메뉴 건너뛰기




Volumn 47, Issue 3, 2011, Pages 401-425

Improving feature selection process resistance to failures caused by curse-of-dimensionality effects

Author keywords

Curse of dimensionality; Dimensionality reduction; Feature selection; Machine learning; Over fitting; Stability

Indexed keywords


EID: 83455221244     PISSN: 00235954     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (5)

References (52)
  • 1
    • 83455217064 scopus 로고    scopus 로고
    • A new perspective for information theoretic feature selection
    • G. Brown: A new perspective for information theoretic feature selection. In: Proc. AISTATS '09, JMLR: W&CP 5 (2009), pp. 49-56.
    • (2009) Proc. AISTATS '09, JMLR: W&CP , vol.5 , pp. 49-56
    • Brown, G.1
  • 3
    • 0010739663 scopus 로고    scopus 로고
    • Filters wrappers and a boosting-based hybrid for feature selection
    • Morgan Kaufmann Publishers, Inc
    • S. Das: Filters, wrappers and a boosting-based hybrid for feature selection. In: Proc. 18th Int. Conf. on Machine Learning (ICML '01), Morgan Kaufmann Publishers Inc. 2001, pp. 74-81.
    • (2001) Proc. 18th Int. Conf. on Machine Learning (ICML '01) , pp. 74-81
    • Das, S.1
  • 6
    • 34250857528 scopus 로고    scopus 로고
    • Ensemble feature selection: Consistent-descriptor subsets for multiple QSAR models
    • DOI 10.1021/ci600563w
    • D. Dutta, R. Guha, D. Wild, and T. Chen: Ensemble feature selection: Consistent descriptor subsets for multiple qsar models. J. Chem. Inf. Model. 43 (2007), 3, pp. 989-997. (Pubitemid 46973714)
    • (2007) Journal of Chemical Information and Modeling , vol.47 , Issue.3 , pp. 989-997
    • Dutta, D.1    Guha, R.2    Wild, D.3    Chen, T.4
  • 9
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset seleciton in large dimensionality domains
    • I. A. Gheyas and L. S. Smith: Feature subset seleciton in large dimensionality domains. Pattern Recognition 43 (2010), 1, 5-13.
    • (2010) Pattern Recognition , vol.43 , Issue.1 , pp. 5-13
    • Gheyas, I.A.1    Smith, L.S.2
  • 11
    • 10044270695 scopus 로고    scopus 로고
    • An evaluation of ensemble methods in handwritten word recog. based on feature selection
    • S. Günter and H. Bunke: An evaluation of ensemble methods in handwritten word recog. based on feature selection. In: Proc. ICPR '04, IEEE Comp. Soc. 2004, pp. 388-392.
    • (2004) Proc. ICPR '04, IEEE Comp. Soc , pp. 388-392
    • Günter, S.1    Bunke, H.2
  • 12
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff: An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003), 1157-1182.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 15
    • 84951828553 scopus 로고    scopus 로고
    • Genetic algorithms for feature selection and weighting, a review and study. In
    • IEEE Comp. Soc
    • F. Hussein, R. Ward, and N. Kharma: Genetic algorithms for feature selection and weighting, a review and study. In: Proc. 6th ICDAR, Vol. 00, IEEE Comp. Soc. 2001, pp. 1240-1244.
    • (2001) Proc. 6th ICDAR , vol.0 , pp. 1240-1244
    • Hussein, F.1    Ward, R.2    Kharma, N.3
  • 17
    • 0344609892 scopus 로고    scopus 로고
    • Special issue on variable and feature selection
    • Special issue on variable and feature selection. J. Machine Learning Research. http://www. jmlr.org/papers/special/feature.html, 2003.
    • (2003) J. Machine Learning Research
  • 18
    • 34248647608 scopus 로고    scopus 로고
    • Stability of feature selection algorithms: A study on high-dimensional spaces
    • A. Kalousis, J. Prados, and M. Hilario: Stability of feature selection algorithms: A study on high-dimensional spaces. Knowledge Inform. Systems 12 (2007), 1, 95-116.
    • (2007) Knowledge Inform. Systems , vol.12 , Issue.1 , pp. 95-116
    • Kalousis, A.1    Prados, J.2    Hilario, M.3
  • 20
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G.H. John: Wrappers for feature subset selection. Artificial Intelligence 97 (1997), 1-2, 273-324. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 21
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of RELIEF
    • Springer
