-
1
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
H. Akaike, "Information theory and an extension of the maximum likelihood principle," in Proc. 2nd Int. Symp. Information Theory, 1973, pp. 267-281.
-
Proc. 2nd Int. Symp. Information Theory, 1973
, pp. 267-281
-
-
Akaike, H.1
-
2
-
-
0001868131
-
Reducing multiclass to binary: A unifying approach for margin classifiers
-
San Francisco, CA: Morgan Kaufmann
-
E. L. Allwein, R. E. Schapire, and Y. Singer, "Reducing multiclass to binary: a unifying approach for margin classifiers," in Proc. 17th Int. Conf. Machine Learning. San Francisco, CA: Morgan Kaufmann, 2000, pp. 9-16.
-
(2000)
Proc. 17th Int. Conf. Machine Learning
, pp. 9-16
-
-
Allwein, E.L.1
Schapire, R.E.2
Singer, Y.3
-
3
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn, "Theory of reproducing kernels," Trans. Amer. Math. Soc., vol. 686, pp. 337-404, 1950.
-
(1950)
Trans. Amer. Math. Soc.
, vol.686
, pp. 337-404
-
-
Aronszajn, N.1
-
4
-
-
0002094343
-
Generalization performance of support vector machine and other patern classifiers
-
B. Scholkopf and C. Burges, Eds. Cambridge, MA: MIT Press
-
P. Bartlett and J. Shawe-Taylor, "Generalization performance of support vector machine and other patern classifiers," in Advances in Kernel Methods - Support Vector Learning, B. Scholkopf and C. Burges, Eds. Cambridge, MA: MIT Press, 1998.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Bartlett, P.1
Shawe-Taylor, J.2
-
5
-
-
0034241361
-
Gradient-based optimization of hyper-parameters
-
Y. Bengio, "Gradient-based optimization of hyper-parameters," Neural Computation, vol. 12, no. 8, pp. 1889-1900, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.8
, pp. 1889-1900
-
-
Bengio, Y.1
-
7
-
-
50549175697
-
On a class of error correcting binary group codes
-
Mar.
-
R. C. Bose and D. K. Ray-Chaudhuri, "On a class of error correcting binary group codes," Inform. Contr., vol. 3, pp. 68-79, Mar. 1960.
-
(1960)
Inform. Contr.
, vol.3
, pp. 68-79
-
-
Bose, R.C.1
Ray-Chaudhuri, D.K.2
-
9
-
-
0000354976
-
A comparative study of ordinary cross validation, 5-fold cross validation, and the repeated learning testing methods
-
P. Burman, "A comparative study of ordinary cross validation, 5-fold cross validation, and the repeated learning testing methods," Biometrica, vol. 76, no. 3, pp. 503-514, 1989.
-
(1989)
Biometrica
, vol.76
, Issue.3
, pp. 503-514
-
-
Burman, P.1
-
10
-
-
0036161011
-
Choosing kernel parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing kernel parameters for support vector machines," Machine Learning, vol. 46, no. 1-3, pp. 131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
11
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik, "Support vector networks," Machine Learning, vol. 20, pp. 1-25, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 1-25
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
0008965347
-
On the learnability and design of output codes for multiclass problems
-
K. Crammer and Y. Singer, "On the learnability and design of output codes for multiclass problems," in Computat. Learning Theory, 2000, pp. 35-46.
-
Computat. Learning Theory, 2000
, pp. 35-46
-
-
Crammer, K.1
Singer, Y.2
-
13
-
-
34250263445
-
Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross validation
-
P. Craven and G. Wahba, "Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross validation," Numer. Math, vol. 31, pp. 377-403, 1979.
-
(1979)
Numer. Math
, vol.31
, pp. 377-403
-
-
Craven, P.1
Wahba, G.2
-
15
-
-
0036071370
-
On the mathematical foundations of learning
-
F. Cucker and S. Smale, "On the mathematical foundations of learning," Bulletin (New Series) of the Amer. Math. Soc., vol. 39, no. 1, pp. 1-49, 2001.
-
(2001)
Bulletin (New Series) of the Amer. Math. Soc.
, vol.39
, Issue.1
, pp. 1-49
-
-
Cucker, F.1
Smale, S.2
-
16
-
-
0000406788
-
Solving multiclass learning problems via error-correcting output codes
-
T. G. Dietterich and G. Bakiri, "Solving multiclass learning problems via error-correcting output codes," J. Artific. Intell. Res., vol. 2, pp. 263-286, 1995.
