메뉴 건너뛰기




Volumn 34, Issue 12, 2013, Pages 4224-4241

An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; FORESTRY; LAND USE; MAPS; PROBABILITY DISTRIBUTIONS; REMOTE SENSING; ROTATION;

EID: 84875922650     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2013.774099     Document Type: Article
Times cited : (56)

References (61)
  • 3
    • 36148976852 scopus 로고    scopus 로고
    • Comparison of Classification Accuracy Using Cohen's Weighted Kappa
    • Ben-David, A. 2008. Comparison of Classification Accuracy Using Cohen's Weighted Kappa. Expert Systems with Applications, 34: 825-832.
    • (2008) Expert Systems with Applications , vol.34 , pp. 825-832
    • Ben-David, A.1
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L. 1996. Bagging Predictors. Machine Learning, 24: 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0346786584 scopus 로고    scopus 로고
    • Arcing Classifiers
    • Breiman, L. 1998. Arcing Classifiers. Annals of Statistics, 26: 801-824.
    • (1998) Annals of Statistics , vol.26 , pp. 801-824
    • Breiman, L.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. 2001. Random Forests. Machine Learning, 45: 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0026278621 scopus 로고
    • A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data
    • Congalton, R. G. 1991. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sensing of Environment, 37: 35-46.
    • (1991) Remote Sensing of Environment , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 11
    • 0000259511 scopus 로고    scopus 로고
    • Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms
    • Dietterich, T. G. 1998. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation, 10: 1895-1923.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 12
    • 0034250160 scopus 로고    scopus 로고
    • An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization
    • Dietterich, T. G. 2000. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning, 40: 139-157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 14
    • 70349280929 scopus 로고    scopus 로고
    • An Experimental Comparison of Performance Measures for Classification
    • Ferri, C., Hernandez-Orallo, J. and Modroiu, R. 2009. An Experimental Comparison of Performance Measures for Classification. Pattern Recognition Letters, 30: 27-38.
    • (2009) Pattern Recognition Letters , vol.30 , pp. 27-38
    • Ferri, C.1    Hernandez-Orallo, J.2    Modroiu, R.3
  • 16
    • 0000866729 scopus 로고
    • On the Compensation for Chance Agreement in Image Classification Accuracy Assessment
    • Foody, G. M. 1992. On the Compensation for Chance Agreement in Image Classification Accuracy Assessment. Photogrammetric Engineering and Remote Sensing, 58: 1459-1460.
    • (1992) Photogrammetric Engineering and Remote Sensing , vol.58 , pp. 1459-1460
    • Foody, G.M.1
  • 17
    • 0036213079 scopus 로고    scopus 로고
    • Status of Land Cover Classification Accuracy Assessment
    • Foody, G. M. 2002. Status of Land Cover Classification Accuracy Assessment. Remote Sensing of Environment, 80: 185-201.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 18
    • 3042661357 scopus 로고    scopus 로고
    • Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy
    • Foody, G. M. 2004. Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy. Photogrammetric Engineering and Remote Sensing, 70: 627-633.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 19
    • 40349114181 scopus 로고    scopus 로고
    • Harshness in Image Classification Accuracy Assessment
    • Foody, G. M. 2008. Harshness in Image Classification Accuracy Assessment. International Journal of Remote Sensing, 29: 3137-3158.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 3137-3158
    • Foody, G.M.1
  • 20
    • 67349093551 scopus 로고    scopus 로고
    • Classification Accuracy Comparison: Hypothesis Tests and the Use of Confidence Intervals in Evaluations of Difference, Equivalence and Non-Inferiority
    • Foody, G. M. 2009. Classification Accuracy Comparison: Hypothesis Tests and the Use of Confidence Intervals in Evaluations of Difference, Equivalence and Non-Inferiority. Remote Sensing of Environment, 113: 1658
    • (2009) Remote Sensing of Environment , vol.113 , pp. 1658
    • Foody, G.M.1
  • 21
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a New Boosting Algorithm
    • Francisco, Italy, Francisco, 3-6 July, Bari andIn, edited by L. SaittaSan CA: Morgan Kaufmann
    • Freund, Y. and Scapire, R. 1996. "Experiments with a New Boosting Algorithm 148-156. Francisco, Italy 3-6 July, Bari andIn 13th International Conference on Machine Learning, edited by L. SaittaSan CA: Morgan Kaufmann
    • (1996) 13th International Conference on Machine Learning , pp. 148-156
    • Freund, Y.1    Scapire, R.2
  • 22
    • 0344972104 scopus 로고    scopus 로고
    • Decision Tree Classification of Land Cover from Remotely Sensed Data
    • Friedl, M. A. and Brodley, C. E. 1997. Decision Tree Classification of Land Cover from Remotely Sensed Data. Remote Sensing of Environment, 61: 399-409.
