-
1
-
-
83455217064
-
A new perspective for information theoretic feature selection
-
G. Brown: A new perspective for information theoretic feature selection. In: Proc. AISTATS '09, JMLR: W&CP 5 (2009), pp. 49-56.
-
(2009)
Proc. AISTATS '09, JMLR: W&CP
, vol.5
, pp. 49-56
-
-
Brown, G.1
-
3
-
-
0010739663
-
Filters wrappers and a boosting-based hybrid for feature selection
-
Morgan Kaufmann Publishers, Inc
-
S. Das: Filters, wrappers and a boosting-based hybrid for feature selection. In: Proc. 18th Int. Conf. on Machine Learning (ICML '01), Morgan Kaufmann Publishers Inc. 2001, pp. 74-81.
-
(2001)
Proc. 18th Int. Conf. on Machine Learning (ICML '01)
, pp. 74-81
-
-
Das, S.1
-
4
-
-
78149289039
-
Feature selection for clustering-A filter solution
-
IEEE Comp. Soc
-
M. Dash, K. Choi, P. Scheuermann, and H. Liu: Feature selection for clustering-a filter solution. In: Proc. 2002 IEEE Int. Conf. on Data Mining (ICDM '02), Vol. 00, IEEE Comp. Soc. 2002, p. 115.
-
(2002)
Proc. 2002 IEEE Int. Conf. on Data Mining (ICDM '02)
, vol.0
, pp. 115
-
-
Dash, M.1
Choi, K.2
Scheuermann, P.3
Liu, H.4
-
6
-
-
34250857528
-
Ensemble feature selection: Consistent-descriptor subsets for multiple QSAR models
-
DOI 10.1021/ci600563w
-
D. Dutta, R. Guha, D. Wild, and T. Chen: Ensemble feature selection: Consistent descriptor subsets for multiple qsar models. J. Chem. Inf. Model. 43 (2007), 3, pp. 989-997. (Pubitemid 46973714)
-
(2007)
Journal of Chemical Information and Modeling
, vol.47
, Issue.3
, pp. 989-997
-
-
Dutta, D.1
Guha, R.2
Wild, D.3
Chen, T.4
-
9
-
-
68949155378
-
Feature subset seleciton in large dimensionality domains
-
I. A. Gheyas and L. S. Smith: Feature subset seleciton in large dimensionality domains. Pattern Recognition 43 (2010), 1, 5-13.
-
(2010)
Pattern Recognition
, vol.43
, Issue.1
, pp. 5-13
-
-
Gheyas, I.A.1
Smith, L.S.2
-
11
-
-
10044270695
-
An evaluation of ensemble methods in handwritten word recog. based on feature selection
-
S. Günter and H. Bunke: An evaluation of ensemble methods in handwritten word recog. based on feature selection. In: Proc. ICPR '04, IEEE Comp. Soc. 2004, pp. 388-392.
-
(2004)
Proc. ICPR '04, IEEE Comp. Soc
, pp. 388-392
-
-
Günter, S.1
Bunke, H.2
-
12
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff: An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003), 1157-1182.
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
15
-
-
84951828553
-
Genetic algorithms for feature selection and weighting, a review and study. In
-
IEEE Comp. Soc
-
F. Hussein, R. Ward, and N. Kharma: Genetic algorithms for feature selection and weighting, a review and study. In: Proc. 6th ICDAR, Vol. 00, IEEE Comp. Soc. 2001, pp. 1240-1244.
-
(2001)
Proc. 6th ICDAR
, vol.0
, pp. 1240-1244
-
-
Hussein, F.1
Ward, R.2
Kharma, N.3
-
17
-
-
0344609892
-
Special issue on variable and feature selection
-
Special issue on variable and feature selection. J. Machine Learning Research. http://www. jmlr.org/papers/special/feature.html, 2003.
-
(2003)
J. Machine Learning Research
-
-
-
18
-
-
34248647608
-
Stability of feature selection algorithms: A study on high-dimensional spaces
-
A. Kalousis, J. Prados, and M. Hilario: Stability of feature selection algorithms: A study on high-dimensional spaces. Knowledge Inform. Systems 12 (2007), 1, 95-116.
