메뉴 건너뛰기




Volumn , Issue , 2012, Pages 543-548

Active learning of hybrid extreme rotation forests for CTA image segmentation

Author keywords

Active Learning; Aortic Aneurysm; Hybrid Rotation Forest; Image Segementation

Indexed keywords

3D COMPUTED TOMOGRAPHIES; ABDOMINAL AORTIC ANEURYSMS; ACCURACY DEGREE; ACTIVE LEARNING; AORTIC ANEURYSMS; ENSEMBLE OF CLASSIFIERS; EXTREME LEARNING MACHINE; FEATURE SETS; HUMAN OPERATOR; IMAGE SEGEMENTATION; INTERACTIVE LEARNING; ITERATIVE PROCESS; LABELED PIXELS; NUMBER OF DATUM; OPTIMAL ROTATIONS; OPTIMAL SAMPLES; RANDOM PARTITIONS; ROTATION FORESTS; SEGMENTATION QUALITY; SMALL DATA; TRAINING DATA; TRAINING SAMPLE; VISUAL SELECTION;

EID: 84874163334     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/HIS.2012.6421392     Document Type: Conference Paper
Times cited : (3)

References (23)
  • 1
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, no. 1-3, pp. 489-501, 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 4
    • 84255174914 scopus 로고    scopus 로고
    • Active learning literature survey
    • B. Settles, "Active learning literature survey," Sciences-New York, vol. 15, no. 2, 2010.
    • (2010) Sciences-New York , vol.15 , Issue.2
    • Settles, B.1
  • 5
    • 70350345530 scopus 로고    scopus 로고
    • A review of 3d vessel lumen segmentation techniques: Models, features and extraction schemes
    • D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, "A review of 3d vessel lumen segmentation techniques: Models, features and extraction schemes," Medical Image Analysis, vol. 13, no. 6, pp. 819-845, 2009.
    • (2009) Medical Image Analysis , vol.13 , Issue.6 , pp. 819-845
    • Lesage, D.1    Angelini, E.D.2    Bloch, I.3    Funka-Lea, G.4
  • 6
    • 80052950585 scopus 로고    scopus 로고
    • Detection of type ii endoleaks in abdominal aortic aneurysms after endovascular repair
    • I. Macia, M. Grana, J. Maiora, C. Paloc, and M. de Blas, "Detection of type ii endoleaks in abdominal aortic aneurysms after endovascular repair," Computers in Biology and Medicine, vol. 41, no. 10, pp. 871-880, 2011.
    • (2011) Computers in Biology and Medicine , vol.41 , Issue.10 , pp. 871-880
    • MacIa, I.1    Grana, M.2    Maiora, J.3    Paloc, C.4    De Blas, M.5
  • 7
    • 84855610739 scopus 로고    scopus 로고
    • Knowledge management in image-based analysis of blood vessel structures
    • I. Macia, M. Graña, and C. Paloc, "Knowledge management in image-based analysis of blood vessel structures," Knowledge and Information Systems, vol. 30, no. 2, pp. 457-491, 2012.
    • (2012) Knowledge and Information Systems , vol.30 , Issue.2 , pp. 457-491
    • MacIa, I.1    Graña, M.2    Paloc, C.3
  • 8
    • 34250922831 scopus 로고
    • The varimax criterion for analytic rotation in factor analysis
    • September
    • H. Kaiser, "The varimax criterion for analytic rotation in factor analysis," Psychometrika, vol. 23, pp. 187-200, September 1958.
    • (1958) Psychometrika , vol.23 , pp. 187-200
    • Kaiser, H.1
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 13
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • G.-B. Huang and L. Chen, "Convex incremental extreme learning machine," Neurocomputing, vol. 70, no. 16-18, pp. 3056-3062, 2007.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 14
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • G.-B. Huang, M.-B. Li, L. Chen, and C.-K. Siew, "Incremental extreme learning machine with fully complex hidden nodes," Neurocomputing, vol. 71, no. 4-6, pp. 576-583, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 576-583
    • Huang, G.-B.1    Li, M.-B.2    Chen, L.3    Siew, C.-K.4
  • 15
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • G.-B. Huang and L. Chen, "Enhanced random search based incremental extreme learning machine," Neurocomputing, vol. 71, no. 16-18, pp. 3460-3468, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 16
    • 67349131281 scopus 로고    scopus 로고
    • Systemical convergence rate analysis of convex incremental feedforward neural networks
    • L. Chen, G.-B. Huang, and H. K. Pung, "Systemical convergence rate analysis of convex incremental feedforward neural networks," Neurocomputing, vol. 72, no. 10-12, pp. 2627-2635, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2627-2635
    • Chen, L.1    Huang, G.-B.2    Pung, H.K.3
  • 17
    • 80755133532 scopus 로고    scopus 로고
    • Voting based extreme learning machine
    • J. Cao, Z. Lin, G.-B. Huang, and N. Liu, "Voting based extreme learning machine," Information Sciences, vol. 185, no. 1, pp. 66-77, 2012.
    • (2012) Information Sciences , vol.185 , Issue.1 , pp. 66-77
    • Cao, J.1    Lin, Z.2    Huang, G.-B.3    Liu, N.4
  • 19
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • 10.1007/BF00993277
    • D. Cohn, L. Atlas, and R. Ladner, "Improving generalization with active learning," Machine Learning, vol. 15, pp. 201-221, 1994. 10.1007/BF00993277.
    • (1994) Machine Learning , vol.15 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 21
    • 80053932755 scopus 로고    scopus 로고
    • Improving the classification accuracy of the classic rf method by intelligent feature selection and weighted voting of trees with application to medical image segmentation
    • M. Yaqub, M. Javaid, C. Cooper, and J. Noble, "Improving the classification accuracy of the classic rf method by intelligent feature selection and weighted voting of trees with application to medical image segmentation," Machine Learning in Medical Imaging, pp. 184-192, 2011.
    • (2011) Machine Learning in Medical Imaging , pp. 184-192
    • Yaqub, M.1    Javaid, M.2    Cooper, C.3    Noble, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.