-
1
-
-
80053403826
-
Ensemble Methods in Machine Learning
-
T.G. Dietterich, Ensemble Methods in Machine Learning, in: Lecture Notes in Computer Science, vol. 1857, 2000, pp. 1-15.
-
(2000)
Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., and Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 (1997) 119-139
-
(1997)
Journal of Computer and System Sciences
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
5
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learning 45 1 (2001) 5-32
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
7
-
-
0032021555
-
On combining classifiers
-
Kittler J., Hatef M., Duin R.P.W., and Matas J. On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20 3 (1998) 226-239
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.P.W.3
Matas, J.4
-
8
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51 2 (2003) 181-207
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
9
-
-
84974722422
-
Diversity versus quality in classification ensembles based on feature selection
-
P. Cunningham, J. Carney, Diversity versus quality in classification ensembles based on feature selection, in: European Conference on Machine Learning (ECML), 2000, pp. 109-116.
-
(2000)
European Conference on Machine Learning (ECML)
, pp. 109-116
-
-
Cunningham, P.1
Carney, J.2
-
10
-
-
0035420134
-
Design of effective neural network ensembles for image classification purposes
-
Giacinto G., and Roli F. Design of effective neural network ensembles for image classification purposes. Image Vision Computing 19 9-10 (2001)
-
(2001)
Image Vision Computing
, vol.19
, Issue.9-10
-
-
Giacinto, G.1
Roli, F.2
-
12
-
-
84861973487
-
Using diversity with three variants of boosting: Aggressive, conservative, and inverse
-
Proceedings of International Workshop on Multiple Classifier Systems
-
L. Kuncheva, C. Whitaker, Using diversity with three variants of boosting: aggressive, conservative, and inverse, in: Proceedings of International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 2364, 2002, pp. 81-90.
-
(2002)
Lecture Notes in Computer Science
, vol.2364
, pp. 81-90
-
-
Kuncheva, L.1
Whitaker, C.2
-
13
-
-
0036609602
-
Relationships between combination methods and measures of diversity in combining classifiers
-
Shipp C.A., and Kuncheva L.I. Relationships between combination methods and measures of diversity in combining classifiers. Information Fusion 3 (2002) 135-148
-
(2002)
Information Fusion
, vol.3
, pp. 135-148
-
-
Shipp, C.A.1
Kuncheva, L.I.2
-
15
-
-
10444221886
-
Diversity creation methods: a survey and categorisation
-
Brown G., Wyatt J., Harris R., and Yao X. Diversity creation methods: a survey and categorisation. Journal of Information Fusion 6 1 (2005) 5-20
-
(2005)
Journal of Information Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
16
-
-
10444224738
-
Diversity measures for multiple classifier system analysis and design
-
Windeatt T. Diversity measures for multiple classifier system analysis and design. Information Fusion 6 (2005) 21-36
-
(2005)
Information Fusion
, vol.6
, pp. 21-36
-
-
Windeatt, T.1
-
17
-
-
10444259853
-
Creating diversity in ensembles using artificial data
-
Melville P., and Mooney R.J. Creating diversity in ensembles using artificial data. Information Fusion 6 1 (2005) 99-111
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 99-111
-
-
Melville, P.1
Mooney, R.J.2
-
18
-
-
0000749354
-
Neural network ensembles, cross validation, and active learning
-
A. Krogh, J. Vedelsby, Neural network ensembles, cross validation, and active learning, in: Seventh Conference on Neural Information Processing Systems, 1995, pp. 234-238.
-
(1995)
Seventh Conference on Neural Information Processing Systems
, pp. 234-238
-
-
Krogh, A.1
Vedelsby, J.2
-
19
-
-
4243695412
-
Overfitting and diversity in classification ensembles based on feature selection
-
Technical Report TCD-CS-2000-07, Department of Computer Science, Trinity College Dublin
-
P. Cunningham, Overfitting and diversity in classification ensembles based on feature selection, Technical Report TCD-CS-2000-07, Department of Computer Science, Trinity College Dublin, 2000.
-
(2000)
-
-
Cunningham, P.1
-
20
-
-
0001308326
-
On the association of attributes in statistics
-
Yule G. On the association of attributes in statistics. Biometrika 2 (1903) 121-134
-
(1903)
Biometrika
, vol.2
, pp. 121-134
-
-
Yule, G.1
-
26
-
-
0031624596
-
A methodology for information theoretic feature extraction
-
Anchorage, AK
-
J. Fisher, III, J. Principe, A methodology for information theoretic feature extraction, in: IEEE International Conference on Neural Networks (IJCNN'98), vol. 3, Anchorage, AK, 1998, pp. 1712-1716.
