메뉴 건너뛰기




Volumn 6, Issue 1, 2005, Pages 21-36

Diversity measures for multiple classifier system analysis and design

Author keywords

Binary coding; Decision level fusion; Ensembles; Error correcting; Multiple classifiers

Indexed keywords

BINARY CODES; BOOLEAN FUNCTIONS; COMPUTATIONAL COMPLEXITY; ERROR CORRECTION; INFORMATION DISSEMINATION; LEARNING SYSTEMS; OPTIMIZATION; PATTERN RECOGNITION; PROBABILITY DISTRIBUTIONS;

EID: 10444224738     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2004.04.002     Document Type: Article
Times cited : (102)

References (24)
  • 2
    • 0142120457 scopus 로고    scopus 로고
    • Vote counting measures for ensemble classifiers
    • T. Windeatt, Vote counting measures for ensemble classifiers, Pattern Recognition 36 (12) (2003) 993-1001.
    • (2003) Pattern Recognition , vol.36 , Issue.12 , pp. 993-1001
    • Windeatt, T.1
  • 3
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • L.I. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles, Machine Learning 51 (2003) 181-207.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 4
    • 0036896235 scopus 로고    scopus 로고
    • An experimental study on diversity for bagging and boosting with linear classifiers
    • L.I. Kuncheva, M. Skurichina, R.P.W. Duin, An experimental study on diversity for bagging and boosting with linear classifiers, Information Fusion 3 (2) (2002) 245-258.
    • (2002) Information Fusion , vol.3 , Issue.2 , pp. 245-258
    • Kuncheva, L.I.1    Skurichina, M.2    Duin, R.P.W.3
  • 5
    • 0036472946 scopus 로고    scopus 로고
    • A theoretical study on six classifier fusion strategies
    • L.I. Kuncheva, A theoretical study on six classifier fusion strategies, IEEE Transactions on PAMI 24 (2) (2002) 281-286.
    • (2002) IEEE Transactions on PAMI , vol.24 , Issue.2 , pp. 281-286
    • Kuncheva, L.I.1
  • 7
    • 0035363682 scopus 로고    scopus 로고
    • Recursive partitioning for combining multiple classifiers
    • T. Windeatt, Recursive partitioning for combining multiple classifiers, Neural Processing Letters 13 (3) (2001) 221-236.
    • (2001) Neural Processing Letters , vol.13 , Issue.3 , pp. 221-236
    • Windeatt, T.1
  • 9
    • 0031198065 scopus 로고    scopus 로고
    • Spectral technique for hidden layer neural network training
    • T. Windeatt, R. Tebbs, Spectral technique for hidden layer neural network training, Pattern Recognition Letters 18 (8) (1997) 723-731.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.8 , pp. 723-731
    • Windeatt, T.1    Tebbs, R.2
  • 10
    • 35048862917 scopus 로고    scopus 로고
    • That elusive diversity in classifier ensembles
    • Mallorca, Spain, Lecture Notes in Computer Science, Springer-Verlag
    • L.I. Kuncheva, That elusive diversity in classifier ensembles, in: Proc. Iberian Conf. on Pattern Recognition and Image Analysis, Mallorca, Spain, Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 1126-1138.
    • (2003) Proc. Iberian Conf. on Pattern Recognition and Image Analysis , pp. 1126-1138
    • Kuncheva, L.I.1
  • 11
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the Margin: A new explanation for the effectiveness of voting methods
    • R.E. Schapire, Y. Freund, P. Bartlett, Boosting the Margin: a new explanation for the effectiveness of voting methods, The Annals of Statistics 26 (5) (1998) 1651-1686.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3
  • 12
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalisation error of combined classifiers
    • V. Koltchinskii, D. Panchenko, Empirical margin distributions and bounding the generalisation error of combined classifiers, The Annals of Statistics 30 (1) (2002) 1-50.
    • (2002) The Annals of Statistics , vol.30 , Issue.1 , pp. 1-50
    • Koltchinskii, V.1    Panchenko, D.2
  • 13
    • 0037403462 scopus 로고    scopus 로고
    • Variance and bias for general loss functions
    • G. James, Variance and bias for general loss functions, Machine Learning 51 (2003) 115-135.
    • (2003) Machine Learning , vol.51 , pp. 115-135
    • James, G.1
  • 14