    • (1997) Remote Sensing of Environment , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 24
    • 79960048515 scopus 로고    scopus 로고
    • Optimal Region Growing Segmentation and Its Effect on Classification Accuracy
    • J. A. N. Pacheco""
    • Gao, Y., Mas, J. F. and Kerle, N. 2011. Optimal Region Growing Segmentation and Its Effect on Classification Accuracy. International Journal of Remote Sensing, 32: 3747-3763. J. A. N. Pacheco""
    • (2011) International Journal of Remote Sensing , vol.32 , pp. 3747-3763
    • Gao, Y.1    Mas, J.F.2    Kerle, N.3
  • 25
    • 33750084387 scopus 로고    scopus 로고
    • Comparison of Pixel-Based and Object-Oriented Image Classification Approaches - a Case Study in a Coal Fire Area, Wuda, Inner Mongolia, China
    • P. M. Van Di{dotless}jk""
    • Gao, Y., Mas, J. F., Maathui{dotless}s, B. H. P. and Zhang, X. M. 2006. Comparison of Pixel-Based and Object-Oriented Image Classification Approaches-a Case Study in a Coal Fire Area, Wuda, Inner Mongolia, China. International Journal of Remote Sensing, 27: 4039-4055. P. M. Van Di{dotless}jk""
    • (2006) International Journal of Remote Sensing , vol.27 , pp. 4039-4055
    • Gao, Y.1    Mas, J.F.2    Maathuis, B.H.P.3    Zhang, X.M.4
  • 26
    • 15944365217 scopus 로고    scopus 로고
    • "" In IEEE International Geoscience and Remote Sensing Symposium Proceedings (IGARSS 2004), Anchorage, AK, September 20-24, vol. II, Hoboken, NJ: IEEE International
    • Gislason, P. O., Benediktsson, J. A. and Sveinsson, J. R. 2004. Random Forest Classification of Multisource Remote Sensing and Geographic Data 1049-1052. "" In IEEE International Geoscience and Remote Sensing Symposium Proceedings (IGARSS 2004), Anchorage, AK, September 20-24, vol. II, Hoboken, NJ: IEEE International
    • (2004) Random Forest Classification of Multisource Remote Sensing and Geographic Data , pp. 1049-1052
    • Gislason, P.O.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 28
    • 27844472191 scopus 로고    scopus 로고
    • An Empirical Comparison of Ensemble Methods Based on Classification Trees
    • Hamza, M. and Larocque, D. 2005. An Empirical Comparison of Ensemble Methods Based on Classification Trees. Journal of Statistical Computation and Simulation, 75: 629-643.
    • (2005) Journal of Statistical Computation and Simulation , vol.75 , pp. 629-643
    • Hamza, M.1    Larocque, D.2
  • 29
    • 82655173888 scopus 로고    scopus 로고
    • Remote Sensing Image Classification Based on Neural Network Ensemble Algorithm
    • Han, M., Zhu, X. R. and Yao, W. 2012. Remote Sensing Image Classification Based on Neural Network Ensemble Algorithm. Neurocomputing, 78: 133-138.
    • (2012) Neurocomputing , vol.78 , pp. 133-138
    • Han, M.1    Zhu, X.R.2    Yao, W.3
  • 31
    • 62349132975 scopus 로고    scopus 로고
    • Increasing the Accuracy of Neural Network Classification Using Refined Training Data
    • Kavzoglu, T. 2009. Increasing the Accuracy of Neural Network Classification Using Refined Training Data. Environmental Modelling & Software, 24: 850-858.
    • (2009) Environmental Modelling & Software , vol.24 , pp. 850-858
    • Kavzoglu, T.1
  • 32
    • 56349136923 scopus 로고    scopus 로고
    • Boosting and Measuring the Performance of Ensembles for Successful Database Marketing
    • Kim, Y. S. 2009. Boosting and Measuring the Performance of Ensembles for Successful Database Marketing. Expert Systems with Applications, 36: 2161-2176.
