메뉴 건너뛰기




Volumn 15, Issue 1, 2004, Pages 45-54

New results on error correcting output codes of kernel machines

Author keywords

Error correcting output codes (ECOC); Machine learning; Statistical learning theory; Support vector machines

Indexed keywords

BINARY CODES; CODING ERRORS; DECODING; ERROR CORRECTION; LEARNING ALGORITHMS; MATHEMATICAL MODELS; NEURAL NETWORKS; PARAMETER ESTIMATION; PROBABILITY; STATISTICAL METHODS;

EID: 1242263799     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2003.820841     Document Type: Article
Times cited : (125)

References (35)
  • 1
    • 0000501656 scopus 로고    scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • H. Akaike, "Information theory and an extension of the maximum likelihood principle," in Proc. 2nd Int. Symp. Information Theory, 1973, pp. 267-281.
    • Proc. 2nd Int. Symp. Information Theory, 1973 , pp. 267-281
    • Akaike, H.1
  • 2
    • 0001868131 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • San Francisco, CA: Morgan Kaufmann
    • E. L. Allwein, R. E. Schapire, and Y. Singer, "Reducing multiclass to binary: a unifying approach for margin classifiers," in Proc. 17th Int. Conf. Machine Learning. San Francisco, CA: Morgan Kaufmann, 2000, pp. 9-16.
    • (2000) Proc. 17th Int. Conf. Machine Learning , pp. 9-16
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 3
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn, "Theory of reproducing kernels," Trans. Amer. Math. Soc., vol. 686, pp. 337-404, 1950.
    • (1950) Trans. Amer. Math. Soc. , vol.686 , pp. 337-404
    • Aronszajn, N.1
  • 4
    • 0002094343 scopus 로고    scopus 로고
    • Generalization performance of support vector machine and other patern classifiers
    • B. Scholkopf and C. Burges, Eds. Cambridge, MA: MIT Press
    • P. Bartlett and J. Shawe-Taylor, "Generalization performance of support vector machine and other patern classifiers," in Advances in Kernel Methods - Support Vector Learning, B. Scholkopf and C. Burges, Eds. Cambridge, MA: MIT Press, 1998.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Bartlett, P.1    Shawe-Taylor, J.2
  • 5
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyper-parameters
    • Y. Bengio, "Gradient-based optimization of hyper-parameters," Neural Computation, vol. 12, no. 8, pp. 1889-1900, 2000.
    • (2000) Neural Computation , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 7
    • 50549175697 scopus 로고
    • On a class of error correcting binary group codes
    • Mar.
    • R. C. Bose and D. K. Ray-Chaudhuri, "On a class of error correcting binary group codes," Inform. Contr., vol. 3, pp. 68-79, Mar. 1960.
    • (1960) Inform. Contr. , vol.3 , pp. 68-79
    • Bose, R.C.1    Ray-Chaudhuri, D.K.2
  • 9
    • 0000354976 scopus 로고
    • A comparative study of ordinary cross validation, 5-fold cross validation, and the repeated learning testing methods
    • P. Burman, "A comparative study of ordinary cross validation, 5-fold cross validation, and the repeated learning testing methods," Biometrica, vol. 76, no. 3, pp. 503-514, 1989.
    • (1989) Biometrica , vol.76 , Issue.3 , pp. 503-514
    • Burman, P.1
  • 10
    • 0036161011 scopus 로고    scopus 로고
    • Choosing kernel parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing kernel parameters for support vector machines," Machine Learning, vol. 46, no. 1-3, pp. 131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 11
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support vector networks," Machine Learning, vol. 20, pp. 1-25, 1995.
    • (1995) Machine Learning , vol.20 , pp. 1-25
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 0008965347 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • K. Crammer and Y. Singer, "On the learnability and design of output codes for multiclass problems," in Computat. Learning Theory, 2000, pp. 35-46.
    • Computat. Learning Theory, 2000 , pp. 35-46
    • Crammer, K.1    Singer, Y.2
  • 13
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross validation
    • P. Craven and G. Wahba, "Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross validation," Numer. Math, vol. 31, pp. 377-403, 1979.
    • (1979) Numer. Math , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 16
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T. G. Dietterich and G. Bakiri, "Solving multiclass learning problems via error-correcting output codes," J. Artific. Intell. Res., vol. 2, pp. 263-286, 1995.
    • (1995) J. Artific. Intell. Res. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 17
    • 0141667720 scopus 로고    scopus 로고
