메뉴 건너뛰기




Volumn 26, Issue , 2012, Pages 61-68

Two credit scoring models based on dual strategy ensemble trees

Author keywords

Bagging; Credit scoring; Decision tree; Ensemble learning; Random subspace

Indexed keywords

BAGGING; CLASSIFICATION ACCURACY; CLASSIFICATION ALGORITHM; CREDIT SCORING; CREDIT SCORING MODEL; DATA SETS; ENSEMBLE CLASSIFIERS; ENSEMBLE LEARNING; ENSEMBLE STRATEGIES; LINEAR DISCRIMINANT ANALYSIS; LOGISTIC REGRESSION ANALYSIS; MULTI LAYER PERCEPTRON; NOISE DATA; RANDOM FORESTS; RANDOM SUBSPACES;

EID: 84155181098     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2011.06.020     Document Type: Article
Times cited : (201)

References (34)
  • 1
    • 0035421611 scopus 로고    scopus 로고
    • Development of a KBS for managing bank loan risk
    • DOI 10.1016/S0950-7051(01)00109-5, PII S0950705101001095
    • B.A. Yang, L.X. Li, Q.H. Xie, and J. Xu Development of a KBS for managing bank loan risk Knowledge-Based Systems Volume 14 5-6 2001 299 302 (Pubitemid 32707395)
    • (2001) Knowledge-Based Systems , vol.14 , Issue.5-6 , pp. 299-302
    • Yang, B.1    Li, L.X.2    Xie, Q.3    Xu, J.4
  • 2
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • C.L. Huang, M.C. Chen, and C.J. Wang Credit scoring with a data mining approach based on support vector machines Expert Systems with Applications 33 4 2007 847 856
    • (2007) Expert Systems with Applications , vol.33 , Issue.4 , pp. 847-856
    • Huang, C.L.1    Chen, M.C.2    Wang, C.J.3
  • 4
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: A market comparative study
    • Z. Huang, H. Chen, C.J. Hsu, W.H. Chen, and S.S. Wu Credit rating analysis with support vector machines and neural networks: a market comparative study Decision support systems 37 4 2004 543 558
    • (2004) Decision Support Systems , vol.37 , Issue.4 , pp. 543-558
    • Huang, Z.1    Chen, H.2    Hsu, C.J.3    Chen, W.H.4    Wu, S.S.5
  • 5
    • 15944379834 scopus 로고
    • An examination of the conceptual issues involved in developing credit-scoring models
    • A.K. Reichert, C.C. Cho, and G.M. Wagner An examination of the conceptual issues involved in developing credit-scoring models Journal of Business and Economic Statistics 1 2 1983 101 114
    • (1983) Journal of Business and Economic Statistics , vol.1 , Issue.2 , pp. 101-114
    • Reichert, A.K.1    Cho, C.C.2    Wagner, G.M.3
  • 6
    • 84978600970 scopus 로고
    • Multivariate normality and forecasting of business bankruptcy
    • G. Karels, and A. Prakash Multivariate normality and forecasting of business bankruptcy Journal of Business Finance Accounting 14 4 1987 573 593
    • (1987) Journal of Business Finance Accounting , vol.14 , Issue.4 , pp. 573-593
    • Karels, G.1    Prakash, A.2
  • 7
    • 0001466281 scopus 로고    scopus 로고
    • A survey of credit and behavioral scoring: Forecasting financial risks of lending to customers
    • L.C. Thomas A survey of credit and behavioral scoring: forecasting financial risks of lending to customers International Journal of Forecasting 16 2 2000 149 172
    • (2000) International Journal of Forecasting , vol.16 , Issue.2 , pp. 149-172
    • Thomas, L.C.1
  • 8
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • DOI 10.1016/S0305-0548(99)00149-5, PII S0305054899001495, Neural Networks in Business
    • D. West Neural network credit scoring models Computers and Operations Research 27 11-12 2000 1131 1152 (Pubitemid 30398142)
    • (2000) Computers and Operations Research , vol.27 , Issue.11-12 , pp. 1131-1152
    • West, D.1
  • 9
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J.H. Friedman Multivariate adaptive regression splines The Annals of Statistics 19 1 1991 1 141
    • (1991) The Annals of Statistics , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.H.1
  • 10
    • 0030291564 scopus 로고    scopus 로고
    • A comparison of neural networks and linear scoring models in the credit union environment
    • DOI 10.1016/0377-2217(95)00246-4
    • V. Desai, J. Crook, and G. Overstreet A comparison of neural networks and linear scoring models in the credit union environment European Journal of Operations Research 95 1 1996 24 37 (Pubitemid 126391970)
    • (1996) European Journal of Operational Research , vol.95 , Issue.1 , pp. 24-37