    • (2009) Expert Systems with Applications , vol.36 , pp. 2161-2176
    • Kim, Y.S.1
  • 33
    • 0037403516 scopus 로고    scopus 로고
    • Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy
    • Kuncheva, L. I. and Whitaker, C. J. 2003. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Machine Learning, 51: 181-207.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 34
    • 34047163965 scopus 로고    scopus 로고
    • Comparative Assessment of the Measures of Thematic Classification Accuracy
    • Liu, C. R., Frazier, P. and Kumar, L. 2007. Comparative Assessment of the Measures of Thematic Classification Accuracy. Remote Sensing of Environment, 107: 606-616.
    • (2007) Remote Sensing of Environment , vol.107 , pp. 606-616
    • Liu, C.R.1    Frazier, P.2    Kumar, L.3
  • 35
  • 36
    • 33947591833 scopus 로고    scopus 로고
    • A Survey of Image Classification Methods and Techniques for Improving Classification Performance
    • Lu, D. and Weng, Q. 2007. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. International Journal of Remote Sensing, 28: 823-870.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 38
    • 10444259853 scopus 로고    scopus 로고
    • Creating Diversity in Ensembles Using Artificial Data
    • Melville, P. and Mooney, R. J. 2005. Creating Diversity in Ensembles Using Artificial Data. Information Fusion, 6: 99-111.
    • (2005) Information Fusion , vol.6 , pp. 99-111
    • Melville, P.1    Mooney, R.J.2
  • 39
    • 33745197335 scopus 로고    scopus 로고
    • An Experimental Comparison of Ensemble of Classifiers for Biometric Data
    • Nanni, L. and Lumini, A. 2006. An Experimental Comparison of Ensemble of Classifiers for Biometric Data. Neurocomputing, 69: 1670-1673.
    • (2006) Neurocomputing , vol.69 , pp. 1670-1673
    • Nanni, L.1    Lumini, A.2
  • 40
    • 13344278660 scopus 로고    scopus 로고
    • Random Forest Classifier for Remote Sensing Classification
    • Pal, M. 2005. Random Forest Classifier for Remote Sensing Classification. International Journal of Remote Sensing, 26: 217-222.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 217-222
    • Pal, M.1
  • 41
    • 80051739559 scopus 로고    scopus 로고
    • Ensemble Learning with Decision Tree for Remote Sensing Classification
    • Pal, M. 2007. Ensemble Learning with Decision Tree for Remote Sensing Classification. World Academy of Science, Engineering and Technology, 36: 258-260.
    • (2007) World Academy of Science, Engineering and Technology , vol.36 , pp. 258-260
    • Pal, M.1
  • 42
    • 41549156538 scopus 로고    scopus 로고
    • Artificial Immune-Based Supervised Classifier for Land-Cover Classification
    • Pal, M. 2008. Artificial Immune-Based Supervised Classifier for Land-Cover Classification. International Journal of Remote Sensing, 29: 2273-2291.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 2273-2291
    • Pal, M.1
  • 43
    • 77951295936 scopus 로고    scopus 로고
    • Feature Selection for Classification of Hyperspectral Data by SVM
    • Pal, M. and Foody, G. M. 2010. Feature Selection for Classification of Hyperspectral Data by SVM. IEEE Transactions on Geoscience and Remote Sensing, 48: 2297-2307.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 44
    • 0141569007 scopus 로고    scopus 로고
    • An Assessment of the Effectiveness of Decision Tree Methods for Land Cover Classification
    • Pal, M. and Mather, P. M. 2003. An Assessment of the Effectiveness of Decision Tree Methods for Land Cover Classification. Remote Sensing of Environment, 86: 554-565.
    • (2003) Remote Sensing of Environment , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 47
    • 27144463192 scopus 로고    scopus 로고
    • On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach
    • Salzberg, S. L. 1997. On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach. Data Mining and Knowledge Discovery, 1: 317-327.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-327
    • Salzberg, S.L.1
  • 48
    • 0031255580 scopus 로고    scopus 로고
    • Selecting and Interpreting Measures of Thematic Classification Accuracy
    • Stehman, S. V. 1997. Selecting and Interpreting Measures of Thematic Classification Accuracy. Remote Sensing of Environment, 62: 77-89.