-
(2007)
Knowledge Inform. Systems
, vol.12
, Issue.1
, pp. 95-116
-
-
Kalousis, A.1
Prados, J.2
Hilario, M.3
-
19
-
-
0032021555
-
On combining classifiers
-
J. Kittler, M. Hatef, R.P. W. Duin, and J. Matas: On combining classifiers. IEEE Trans. PAMI 20 (1998), 3, 226-239. (Pubitemid 128741312)
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.P.W.3
Matas, J.4
-
20
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
R. Kohavi and G.H. John: Wrappers for feature subset selection. Artificial Intelligence 97 (1997), 1-2, 273-324. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
21
-
-
84992726552
-
Estimating attributes: Analysis and extensions of RELIEF
-
Springer
-
I. Kononenko: Estimating attributes: Analysis and extensions of RELIEF. In: Proc. ECML-94, Springer 1994, pp. 171-182.
-
(1994)
Proc. ECML-94
, pp. 171-182
-
-
Kononenko, I.1
-
23
-
-
33646258047
-
Random subspace method for multivariate feature selection
-
C. Lai, M. J. T. Reinders, and L. Wessels: Random subspace method for multivariate feature selection. Pattern Recognition Lett. 27 (2006), 10, 1067-1076.
-
(2006)
Pattern Recognition Lett
, vol.27
, Issue.10
, pp. 1067-1076
-
-
Lai, C.1
Reinders, M.J.T.2
Wessels, L.3
-
25
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
DOI 10.1109/TKDE.2005.66
-
H. Liu and L. Yu: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. KDE 17 (2005), 4, 491-502. (Pubitemid 40495592)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
26
-
-
34250815597
-
Adaptive branch and bound algorithm for selecting optimal features
-
DOI 10.1016/j.patrec.2007.02.015, PII S0167865507000670
-
S. Nakariyakul and D.P. Casasent: Adaptive branch and bound algorithm for selecting optimal features. Pattern Recognition Lett. 28 (2007), 12, 1415-1427. (Pubitemid 46990579)
-
(2007)
Pattern Recognition Letters
, vol.28
, Issue.12
, pp. 1415-1427
-
-
Nakariyakul, S.1
Casasent, D.P.2
-
27
-
-
67349133167
-
An improvement on floating search algorithms for feature subset selection
-
S. Nakariyakul and D.P. Casasent: An improvement on floating search algorithms for feature subset selection. Pattern Recognition 42 (2009), 9, 1932-1940.
-
(2009)
Pattern Recognition
, vol.42
, Issue.9
, pp. 1932-1940
-
-
Nakariyakul, S.1
Casasent, D.P.2
-
28
-
-
0030086778
-
Divergence based feature selection for multimodal class densities
-
J. Novovičová, P. Pudil, and J. Kittler: Divergence based feature selection for multimodal class densities. IEEE Trans. PAMI 18 (1996), 2, 218-223. (Pubitemid 126772809)
-
(1996)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.18
, Issue.2
, pp. 218-223
-
-
Novovicova, J.1
Pudil, P.2
Kittler, J.3
-
29
-
-
0037965523
-
Feature selection based on the approximation of class densities by finite mixtures of special type
-
P. Pudil, J. Novovičová, N. Choakjarernwanit, and J. Kittler: Feature selection based on the approximation of class densities by finite mixtures of special type. Pattern Recognition 28 (1995), 9, 1389-1398.
-
(1995)
Pattern Recognition
, vol.28
, Issue.9
, pp. 1389-1398
-
-
Pudil, P.1
Novovičová, J.2
Choakjarernwanit, N.3
Kittler, J.4
-
30
-
-
0028547556
-
Floating search methods in feature selection
-
P. Pudil, J. Novovičová, and J. Kittler: Floating search methods in feature selection. Pattern Recognition Lett. 15 (1994), 11, 1119-1125.
