decoding strategies formulti-class learning problems
    • T. Windeatt, and R. Ghaderi. Coding, and decoding strategies formulti-class learning problems. Information Fusion, 4(1): 11-21, 2003.
    • (2003) Information Fusion , vol.4 , Issue.1 , pp. 11-21
    • Windeatt, T.1    Ghaderi, R.2
  • 381
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert. Stacked generalization. Neural Networks, 5(2): 241-260, 1992.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-260
    • Wolpert, D.H.1
  • 382
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • D.H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7): 1341-1390, 1996.
    • (1996) Neural Computation , vol.8 , Issue.7 , pp. 1341-1390
    • Wolpert, D.H.1
  • 384
    • 0032638640 scopus 로고    scopus 로고
    • An efficient method to estimate bagging’s generalization error
    • D. H. Wolpert, and W. G. Macready. An efficient method to estimate bagging’s generalization error. Machine Learning, 35(1): 41-55, 1999.
    • (1999) Machine Learning , vol.35 , Issue.1 , pp. 41-55
    • Wolpert, D.H.1    Macready, W.G.2
  • 387
    • 77956465653 scopus 로고    scopus 로고
    • Combining classifiers, and learning mixture-of-experts
    • J. R. R. Dopico, J. Dorado, and A. Pazos, editors, IGI, Berlin
    • L. Xu, and S. Amari. Combining classifiers, and learning mixture-of-experts. In J. R. R. Dopico, J. Dorado, and A. Pazos, editors, Encyclopedia of Artificial Intelligence, pages 318-326. IGI, Berlin, 2009.
    • (2009) Encyclopedia of Artificial Intelligence , pp. 318-326
    • Xu, L.1    Amari, S.2
  • 388
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • L. Xu, and M. I. Jordan. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 8(1): 129-151, 1996.
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 389
    • 0026860706 scopus 로고
    • Methods of combiningmultiple classifiers, and their applications to handwriting recognition
    • L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combiningmultiple classifiers, and their applications to handwriting recognition. IEEE Transactions on SystemsMan, and Cybernetics, 22(3): 418-435, 1992.
    • (1992) IEEE Transactions on SystemsMan, and Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 390
    • 85140116568 scopus 로고
    • An alternative model for mixtures of experts
    • G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, MIT Press, Cambridge, MA
    • L. Xu, M. I. Jordan, and G. E. Hinton. An alternative model for mixtures of experts. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, pages 633-640. MIT Press, Cambridge, MA, 1995.
    • (1995) Advances in Neural Information Processing Systems 7 , pp. 633-640
    • Xu, L.1    Jordan, M.I.2    Hinton, G.E.3
  • 392
    • 56349124819 scopus 로고    scopus 로고
    • Jet engine gas path fault diagnosis using dynamic fusion ofmultiple classifiers
    • Hong Kong, China
    • W. Yan, and F. Xue. Jet engine gas path fault diagnosis using dynamic fusion ofmultiple classifiers. In Proceedings of the International Joint Conference on Neural Networks, pages 1585-1591, Hong Kong, China, 2008.
    • (2008) Proceedings of the International Joint Conference on Neural Networks , pp. 1585-1591
    • Yan, W.1    Xue, F.2
  • 394
    • 68949086993 scopus 로고    scopus 로고
    • Class discovery from gene expression data based on perturbation, and cluster ensemble
    • Z. Yu, and H.-S. Wong. Class discovery from gene expression data based on perturbation, and cluster ensemble. IEEE Transactions on NanoBioscience, 18(2): 147-160, 2009.
    • (2009) IEEE Transactions on NanoBioscience , vol.18 , Issue.2 , pp. 147-160
    • Yu, Z.1    Wong, H.-S.2
  • 397
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees, and naive Bayesian classifiers
    • Williamstown, MA
    • B. Zadrozny, and C. Elkan. Obtaining calibrated probability estimates from decision trees, and naive Bayesian classifiers. In Proceedings of the 18th International Conference on Machine Learning, pages 609-616, Williamstown, MA, 2001b.
    • (2001) Proceedings of the 18th International Conference on Machine Learning , pp. 609-616
    • Zadrozny, B.1    Elkan, C.2
  • 402
    • 24644517147 scopus 로고    scopus 로고
    • Selective SVMs ensemble driven by immune clonal algorithm
    • Lausanne, Switzerland
    • X. Zhang, S. Wang, T. Shan, and L. Jiao. Selective SVMs ensemble driven by immune clonal algorithm. In Proceedings of the EvoWorkshops, pages 325-333, Lausanne, Switzerland, 2005.
    • (2005) Proceedings of the EvoWorkshops , pp. 325-333
    • Zhang, X.1    Wang, S.2    Shan, T.3    Jiao, L.4
  • 405
    • 0034301677 scopus 로고    scopus 로고
    • Laze learning of Bayesian rules
    • Z. Zheng, and G. I. Webb. Laze learning of Bayesian rules. Machine Learning, 41(1): 53-84, 2000.