    • Desai, V.S.1    Crook, J.N.2    Overstreet Jr., G.A.3
  • 11
    • 0041055721 scopus 로고
    • Credit scoring branches out
    • P. Makowski Credit scoring branches out Credit World 74 2 1985 30 37
    • (1985) Credit World , vol.74 , Issue.2 , pp. 30-37
    • Makowski, P.1
  • 12
    • 58349100252 scopus 로고    scopus 로고
    • A selective ensemble based on expected probabilities for bankruptcy prediction
    • C. Hung, and J.H. Chen A selective ensemble based on expected probabilities for bankruptcy prediction Expert Systems with Applications 36 3 2009 5297 5303
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5297-5303
    • Hung, C.1    Chen, J.H.2
  • 13
    • 0033705131 scopus 로고    scopus 로고
    • Multiple algorithms for fraud detection
    • R. Wheeler, and S. Aitken Multiple algorithms for fraud detection Knowledge-Based Systems 13 2-3 2000 93 99
    • (2000) Knowledge-Based Systems , vol.13 , Issue.23 , pp. 93-99
    • Wheeler, R.1    Aitken, S.2
  • 14
    • 0035501773 scopus 로고    scopus 로고
    • A case-based approach using inductive indexing for corporate bond rating
    • DOI 10.1016/S0167-9236(01)00099-9, PII S0167923601000999
    • K.S. Shin, and I. Han A case-based approach using inductive indexing for corporate bond rating Decision Support Systems 32 1 2001 41 52 (Pubitemid 32866916)
    • (2001) Decision Support Systems , vol.32 , Issue.1 , pp. 41-52
    • Shin, K.-S.1    Han, I.2
  • 16
    • 24144458623 scopus 로고    scopus 로고
    • Support vector machines for classifying and describing credit applicants: Detecting typical and critical regions
    • DOI 10.1057/palgrave.jors.2602023
    • K.B. Schebesch, and R. Stecking Support vector machines for classifying and describing credit applicants: detecting typical and critical regions Journal of the Operational Research Society 56 9 2005 1082 1088 (Pubitemid 41230442)
    • (2005) Journal of the Operational Research Society , vol.56 , Issue.9 , pp. 1082-1088
    • Schebesch, K.B.1    Sleeking, R.2
  • 19
    • 0345567198 scopus 로고    scopus 로고
    • An empirical comparison of decision trees and other classification methods
    • Department of Statistics, University of Wisconsin, Madison
    • T.-S. Lim, W.-Y. Loh, Y.-S. Shih, An empirical comparison of decision trees and other classification methods, Technical Report 979, Department of Statistics, University of Wisconsin, Madison, 1997.
    • (1997) Technical Report 979
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 21
    • 44649137359 scopus 로고    scopus 로고
    • A new credit scoring method based on rough sets and decision tree
    • T. Washio et al. (Eds.)
    • X.Y. Zhou, D.F. Zhang, Y. Jiang, A new credit scoring method based on rough sets and decision tree, in: T. Washio et al. (Eds.), PAKDD2008, LNAI5012, pp. 1081-1089.
    • PAKDD2008, LNAI5012 , pp. 1081-1089
    • Zhou, X.Y.1    Zhang, D.F.2    Jiang, Y.3
  • 22
    • 59349101361 scopus 로고    scopus 로고
    • Feature selection in bankruptcy prediction
    • C.F. Tsai Feature selection in bankruptcy prediction Knowledge-Based Systems 22 2 2009 120 127
    • (2009) Knowledge-Based Systems , vol.22 , Issue.2 , pp. 120-127
    • Tsai, C.F.1
  • 23
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar Ensemble based systems in decision making IEEE Circuits and Systems Magazine 6 3 2006 21 45
    • (2006) IEEE Circuits and Systems Magazine , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 26
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Machine Learning 40 2 2000 139 157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 27
  • 28
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • DOI 10.1016/S0031-3203(02)00121-8, PII S0031320302001218
    • R. Bryll, R. Gutierrez-Osuna, and F. Quek Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets Pattern Recognition 36 6 2003 1291 1302 (Pubitemid 36225868)
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 30
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 32
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2007. Available from: .
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 34
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman Random Forests Machine Learning 45 1 2001 5 32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.