-
1
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
Aizerman, M. A., Braverman, E.M. and Rozoner, L.I. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821-837, 1964.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.A.1
Braverman, E.M.2
Rozoner, L.I.3
-
3
-
-
0006456134
-
Geometry in learning
-
page to appear, Washington, D.C., Mathematical Association of America
-
Bennett, K.P. and Bredensteiner, E. Geometry in learning. In Geometry at Work, page to appear, Washington, D.C., 1998. Mathematical Association of America.
-
(1998)
Geometry at Work
-
-
Bennett, K.P.1
Bredensteiner, E.2
-
5
-
-
84902205493
-
Comparison of view-based object recognition algorithms using realistic 3d models
-
C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Berlin, Springer Lecture Notes in Computer Science
-
Blanz, V., Schölkopf, B., Bülthoff, H., Burges, C., Vapnik, V. and Vetter, T. Comparison of view-based object recognition algorithms using realistic 3d models. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Artificial Neural Networks - ICANN'96, pages 251 - 256, Berlin, 1996. Springer Lecture Notes in Computer Science, Vol. 1112.
-
(1996)
Artificial Neural Networks - ICANN'96
, vol.1112
, pp. 251-256
-
-
Blanz, V.1
Schölkopf, B.2
Bülthoff, H.3
Burges, C.4
Vapnik, V.5
Vetter, T.6
-
6
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, ACM
-
Boser, B.E., Guyon, I.M. and Vapnik, V. A training algorithm for optimal margin classifiers. In Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, 1992. ACM.
-
(1992)
Fifth Annual Workshop on Computational Learning Theory
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.3
-
7
-
-
84966228742
-
Some stable methods for calculating inertia and solving symmetric linear systems
-
Bunch, J.R. and Kaufman, L. Some stable methods for calculating inertia and solving symmetric linear systems. Mathematics of computation, 31(137):163-179, 1977.
-
(1977)
Mathematics of Computation
, vol.31
, Issue.137
, pp. 163-179
-
-
Bunch, J.R.1
Kaufman, L.2
-
8
-
-
0042552138
-
A computational method for the indefinite quadratic programming problem
-
Bunch, J.R. and Kaufman, L. A computational method for the indefinite quadratic programming problem. Linear Algebra and its Applications, 34:341-370, 1980.
-
(1980)
Linear Algebra and its Applications
, vol.34
, pp. 341-370
-
-
Bunch, J.R.1
Kaufman, L.2
-
9
-
-
84898957872
-
Improving the accuracy and speed of support vector learning machines
-
M. Mozer, M. Jordan, and T. Petsche, editors, Cambridge, MA, MIT Press
-
Burges, C.J.C. and Schölkopf, B. Improving the accuracy and speed of support vector learning machines. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 375-381, Cambridge, MA, 1997. MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 375-381
-
-
Burges, C.J.C.1
Schölkopf, B.2
-
10
-
-
0002400882
-
Simplified support vector decision rules
-
Lorenza Saitta, editor, Bari, Italy, Morgan Kaufman
-
Burges, C.J.C. Simplified support vector decision rules. In Lorenza Saitta, editor, Proceedings of the Thirteenth International Conference on Machine Learning, pages 71-77, Bari, Italy, 1996. Morgan Kaufman.
-
(1996)
Proceedings of the Thirteenth International Conference on Machine Learning
, pp. 71-77
-
-
Burges, C.J.C.1
|