    • (2000) Machine Learning , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2
  • 407
    • 1642327509 scopus 로고    scopus 로고
    • Rule extraction: Using neural networks or for neural networks?
    • Z.-H. Zhou. Rule extraction: Using neural networks or for neural networks? Journal of Computer Science, and Technology, 19(2): 249-253, 2004.
    • (2004) Journal of Computer Science, and Technology , vol.19 , Issue.2 , pp. 249-253
    • Zhou, Z.-H.1
  • 408
    • 37249004259 scopus 로고    scopus 로고
    • Comprehensibility of data mining algorithms
    • J. Wang, editor, IGI, Hershey, PA
    • Z.-H. Zhou. Comprehensibility of data mining algorithms. In J. Wang, editor, Encyclopedia of Data Warehousing, and Mining, pages 190-195. IGI, Hershey, PA, 2005.
    • (2005) Encyclopedia of Data Warehousing, and Mining , pp. 190-195
    • Zhou, Z.-H.1
  • 411
  • 413
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • Z.-H. Zhou, and M. Li. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on Knowledge, and Data Engineering, 17(11): 1529-1541, 2005.
    • (2005) IEEE Transactions on Knowledge, and Data Engineering , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 414
    • 35348881683 scopus 로고    scopus 로고
    • Semi-supervised regression with co-training style algorithms
    • Z.-H. Zhou, and M. Li. Semi-supervised regression with co-training style algorithms. IEEE Transactions on Knowledge, and Data Engineering, 19(11): 1479-1493, 2007.
    • (2007) IEEE Transactions on Knowledge, and Data Engineering , vol.19 , Issue.11 , pp. 1479-1493
    • Zhou, Z.-H.1    Li, M.2
  • 415
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Z.-H. Zhou, and M. Li. Semi-supervised learning by disagreement. Knowledge, and Information Systems, 24(3): 415-439, 2010a.
    • (2010) Knowledge, and Information Systems , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.-H.1    Li, M.2
  • 417
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Z.-H. Zhou, and X.-Y. Liu. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge, and Data Engineering, 18(1): 63-77, 2006.
    • (2006) IEEE Transactions on Knowledge, and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 418
    • 77955034751 scopus 로고    scopus 로고
    • On multi-class cost-sensitive learning
    • Z.-H. Zhou, and X.-Y. Liu. On multi-class cost-sensitive learning. Computational Intelligence, 26(3): 232-257, 2010.
    • (2010) Computational Intelligence , vol.26 , Issue.3 , pp. 232-257
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 422
    • 0036146402 scopus 로고    scopus 로고
    • Lung cancer cell identification based on artificial neural network ensembles
    • Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen. Lung cancer cell identification based on artificial neural network ensembles. Artificial Intelligence in Medicine, 24(1): 25-36, 2002a.
    • (2002) Artificial Intelligence in Medicine , vol.24 , Issue.1 , pp. 25-36
    • Zhou, Z.-H.1    Jiang, Y.2    Yang, Y.-B.3    Chen, S.-F.4
  • 423
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137(1-2): 239-263, 2002b.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 424
    • 0038030864 scopus 로고    scopus 로고
    • Extracting symbolic rules fromtrained neural network ensembles
    • Z.-H. Zhou, Y. Jiang, and S.-F. Chen. Extracting symbolic rules fromtrained neural network ensembles. AI Communications, 16(1): 3-15, 2003.
    • (2003) AI Communications , vol.16 , Issue.1 , pp. 3-15
    • Zhou, Z.-H.1    Jiang, Y.2    Chen, S.-F.3
  • 425
    • 33746834100 scopus 로고    scopus 로고
    • Enhancing relevance feedback in image retrieval using unlabeled data
    • Z.-H. Zhou, K.-J. Chen, and H.-B. Dai. Enhancing relevance feedback in image retrieval using unlabeled data. ACM Transactions on Information Systems, 24(2): 219-244, 2006.
    • (2006) ACM Transactions on Information Systems , vol.24 , Issue.2 , pp. 219-244
    • Zhou, Z.-H.1    Chen, K.-J.2    Dai, H.-B.3
  • 426
    • 34250749560 scopus 로고    scopus 로고
    • Technical report, Department of Statistics, University of Michigan, Ann Arbor, MI
    • J. Zhu, S. Rosset, H. Zou, and T. Hastie. Multi-class AdaBoost. Technical report, Department of Statistics, University of Michigan, Ann Arbor, MI, 2006.
    • (2006) Multi-class AdaBoost
    • Zhu, J.1    Rosset, S.2    Zou, H.3    Hastie, T.4
  • 427
    • 33745456231 scopus 로고    scopus 로고
    • Technical Report, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI
    • X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, 2006. http://www.cs.wisc.edu/jerryzhu/pub/sslsurvey.pdf.
    • (2006) Semi-supervised learning literature survey , pp. 1530
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.