-
(1994)
Pattern Recognition Lett
, vol.15
, Issue.11
, pp. 1119-1125
-
-
Pudil, P.1
Novovičová, J.2
Kittler, J.3
-
31
-
-
33749612557
-
Feature over-selection
-
Lecture Notes in Comput. Sci, Springer
-
S. J. Raudys: Feature over-selection. In: Proc. S+SSPR, Lecture Notes in Comput. Sci. 4109, Springer 2006, pp. 622-631.
-
(2006)
Proc. S+SSPR
, vol.4109
, pp. 622-631
-
-
Raudys, S.J.1
-
32
-
-
56449092895
-
Bayesian multiple instance learning: Automatic feature selection and inductive transfer
-
ACM
-
V. C. Raykar et al.: Bayesian multiple instance learning: Automatic feature selection and inductive transfer. In: Proc. ICML '08, ACM 2008, pp. 808-815.
-
(2008)
Proc. ICML '08
, pp. 808-815
-
-
Raykar, V.C.1
-
34
-
-
33745816725
-
Less biased measurement of feature selection benefits
-
DOI 10.1007/11752790-14, Subspace, Latent Structure and Feature Selection - Statistical and Optimization Perspectives Workshop, SLSFS 2005, Revised Selected Papers
-
J. Reunanen: Less biased measurement of feature selection benefits. In: Stat. and Optimiz. Perspectives Workshop, SLSFS, Lecture Notes in Comput. Sci. 3940, Springer 2006, pp. 198-208. (Pubitemid 44029890)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3940
, pp. 198-208
-
-
Reunanen, J.1
-
35
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
DOI 10.1093/bioinformatics/btm344
-
Y. Saeys, I. Inza, and P. Larranaga: A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007), 19, 2507-2517. (Pubitemid 350048351)
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
36
-
-
33845300232
-
Feature selection algorithms in classification problems: An experimental evaluation
-
DOI 10.1080/10556780600881910, PII Q1ML5528268Q830G
-
A. Salappa, M. Doumpos, and C. Zopounidis: Feature selection algorithms in classification problems: An experimental evaluation. Optimiz. Methods Software 22 (2007), 1, 199-212. (Pubitemid 44878967)
-
(2007)
Optimization Methods and Software
, vol.22
, Issue.1
, pp. 199-212
-
-
Salappa, A.1
Doumpos, M.2
Zopounidis, C.3
-
37
-
-
0002442796
-
Machine learning in automated text categorization
-
F. Sebastiani: Machine learning in automated text categorization. ACM Comput. Surveys 34 (2002), 1, 1-47.
-
(2002)
ACM Comput. Surveys
, vol.34
, Issue.1
, pp. 1-47
-
-
Sebastiani, F.1
-
38
-
-
0036532821
-
A hybrid filter/wrapper approach of feature selection using information theory
-
DOI 10.1016/S0031-3203(01)00084-X, PII S003132030100084X
-
M. Sebban and R. Nock: A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognition 35 (2002), 835-846. (Pubitemid 34128810)
-
(2002)
Pattern Recognition
, vol.35
, Issue.4
, pp. 835-846
-
-
Sebban, M.1
Nock, R.2
-
39
-
-
70349319696
-
Criteria ensembles in feature selection
-
Lecture Notes in Comput. Sci, Springer
-
P. Somol, J. Grim, and P. Pudil: Criteria ensembles in feature selection. In: Proc. MCS, Lecture Notes in Comput. Sci. 5519, Springer 2009, pp. 304-313.
-
(2009)
Proc. MCS
, vol.5519
, pp. 304-313
-
-
Somol, P.1
Grim, J.2
Pudil, P.3
-
40
-
-
78149482663
-
The problem of fragile feature subset preference in feature selection methods and a proposal of algorithmic workaround
-
P. Somol, J. Grim, and P. Pudil: The problem of fragile feature subset preference in feature selection methods and a proposal of algorithmic workaround. In: ICPR 2010. IEEE Comp. Soc. 2010.
