메뉴 건너뛰기




Volumn 43, Issue 10, 2010, Pages 3412-3421

Information theoretic combination of pattern classifiers

Author keywords

Classifier combination; Diversity; Information theory; Machine learning; Mutual information; Pattern recognition

Indexed keywords

CLASSIFIER COMBINATION; ENSEMBLE OF CLASSIFIERS; MACHINE LEARNING TECHNIQUES; MACHINE-LEARNING; MUTUAL INFORMATIONS; OPTIMAL ENSEMBLE; PATTERN CLASSIFIER; SELECTION BASED; SELECTION TECHNIQUES;

EID: 77953650340     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2010.04.013     Document Type: Article
Times cited : (35)

References (42)
  • 1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 (1997) 119-139
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 45 1 (2001) 5-32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51 2 (2003) 181-207
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 9
    • 84974722422 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • P. Cunningham, J. Carney, Diversity versus quality in classification ensembles based on feature selection, in: European Conference on Machine Learning (ECML), 2000, pp. 109-116.
    • (2000) European Conference on Machine Learning (ECML) , pp. 109-116
    • Cunningham, P.1    Carney, J.2
  • 10
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification purposes
    • Giacinto G., and Roli F. Design of effective neural network ensembles for image classification purposes. Image Vision Computing 19 9-10 (2001)
    • (2001) Image Vision Computing , vol.19 , Issue.9-10
    • Giacinto, G.1    Roli, F.2
  • 12
    • 84861973487 scopus 로고    scopus 로고
    • Using diversity with three variants of boosting: Aggressive, conservative, and inverse
    • Proceedings of International Workshop on Multiple Classifier Systems
    • L. Kuncheva, C. Whitaker, Using diversity with three variants of boosting: aggressive, conservative, and inverse, in: Proceedings of International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 2364, 2002, pp. 81-90.
    • (2002) Lecture Notes in Computer Science , vol.2364 , pp. 81-90
    • Kuncheva, L.1    Whitaker, C.2
  • 13
    • 0036609602 scopus 로고    scopus 로고
    • Relationships between combination methods and measures of diversity in combining classifiers
    • Shipp C.A., and Kuncheva L.I. Relationships between combination methods and measures of diversity in combining classifiers. Information Fusion 3 (2002) 135-148
    • (2002) Information Fusion , vol.3 , pp. 135-148
    • Shipp, C.A.1    Kuncheva, L.I.2
  • 16
    • 10444224738 scopus 로고    scopus 로고
    • Diversity measures for multiple classifier system analysis and design
    • Windeatt T. Diversity measures for multiple classifier system analysis and design. Information Fusion 6 (2005) 21-36
    • (2005) Information Fusion , vol.6 , pp. 21-36
    • Windeatt, T.1
  • 17
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • Melville P., and Mooney R.J. Creating diversity in ensembles using artificial data. Information Fusion 6 1 (2005) 99-111
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 99-111
    • Melville, P.1    Mooney, R.J.2
  • 19
    • 4243695412 scopus 로고    scopus 로고
    • Overfitting and diversity in classification ensembles based on feature selection
    • Technical Report TCD-CS-2000-07, Department of Computer Science, Trinity College Dublin
    • P. Cunningham, Overfitting and diversity in classification ensembles based on feature selection, Technical Report TCD-CS-2000-07, Department of Computer Science, Trinity College Dublin, 2000.
    • (2000)
    • Cunningham, P.1
  • 20
    • 0001308326 scopus 로고
    • On the association of attributes in statistics
    • Yule G. On the association of attributes in statistics. Biometrika 2 (1903) 121-134
    • (1903) Biometrika , vol.2 , pp. 121-134
    • Yule, G.1
  • 24
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • Tang E.K., Suganthan P.N., and Yao X. An analysis of diversity measures. Machine Learning 65 1 (2006) 247-271
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 29
    • 14844344462 scopus 로고    scopus 로고
    • From error probability to information theoretic (multi-modal) signal processing
    • Butz T., and Thiran J.-P. From error probability to information theoretic (multi-modal) signal processing. Signal Processing 85 5 (2005) 875-902
    • (2005) Signal Processing , vol.85 , Issue.5 , pp. 875-902
    • Butz, T.1    Thiran, J.-P.2
  • 32
    • 3543121719 scopus 로고    scopus 로고
    • Lower and upper bounds for misclassification probability based on renyi's information
    • Erdogmus D., and Principe J.C. Lower and upper bounds for misclassification probability based on renyi's information. Journal of VLSI Signal Processing 37 (2004) 305-317
    • (2004) Journal of VLSI Signal Processing , vol.37 , pp. 305-317
    • Erdogmus, D.1    Principe, J.C.2
  • 34
    • 0031238275 scopus 로고    scopus 로고
    • Application of majority voting to pattern recognition: an analysis of its behavior and performance
    • Lam L., and Suen S.Y. Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics 27 (1997) 553-568
    • (1997) IEEE Transactions on Systems, Man, and Cybernetics , vol.27 , pp. 553-568
    • Lam, L.1    Suen, S.Y.2
  • 35
    • 30144441888 scopus 로고    scopus 로고
    • Theoretical bounds of majority voting performance for a binary classification problem
    • Narasimhamurthy. Theoretical bounds of majority voting performance for a binary classification problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (2005) 1988-1995
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , pp. 1988-1995
    • Narasimhamurthy1
  • 36
    • 0036026248 scopus 로고    scopus 로고
    • A theoretical analysis of the limits of majority voting errors for multiple classifier systems
    • Ruta D., and Gabrys B. A theoretical analysis of the limits of majority voting errors for multiple classifier systems. Pattern Analysis and Applications 5 4 (2002) 333-350
    • (2002) Pattern Analysis and Applications , vol.5 , Issue.4 , pp. 333-350
    • Ruta, D.1    Gabrys, B.2
  • 37
    • 0001644870 scopus 로고
    • Optimizing group judgemental accuracy in the presence of interdependencies
    • Shapley L., and Grofman B. Optimizing group judgemental accuracy in the presence of interdependencies. Public Choice 43 (1984) 329-343
    • (1984) Public Choice , vol.43 , pp. 329-343
    • Shapley, L.1    Grofman, B.2
  • 39
    • 77953650588 scopus 로고    scopus 로고
    • J. Meynet, J.-P. Thiran, Ensembles of SVMs using an Information Theoretic Criterion, Technical Report, 2008.
    • J. Meynet, J.-P. Thiran, Ensembles of SVMs using an Information Theoretic Criterion, Technical Report, 2008.
  • 41
    • 77953651141 scopus 로고    scopus 로고
    • UCI machine learning repository
    • D.J. Newman, A. Asuncion, UCI machine learning repository, 2007.
    • (2007)
    • Newman, D.J.1    Asuncion, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.