-
(1995)
J. Artific. Intell. Res.
, vol.2
, pp. 263-286
-
-
Dietterich, T.G.1
Bakiri, G.2
-
17
-
-
0141667720
-
Leave-one-out error and stability of learning algorithms with applications
-
J. Suykens et al., Eds: IOS Press
-
A. Elisseeff and M. Pontil et al., "Leave-one-out error and stability of learning algorithms with applications," in NATO-ASI Series on Learning Theory and Practice, J. Suykens et al., Eds: IOS Press, 2002.
-
(2002)
NATO-ASI Series on Learning Theory and Practice
-
-
Elisseeff, A.1
Pontil, M.2
-
18
-
-
0034419669
-
Regularization networks and support vector machines
-
T. Evgeniou, M. Pontil, and T. Poggio, "Regularization networks and support vector machines," Adv. Computat. Math., vol. 13, pp. 1-50, 2000.
-
(2000)
Adv. Computat. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
19
-
-
21844525300
-
Functions that preserves families of positive definite functions
-
C. H. FitzGerald, C. A. Micchelli, and A. Pinkus, "Functions that preserves families of positive definite functions," Linear Alg. its Applicat., vol. 221, pp. 83-102, 1995.
-
(1995)
Linear Alg. Its Applicat.
, vol.221
, pp. 83-102
-
-
FitzGerald, C.H.1
Micchelli, C.A.2
Pinkus, A.3
-
21
-
-
0003440665
-
Another approach to polychotomous classification
-
Dept. Statistics, Stanford Univ., Tech. Rep.
-
J. H. Friedman, "Another approach to polychotomous classification," Dept. Statistics, Stanford Univ., Tech. Rep., 1996.
-
(1996)
-
-
Friedman, J.H.1
-
22
-
-
19044382587
-
Round robin classification
-
J. Fürnkranz, "Round robin classification," J. Machine Learning Research, vol. 2, pp. 721-747, 2002.
-
(2002)
J. Machine Learning Research
, vol.2
, pp. 721-747
-
-
Fürnkranz, J.1
-
24
-
-
0003684449
-
The elements of statistical learning: Data mining, inference, and prediction
-
New York: Springer-Verlag
-
T. Hastie, R. Tibshirani, and J. Friedman, "The elements of statistical learning: data mining, inference, and prediction," in Springer Series in Statistics. New York: Springer-Verlag, 2002.
-
(2002)
Springer Series in Statistics
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
26
-
-
0032594960
-
Moderating the outputs of support vector machine classifiers
-
J. Kwok, "Moderating the outputs of support vector machine classifiers," IEEE Trans. Neural Networks, vol. 10, pp. 1018-1031, 1999.
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, pp. 1018-1031
-
-
Kwok, J.1
-
27
-
-
34250122797
-
Interpolation of scattered data: Distance matrices and conditionally positive definite functions
-
C. A. Micchelli, "Interpolation of scattered data: distance matrices and conditionally positive definite functions," Construct. Approximat., vol. 2, pp. 11-22, 1986.
-
(1986)
Construct. Approximat.
, vol.2
, pp. 11-22
-
-
Micchelli, C.A.1
-
28
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
-
A. Smola, P. Bartlett, B. Scholkopf, and D. Schurmans, Eds. Cambridge, MA: MIT Press
-
J. Platt, "Probabilistic outputs for support vector machines and comparison to regularized likelihood methods," in Advances in Large Margin Classiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schurmans, Eds. Cambridge, MA: MIT Press, 1999.
-
(1999)
Advances in Large Margin Classiers
-
-
Platt, J.1
-
29
-
-
0242613950
-
Improving multiclass text classification with the support vector machine
-
MIT, Tech. Rep. 2001-026
-
J. D. M. Rennie and R. Rifkin, "Improving multiclass text classification with the support vector machine," MIT, Tech. Rep. 2001-026, 2001.
-
(2001)
-
-
Rennie, J.D.M.1
Rifkin, R.2
-
30
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
F. Rosenblatt, "The perceptron: a probabilistic model for information storage and organization in the brain," Psycholog. Rev., vol. 65, pp. 386-408, 1958.
-
(1958)
Psycholog. Rev.
, vol.65
, pp. 386-408
-
-
Rosenblatt, F.1
-
34
-
-
0003241883
-
Splines models for observational data
-
Philadelphia, PA: SIAM
-
G. Wahba, "Splines models for observational data," in Series in Applied Mathematics. Philadelphia, PA: SIAM, 1990, vol. 59.
-
(1990)
Series in Applied Mathematics
, vol.59
-
-
Wahba, G.1
-
35
-
-
0002714543
-
Making large-scale (SVM) learning practical
-
B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press; ch. 11
-
T. Joachims, "Making large-scale (SVM) learning practical," in Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1998, ch. 11, pp. 169-185.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-185
-
-
Joachims, T.1
|