-
(2010)
ICPR 2010 IEEE Comp. Soc
-
-
Somol, P.1
Grim, J.2
Pudil, P.3
-
41
-
-
33749592196
-
Flexible-hybrid sequential floating search in statistical feature selection
-
Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshops, SSPR 2006 and SPR 2006, Proceedings
-
P. Somol, J. Novovičová, and P. Pudil: Flexible-hybrid sequential floating search in statistical feature selection. In: Proc. S+SSPR, Lecture Notes in Comput. Sci. 4109, Springer 2006, pp. 632-639. (Pubitemid 44543154)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4109
, pp. 632-639
-
-
Somol, P.1
Novovicova, J.2
Pudil, P.3
-
42
-
-
58349093749
-
Evaluating the stability of feature selectors that optimize feature subset cardinality
-
Lecture Notes in Comput. Sci, Springer
-
P. Somol and J. Novovičová: Evaluating the stability of feature selectors that optimize feature subset cardinality. In: Proc. S+SSPR, Lecture Notes in Comput. Sci. 5342 Springer 2008, pp. 956-966.
-
(2008)
Proc. S+SSPR
, vol.5342
, pp. 956-966
-
-
Somol, P.1
Novovičová, J.2
-
45
-
-
34147149841
-
Oscillating search algorithms for feature selection
-
P. Somol and P. Pudil: Oscillating search algorithms for feature selection. In: ICPR 2000, IEEE Comp. Soc. 02 (2000), 406-409.
-
(2000)
ICPR 2000 IEEE Comp. Soc
, vol.2
, pp. 406-409
-
-
Somol, P.1
Pudil, P.2
-
46
-
-
3042527351
-
Fast branch & bound algorithms for optimal feature selection
-
P. Somol, P. Pudil, and J. Kittler: Fast branch & bound algorithms for optimal feature selection. IEEE Trans. on PAMI 26 (2004), 7, 900-912.
-
(2004)
IEEE Trans. on PAMI
, vol.26
, Issue.7
, pp. 900-912
-
-
Somol, P.1
Pudil, P.2
Kittler, J.3
-
47
-
-
34247622378
-
Iterative RELIEF for feature weighting: Algorithms, theories, and applications
-
DOI 10.1109/TPAMI.2007.1093
-
Y. Sun: Iterative RELIEF for feature weighting: Algorithms, theories, and applications. IEEE Trans. PAMI 29 (2007), 6, 1035-1051. (Pubitemid 46667414)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.6
, pp. 1035-1051
-
-
Sun, Y.1
-
48
-
-
33845497491
-
Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier
-
M.-A. Tahir et al: Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier. Patt. Recognition Lett. 28 (2007), 4, 438-446.
-
(2007)
Patt. Recognition Lett
, vol.28
, Issue.4
, pp. 438-446
-
-
Tahir, M.-A.1
-
49
-
-
0015125457
-
A direct method of nonparametric measurement selection
-
A. W. Whitney: A direct method of nonparametric measurement selection. IEEE Trans. Comput. 20 (1971), 9, 1100-1103.
-
(1971)
IEEE Trans. Comput
, vol.20
, Issue.9
, pp. 1100-1103
-
-
Whitney, A.W.1
-
51
-
-
1942451938
-
Feature selection for high-dimensional data: A fast correlationbased filter solution
-
Morgan Kaufmann
-
L. Yu and H. Liu: Feature selection for high-dimensional data: A fast correlationbased filter solution. In: Proc. 20th Internat. Conf. on Machine Learning (ICML-03), Vol. 20, Morgan Kaufmann 2003, pp. 856-863.
-
(2003)
Proc. 20th Internat. Conf. on Machine Learning (ICML-03)
, vol.20
, pp. 856-863
-
-
Yu, L.1
Liu, H.2
-
52
-
-
33847646332
-
Wrapper-filter feature selection algorithm using a memetic framework
-
Z. Zhu, Y. S. Ong, and M. Dash: Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans. Systems Man Cybernet., Part B 37 (2007), 1, 70.
-
(2007)
IEEE Trans. Systems Man Cybernet. Part B
, vol.37
, Issue.1
, pp. 70
-
-
Zhu, Z.1
Ong, Y.S.2
Dash, M.3
|