    • 84992322729 scopus 로고
    • Error-correcting output coding corrects bias and variance
    • San Francisco
    • E.B. Kong, T.G. Dietterich, Error-correcting output coding corrects bias and variance, in: 12th Int. Conf. Machine Learning, San Francisco, 1995, pp. 313-321.
    • (1995) 12th Int. Conf. Machine Learning , pp. 313-321
    • Kong, E.B.1    Dietterich, T.G.2
  • 15
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman, Arcing classifiers, The Annals of Statistics 26 (3) (1998) 801-849.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 16
    • 35248829639 scopus 로고    scopus 로고
    • Data dependence in combining classifiers
    • Guildford, UK, in: T. Windeatt, F. Roli (Eds.), Lecture Notes in Computer Science, Springer-Verlag
    • M.S. Kamel, N.M. Wanas, Data dependence in combining classifiers, in: Proc. of 4th Int. Workshop on Multiple Classifier Systems, Guildford, UK, in: T. Windeatt, F. Roli (Eds.), Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 1-14.
    • (2003) Proc. of 4th Int. Workshop on Multiple Classifier Systems , pp. 1-14
    • Kamel, M.S.1    Wanas, N.M.2
  • 17
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • C.J. Merz, Using correspondence analysis to combine classifiers, Machine Learning 36 (1-2) (1999) 33-38.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 33-38
    • Merz, C.J.1
  • 18
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers: An experiment
    • L.I. Kuncheva, Switching between selection and fusion in combining classifiers: an experiment, IEEE Transactions on SMC, Part B 32 (2) (2002) 146-156.
    • (2002) IEEE Transactions on SMC, Part B , vol.32 , Issue.2 , pp. 146-156
    • Kuncheva, L.I.1
  • 19
    • 35248892506 scopus 로고    scopus 로고
    • Linear combiners for classifier fusion: Some theoretical and experimental results
    • Guildford, UK, in: T. Windeatt, F. Roli (Eds.), Lecture Notes in Computer Science, Springer-Verlag
    • G. Fumera, F. Roli, Linear combiners for classifier fusion: some theoretical and experimental results, in: Proc. of 4th Int. Workshop on Multiple Classifier Systems, Guildford, UK, in: T. Windeatt, F. Roli (Eds.), Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 74-83.
    • (2003) Proc. of 4th Int. Workshop on Multiple Classifier Systems , pp. 74-83
    • Fumera, G.1    Roli, F.2
  • 20
    • 0033893813 scopus 로고    scopus 로고
    • Optimal linear combination of neural networks for improving classification performance
    • N. Ueda, Optimal linear combination of neural networks for improving classification performance, IEEE Transactions on PAMI 22 (2) (2000) 207-215.
    • (2000) IEEE Transactions on PAMI , vol.22 , Issue.2 , pp. 207-215
    • Ueda, N.1
  • 21
    • 0004042458 scopus 로고
    • Probenl: A set of neural network Benchmark Problems and Benchmarking Rules
    • Univ. Karlsruhe, Germany
    • L. Prechelt, Probenl: a set of neural network Benchmark Problems and Benchmarking Rules, Tech. Report 21/94, Univ. Karlsruhe, Germany, 1994.
    • (1994) Tech. Report , vol.21 , Issue.94
    • Prechelt, L.1
  • 23
    • 35248840118 scopus 로고    scopus 로고
    • Spectral coefficients and classifier correlation
    • Guildford, UK, in: T. Windeatt, F. Roli (Eds.), Lecture Notes in Computer Science, Springer-Verlag
    • T. Windeatt, R. Ghaderi, G. Ardeshir, Spectral coefficients and classifier correlation, in: Proc. of 4th Int. Workshop on Multiple Classifier Systems, Guildford, UK, in: T. Windeatt, F. Roli (Eds.), Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 276-285.
    • (2003) Proc. of 4th Int. Workshop on Multiple Classifier Systems , pp. 276-285
    • Windeatt, T.1    Ghaderi, R.2    Ardeshir, G.3
  • 24
    • 0037368938 scopus 로고    scopus 로고
    • Coding and decoding strategies for multiclass learning problems
    • T. Windeatt, R. Ghaderi, Coding and decoding strategies for multiclass learning problems, Information Fusion 4 (1) (2003) 11-21.
    • (2003) Information Fusion , vol.4 , Issue.1 , pp. 11-21
    • Windeatt, T.1    Ghaderi, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.