    • I. Kononenko: Estimating attributes: Analysis and extensions of RELIEF. In: Proc. ECML-94, Springer 1994, pp. 171-182.
    • (1994) Proc. ECML-94 , pp. 171-182
    • Kononenko, I.1
  • 23
    • 33646258047 scopus 로고    scopus 로고
    • Random subspace method for multivariate feature selection
    • C. Lai, M. J. T. Reinders, and L. Wessels: Random subspace method for multivariate feature selection. Pattern Recognition Lett. 27 (2006), 10, 1067-1076.
    • (2006) Pattern Recognition Lett , vol.27 , Issue.10 , pp. 1067-1076
    • Lai, C.1    Reinders, M.J.T.2    Wessels, L.3
  • 25
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • DOI 10.1109/TKDE.2005.66
    • H. Liu and L. Yu: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. KDE 17 (2005), 4, 491-502. (Pubitemid 40495592)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 26
    • 34250815597 scopus 로고    scopus 로고
    • Adaptive branch and bound algorithm for selecting optimal features
    • DOI 10.1016/j.patrec.2007.02.015, PII S0167865507000670
    • S. Nakariyakul and D.P. Casasent: Adaptive branch and bound algorithm for selecting optimal features. Pattern Recognition Lett. 28 (2007), 12, 1415-1427. (Pubitemid 46990579)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.12 , pp. 1415-1427
    • Nakariyakul, S.1    Casasent, D.P.2
  • 27
    • 67349133167 scopus 로고    scopus 로고
    • An improvement on floating search algorithms for feature subset selection
    • S. Nakariyakul and D.P. Casasent: An improvement on floating search algorithms for feature subset selection. Pattern Recognition 42 (2009), 9, 1932-1940.
    • (2009) Pattern Recognition , vol.42 , Issue.9 , pp. 1932-1940
    • Nakariyakul, S.1    Casasent, D.P.2
  • 29
    • 0037965523 scopus 로고
    • Feature selection based on the approximation of class densities by finite mixtures of special type
    • P. Pudil, J. Novovičová, N. Choakjarernwanit, and J. Kittler: Feature selection based on the approximation of class densities by finite mixtures of special type. Pattern Recognition 28 (1995), 9, 1389-1398.
    • (1995) Pattern Recognition , vol.28 , Issue.9 , pp. 1389-1398
    • Pudil, P.1    Novovičová, J.2    Choakjarernwanit, N.3    Kittler, J.4
  • 30
  • 31
    • 33749612557 scopus 로고    scopus 로고
    • Feature over-selection
    • Lecture Notes in Comput. Sci, Springer
    • S. J. Raudys: Feature over-selection. In: Proc. S+SSPR, Lecture Notes in Comput. Sci. 4109, Springer 2006, pp. 622-631.
    • (2006) Proc. S+SSPR , vol.4109 , pp. 622-631
    • Raudys, S.J.1
  • 32
    • 56449092895 scopus 로고    scopus 로고
    • Bayesian multiple instance learning: Automatic feature selection and inductive transfer
    • ACM
    • V. C. Raykar et al.: Bayesian multiple instance learning: Automatic feature selection and inductive transfer. In: Proc. ICML '08, ACM 2008, pp. 808-815.
    • (2008) Proc. ICML '08 , pp. 808-815
    • Raykar, V.C.1
  • 35
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Y. Saeys, I. Inza, and P. Larranaga: A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007), 19, 2507-2517. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 36
    • 33845300232 scopus 로고    scopus 로고
    • Feature selection algorithms in classification problems: An experimental evaluation
    • DOI 10.1080/10556780600881910, PII Q1ML5528268Q830G
    • A. Salappa, M. Doumpos, and C. Zopounidis: Feature selection algorithms in classification problems: An experimental evaluation. Optimiz. Methods Software 22 (2007), 1, 199-212. (Pubitemid 44878967)
    • (2007) Optimization Methods and Software , vol.22 , Issue.1 , pp. 199-212
    • Salappa, A.1    Doumpos, M.2    Zopounidis, C.3
  • 37
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani: Machine learning in automated text categorization. ACM Comput. Surveys 34 (2002), 1, 1-47.
    • (2002) ACM Comput. Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 38
    • 0036532821 scopus 로고    scopus 로고
    • A hybrid filter/wrapper approach of feature selection using information theory
    • DOI 10.1016/S0031-3203(01)00084-X, PII S003132030100084X