    • (1997) Remote Sensing of Environment , vol.62 , pp. 77-89
    • Stehman, S.V.1
  • 49
    • 34748856127 scopus 로고    scopus 로고
    • Effectiveness of Rotation Forest in Meta-Learning based Gene Expression Classification
    • Washington, Washington, "" Maribor, June 20-22, 243-250. DC: IEEE Computer Society
    • Stiglic, G. and Kokol, P. 2007. "Effectiveness of Rotation Forest in Meta-Learning based Gene Expression Classification". In Paper presented at the 20th IEEE International Symposium on Computer-Based Medical Systems Washington "" Maribor, June 20-22, 243-250. DC: IEEE Computer Society
    • (2007) Paper presented at the 20th IEEE International Symposium on Computer-Based Medical Systems
    • Stiglic, G.1    Kokol, P.2
  • 51
    • 34548688428 scopus 로고    scopus 로고
    • An Experimental Evaluation of Ensemble Methods for EEG Signal Classification
    • Sun, S. L., Zhang, C. S. and Zhang, D. 2007. An Experimental Evaluation of Ensemble Methods for EEG Signal Classification. Pattern Recognition Letters, 28: 2157-2163.
    • (2007) Pattern Recognition Letters , vol.28 , pp. 2157-2163
    • Sun, S.L.1    Zhang, C.S.2    Zhang, D.3
  • 54
    • 43049117533 scopus 로고    scopus 로고
    • Feature-Selection Ability of the Decision-Tree Algorithm and the Impact of Feature-Selection/Extraction on Decision-Tree Results Based on Hyperspectral Data
    • Wang, Y. Y. and Li, J. 2008. Feature-Selection Ability of the Decision-Tree Algorithm and the Impact of Feature-Selection/Extraction on Decision-Tree Results Based on Hyperspectral Data. International Journal of Remote Sensing, 29: 2993-3010.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 2993-3010
    • Wang, Y.Y.1    Li, J.2
  • 55
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A Technique for Combining Boosting and Bagging
    • Webb, G. I. 2000. MultiBoosting: A Technique for Combining Boosting and Bagging. Machine Learning, 40: 159-196.
    • (2000) Machine Learning , vol.40 , pp. 159-196
    • Webb, G.I.1
  • 56
    • 4344706336 scopus 로고    scopus 로고
    • Multistrategy Ensemble Learning: Reducing Error by Combining Ensemble Learning Techniques
    • Webb, G. I. and Zheng, Z. J. 2004. Multistrategy Ensemble Learning: Reducing Error by Combining Ensemble Learning Techniques. IEEE Transactions on Knowledge and Data Engineering, 16: 980-991.
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , pp. 980-991
    • Webb, G.I.1    Zheng, Z.J.2
  • 58
    • 77549088874 scopus 로고    scopus 로고
    • Remote Sensing Imagery in Vegetation Mapping: A Review
    • Xie, Y. C., Sha, Z. Y. and Yu, M. 2008. Remote Sensing Imagery in Vegetation Mapping: A Review. Journal of Plant Ecology, 1: 9-23.
    • (2008) Journal of Plant Ecology , vol.1 , pp. 9-23
    • Xie, Y.C.1    Sha, Z.Y.2    Yu, M.3
  • 59
    • 79960039993 scopus 로고    scopus 로고
    • The Effects of Combining Classifiers with the Same Training Statistics Using Bayesian Decision Rules
    • Yan, W. Y. and Shaker, A. 2011. The Effects of Combining Classifiers with the Same Training Statistics Using Bayesian Decision Rules. International Journal of Remote Sensing, 32: 3729-3745.
    • (2011) International Journal of Remote Sensing , vol.32 , pp. 3729-3745
    • Yan, W.Y.1    Shaker, A.2
  • 60
    • 73749083245 scopus 로고    scopus 로고
    • A Variant of Rotation Forest for Constructing Ensemble Classifiers
    • Zhang, C. X. and Zhang, J. S. 2010. A Variant of Rotation Forest for Constructing Ensemble Classifiers. Pattern Analysis and Applications, 13: 59-77.
    • (2010) Pattern Analysis and Applications , vol.13 , pp. 59-77
    • Zhang, C.X.1    Zhang, J.S.2
  • 61
    • 37349035781 scopus 로고    scopus 로고
    • An Empirical Study of Using Rotation Forest to Improve Regressors
    • Zhang, C. X., Zhang, J. S. and Wang, G. W. 2008. An Empirical Study of Using Rotation Forest to Improve Regressors. Applied Mathematics and Computation, 195: 618-629.
    • (2008) Applied Mathematics and Computation , vol.195 , pp. 618-629
    • Zhang, C.X.1    Zhang, J.S.2    Wang, G.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.