    • Leave-one-out error and stability of learning algorithms with applications
    • J. Suykens et al., Eds: IOS Press
    • A. Elisseeff and M. Pontil et al., "Leave-one-out error and stability of learning algorithms with applications," in NATO-ASI Series on Learning Theory and Practice, J. Suykens et al., Eds: IOS Press, 2002.
    • (2002) NATO-ASI Series on Learning Theory and Practice
    • Elisseeff, A.1    Pontil, M.2
  • 18
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou, M. Pontil, and T. Poggio, "Regularization networks and support vector machines," Adv. Computat. Math., vol. 13, pp. 1-50, 2000.
    • (2000) Adv. Computat. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 19
    • 21844525300 scopus 로고
    • Functions that preserves families of positive definite functions
    • C. H. FitzGerald, C. A. Micchelli, and A. Pinkus, "Functions that preserves families of positive definite functions," Linear Alg. its Applicat., vol. 221, pp. 83-102, 1995.
    • (1995) Linear Alg. Its Applicat. , vol.221 , pp. 83-102
    • FitzGerald, C.H.1    Micchelli, C.A.2    Pinkus, A.3
  • 20
    • 0031624445 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Y. Freund and R. E. Schapire, "Large margin classification using the perceptron algorithm," in Computat. Learning Theory, 1998, pp. 209-217.
    • Computat. Learning Theory, 1998 , pp. 209-217
    • Freund, Y.1    Schapire, R.E.2
  • 21
    • 0003440665 scopus 로고    scopus 로고
    • Another approach to polychotomous classification
    • Dept. Statistics, Stanford Univ., Tech. Rep.
    • J. H. Friedman, "Another approach to polychotomous classification," Dept. Statistics, Stanford Univ., Tech. Rep., 1996.
    • (1996)
    • Friedman, J.H.1
  • 22
  • 24
    • 0003684449 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference, and prediction
    • New York: Springer-Verlag
    • T. Hastie, R. Tibshirani, and J. Friedman, "The elements of statistical learning: data mining, inference, and prediction," in Springer Series in Statistics. New York: Springer-Verlag, 2002.
    • (2002) Springer Series in Statistics
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 26
    • 0032594960 scopus 로고    scopus 로고
    • Moderating the outputs of support vector machine classifiers
    • J. Kwok, "Moderating the outputs of support vector machine classifiers," IEEE Trans. Neural Networks, vol. 10, pp. 1018-1031, 1999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1018-1031
    • Kwok, J.1
  • 27
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • C. A. Micchelli, "Interpolation of scattered data: distance matrices and conditionally positive definite functions," Construct. Approximat., vol. 2, pp. 11-22, 1986.
    • (1986) Construct. Approximat. , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 28
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • A. Smola, P. Bartlett, B. Scholkopf, and D. Schurmans, Eds. Cambridge, MA: MIT Press
    • J. Platt, "Probabilistic outputs for support vector machines and comparison to regularized likelihood methods," in Advances in Large Margin Classiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schurmans, Eds. Cambridge, MA: MIT Press, 1999.
    • (1999) Advances in Large Margin Classiers
    • Platt, J.1
  • 29
    • 0242613950 scopus 로고    scopus 로고
    • Improving multiclass text classification with the support vector machine
    • MIT, Tech. Rep. 2001-026
    • J. D. M. Rennie and R. Rifkin, "Improving multiclass text classification with the support vector machine," MIT, Tech. Rep. 2001-026, 2001.
    • (2001)
    • Rennie, J.D.M.1    Rifkin, R.2
  • 30
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt, "The perceptron: a probabilistic model for information storage and organization in the brain," Psycholog. Rev., vol. 65, pp. 386-408, 1958.
    • (1958) Psycholog. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 34
    • 0003241883 scopus 로고
    • Splines models for observational data
    • Philadelphia, PA: SIAM
    • G. Wahba, "Splines models for observational data," in Series in Applied Mathematics. Philadelphia, PA: SIAM, 1990, vol. 59.
    • (1990) Series in Applied Mathematics , vol.59
    • Wahba, G.1
  • 35
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale (SVM) learning practical
    • B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press; ch. 11
    • T. Joachims, "Making large-scale (SVM) learning practical," in Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1998, ch. 11, pp. 169-185.
    • (1998) Advances in Kernel Methods - Support Vector Learning , pp. 169-185
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.