-
(1998)
IEEE International Conference on Neural Networks (IJCNN'98)
, vol.3
, pp. 1712-1716
-
-
Fisher III, J.1
Principe, J.2
-
27
-
-
33746475260
-
Feature extraction using information-theoretic learning
-
Hild II K.E., Erdogmus D., Torkkola K., and Principe J.C. Feature extraction using information-theoretic learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 9 (2006) 1385-1392
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.9
, pp. 1385-1392
-
-
Hild II, K.E.1
Erdogmus, D.2
Torkkola, K.3
Principe, J.C.4
-
28
-
-
3843072084
-
Feature selection in mlps and svms based on maximum output information
-
Sindhwani V., Rakshit S., Deodhare D., Erdogmus D., Principe J.C., and Niyogim P. Feature selection in mlps and svms based on maximum output information. IEEE Transactions on Neural Networks 15 (2004) 937-949
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, pp. 937-949
-
-
Sindhwani, V.1
Rakshit, S.2
Deodhare, D.3
Erdogmus, D.4
Principe, J.C.5
Niyogim, P.6
-
29
-
-
14844344462
-
From error probability to information theoretic (multi-modal) signal processing
-
Butz T., and Thiran J.-P. From error probability to information theoretic (multi-modal) signal processing. Signal Processing 85 5 (2005) 875-902
-
(2005)
Signal Processing
, vol.85
, Issue.5
, pp. 875-902
-
-
Butz, T.1
Thiran, J.-P.2
-
32
-
-
3543121719
-
Lower and upper bounds for misclassification probability based on renyi's information
-
Erdogmus D., and Principe J.C. Lower and upper bounds for misclassification probability based on renyi's information. Journal of VLSI Signal Processing 37 (2004) 305-317
-
(2004)
Journal of VLSI Signal Processing
, vol.37
, pp. 305-317
-
-
Erdogmus, D.1
Principe, J.C.2
-
34
-
-
0031238275
-
Application of majority voting to pattern recognition: an analysis of its behavior and performance
-
Lam L., and Suen S.Y. Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics 27 (1997) 553-568
-
(1997)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.27
, pp. 553-568
-
-
Lam, L.1
Suen, S.Y.2
-
35
-
-
30144441888
-
Theoretical bounds of majority voting performance for a binary classification problem
-
Narasimhamurthy. Theoretical bounds of majority voting performance for a binary classification problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (2005) 1988-1995
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, pp. 1988-1995
-
-
Narasimhamurthy1
-
36
-
-
0036026248
-
A theoretical analysis of the limits of majority voting errors for multiple classifier systems
-
Ruta D., and Gabrys B. A theoretical analysis of the limits of majority voting errors for multiple classifier systems. Pattern Analysis and Applications 5 4 (2002) 333-350
-
(2002)
Pattern Analysis and Applications
, vol.5
, Issue.4
, pp. 333-350
-
-
Ruta, D.1
Gabrys, B.2
-
37
-
-
0001644870
-
Optimizing group judgemental accuracy in the presence of interdependencies
-
Shapley L., and Grofman B. Optimizing group judgemental accuracy in the presence of interdependencies. Public Choice 43 (1984) 329-343
-
(1984)
Public Choice
, vol.43
, pp. 329-343
-
-
Shapley, L.1
Grofman, B.2
-
39
-
-
77953650588
-
-
J. Meynet, J.-P. Thiran, Ensembles of SVMs using an Information Theoretic Criterion, Technical Report, 2008.
-
J. Meynet, J.-P. Thiran, Ensembles of SVMs using an Information Theoretic Criterion, Technical Report, 2008.
-
-
-
-
40
-
-
0003663755
-
-
Delft University of Technology
-
R. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder, D.M.J. Tax, Prtools4, a matlab toolbox for pattern recognition, Delft University of Technology, 2004.
-
(2004)
Prtools4, a matlab toolbox for pattern recognition
-
-
Duin, R.1
Juszczak, P.2
Paclik, P.3
Pekalska, E.4
de Ridder, D.5
Tax, D.M.J.6
-
41
-
-
77953651141
-
-
UCI machine learning repository
-
D.J. Newman, A. Asuncion, UCI machine learning repository, 2007.
-
(2007)
-
-
Newman, D.J.1
Asuncion, A.2
-
42
-
-
0003802343
-
-
Wadsworth International Group, CA, USA
-
Breiman L., Friedman J., Olsen R.A., and Stone C.J. Classification and Regression Trees (1984), Wadsworth International Group, CA, USA
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olsen, R.A.3
Stone, C.J.4
|