    • M. Sebban and R. Nock: A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognition 35 (2002), 835-846. (Pubitemid 34128810)
    • (2002) Pattern Recognition , vol.35 , Issue.4 , pp. 835-846
    • Sebban, M.1    Nock, R.2
  • 39
    • 70349319696 scopus 로고    scopus 로고
    • Criteria ensembles in feature selection
    • Lecture Notes in Comput. Sci, Springer
    • P. Somol, J. Grim, and P. Pudil: Criteria ensembles in feature selection. In: Proc. MCS, Lecture Notes in Comput. Sci. 5519, Springer 2009, pp. 304-313.
    • (2009) Proc. MCS , vol.5519 , pp. 304-313
    • Somol, P.1    Grim, J.2    Pudil, P.3
  • 40
    • 78149482663 scopus 로고    scopus 로고
    • The problem of fragile feature subset preference in feature selection methods and a proposal of algorithmic workaround
    • P. Somol, J. Grim, and P. Pudil: The problem of fragile feature subset preference in feature selection methods and a proposal of algorithmic workaround. In: ICPR 2010. IEEE Comp. Soc. 2010.
    • (2010) ICPR 2010 IEEE Comp. Soc
    • Somol, P.1    Grim, J.2    Pudil, P.3
  • 42
    • 58349093749 scopus 로고    scopus 로고
    • Evaluating the stability of feature selectors that optimize feature subset cardinality
    • Lecture Notes in Comput. Sci, Springer
    • P. Somol and J. Novovičová: Evaluating the stability of feature selectors that optimize feature subset cardinality. In: Proc. S+SSPR, Lecture Notes in Comput. Sci. 5342 Springer 2008, pp. 956-966.
    • (2008) Proc. S+SSPR , vol.5342 , pp. 956-966
    • Somol, P.1    Novovičová, J.2
  • 45
    • 34147149841 scopus 로고    scopus 로고
    • Oscillating search algorithms for feature selection
    • P. Somol and P. Pudil: Oscillating search algorithms for feature selection. In: ICPR 2000, IEEE Comp. Soc. 02 (2000), 406-409.
    • (2000) ICPR 2000 IEEE Comp. Soc , vol.2 , pp. 406-409
    • Somol, P.1    Pudil, P.2
  • 46
    • 3042527351 scopus 로고    scopus 로고
    • Fast branch & bound algorithms for optimal feature selection
    • P. Somol, P. Pudil, and J. Kittler: Fast branch & bound algorithms for optimal feature selection. IEEE Trans. on PAMI 26 (2004), 7, 900-912.
    • (2004) IEEE Trans. on PAMI , vol.26 , Issue.7 , pp. 900-912
    • Somol, P.1    Pudil, P.2    Kittler, J.3
  • 47
    • 34247622378 scopus 로고    scopus 로고
    • Iterative RELIEF for feature weighting: Algorithms, theories, and applications
    • DOI 10.1109/TPAMI.2007.1093
    • Y. Sun: Iterative RELIEF for feature weighting: Algorithms, theories, and applications. IEEE Trans. PAMI 29 (2007), 6, 1035-1051. (Pubitemid 46667414)
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.6 , pp. 1035-1051
    • Sun, Y.1
  • 48
    • 33845497491 scopus 로고    scopus 로고
    • Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier
    • M.-A. Tahir et al: Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier. Patt. Recognition Lett. 28 (2007), 4, 438-446.
    • (2007) Patt. Recognition Lett , vol.28 , Issue.4 , pp. 438-446
    • Tahir, M.-A.1
  • 49
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • A. W. Whitney: A direct method of nonparametric measurement selection. IEEE Trans. Comput. 20 (1971), 9, 1100-1103.
    • (1971) IEEE Trans. Comput , vol.20 , Issue.9 , pp. 1100-1103
    • Whitney, A.W.1
  • 51
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlationbased filter solution
    • Morgan Kaufmann
    • L. Yu and H. Liu: Feature selection for high-dimensional data: A fast correlationbased filter solution. In: Proc. 20th Internat. Conf. on Machine Learning (ICML-03), Vol. 20, Morgan Kaufmann 2003, pp. 856-863.
    • (2003) Proc. 20th Internat. Conf. on Machine Learning (ICML-03) , vol.20 , pp. 856-863
    • Yu, L.1    Liu, H.2
  • 52
    • 33847646332 scopus 로고    scopus 로고
    • Wrapper-filter feature selection algorithm using a memetic framework
    • Z. Zhu, Y. S. Ong, and M. Dash: Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans. Systems Man Cybernet., Part B 37 (2007), 1, 70.
    • (2007) IEEE Trans. Systems Man Cybernet. Part B , vol.37 , Issue.1 , pp. 70
    • Zhu, Z.1    Ong, Y.S.2    Dash, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.