-
2
-
-
0031399486
-
Cloud classification using error-correcting output codes
-
D.W. Aha and R. Bankert. Cloud classification using error-correcting output codes. Artificial Intelligence Applications: Natural Resources, Agriculture, and Environmental Science, 11(1):13-28, 1997.
-
(1997)
Artificial Intelligence Applications: Natural Resources, Agriculture, and Environmental Science
, vol.11
, Issue.1
, pp. 13-28
-
-
Aha, D.W.1
Bankert, R.2
-
3
-
-
84858968758
-
Hierarchical multi-label boosting for gene function prediction
-
Stanford, CA
-
N. Alaydie, C.K. Reddy, and F. Fotouhi. Hierarchical multi-label boosting for gene function prediction. In Proceedings of the International Conference on Computational Systems Bioinformatics (CSB), pp. 14-25, Stanford, CA, 2010.
-
(2010)
Proceedings of the International Conference on Computational Systems Bioinformatics (CSB)
, pp. 14-25
-
-
Alaydie, N.1
Reddy, C.K.2
Fotouhi, F.3
-
5
-
-
24044435942
-
Reducing multiclass to binary: A unifying approach for margin classifiers
-
E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach for margin classifiers. In Proceedings of the ICML’2000, The Seventeenth International Conference on Machine Learning, pp. 113-141, 2000.
-
(2000)
Proceedings of the ICML’2000, The Seventeenth International Conference on Machine Learning
, pp. 113-141
-
-
Allwein, E.L.1
Schapire, R.E.2
Singer, Y.3
-
6
-
-
22444454855
-
Cascading classifiers
-
E. Alpaydin and C. Kaynak. Cascading classifiers. Kybernetika, 34(4):369-374, 1998.
-
(1998)
Kybernetika
, vol.34
, Issue.4
, pp. 369-374
-
-
Alpaydin, E.1
Kaynak, C.2
-
7
-
-
0033330591
-
Learning error-correcting output codes fromdata
-
Edinburgh, UK
-
E. Alpaydin and E. Mayoraz. Learning error-correcting output codes fromdata. In ICANN’99, pp. 743-748, Edinburgh, UK, 1999.
-
(1999)
ICANN’99
, pp. 743-748
-
-
Alpaydin, E.1
Mayoraz, E.2
-
8
-
-
0029183827
-
Efficient classification for multiclass problems using modular neural networks
-
R. Anand, G. Mehrotra, C.K. Mohan, and S. Ranka. Efficient classification for multiclass problems using modular neural networks. IEEE Transactions on Neural Networks, 6:117-124, 1995.
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, pp. 117-124
-
-
Anand, R.1
Mehrotra, G.2
Mohan, C.K.3
Ranka, S.4
-
9
-
-
10444241978
-
Ensemble diversity measure and their application to thinning
-
R.E. Banfield, L.O. Hall, K.W. Bowyer, and P. Kegelmeyer. Ensemble diversity measure and their application to thinning. Information Fusion, 6(1):49-62, 2005.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 49-62
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, P.4
-
10
-
-
33947231519
-
A comparison of decision tree ensemble creation techniques
-
R.E. Banfield, L.O. Hall, O. Lawrence, K.W. Bowyer, W. Kevin, and P. Kegelmeyer. A comparison of decision tree ensemble creation techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1):173-180, 2007.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.1
, pp. 173-180
-
-
Banfield, R.E.1
Hall, L.O.2
Lawrence, O.3
Bowyer, K.W.4
Kevin, W.5
Kegelmeyer, P.6
-
11
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting and variants
-
E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning, 36(1/2):105-139, 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
12
-
-
80053022972
-
Compact evolutive design of error-correcting output codes
-
O. Okun, M. Re, and G. Valentini, (eds), Barcelona, Spain
-
M.A. Bautista, X. Baro, O. Pujol, P. Radeva, J. Vitria, and S. Escalera. Compact evolutive design of error-correcting output codes. In O. Okun, M. Re, and G. Valentini, (eds), ECML-SUEMA 2010 Proceedings, pp. 119-128, Barcelona, Spain, 2010.
-
(2010)
ECML-SUEMA 2010 Proceedings
, pp. 119-128
-
-
Bautista, M.A.1
Baro, X.2
Pujol, O.3
Radeva, P.4
Vitria, J.5
Escalera, S.6
-
13
-
-
0035835579
-
Ensemble of classifiers for morphological galaxy classification
-
D. Bazell and W.D. Aha. Ensemble of classifiers for morphological galaxy classification. The Astrophysical Journal, 548:219-223, 2001.
-
(2001)
The Astrophysical Journal
, vol.548
, pp. 219-223
-
-
Bazell, D.1
Aha, W.D.2
-
14
-
-
85138388066
-
-
Lecture Notes in Computer Science. Springer-Verlag, Berlin
-
J. Benediktsson, F. Roli, and J. Kittler. Multiple Classifier Systems, 8th International Workshop, MCS2009, volume 5519 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2009.
-
(2009)
Multiple Classifier Systems, 8th International Workshop, MCS2009
, vol.5519
-
-
Benediktsson, J.1
Roli, F.2
Kittler, J.3
-
15
-
-
0030790587
-
Parallel consensual neural networks
-
J. Benediktsson, J. Sveinsson, O. Ersoy, and P. Swain. Parallel consensual neural networks. IEEE Transactions on Neural Networks, 8:54-65, 1997.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, pp. 54-65
-
-
Benediktsson, J.1
Sveinsson, J.2
Ersoy, O.3
Swain, P.4
-
17
-
-
37249003229
-
Multiple classifier systems in remote sensing: From basics to recent developments
-
M. Haindl, J. Kittler, and F. Roli, (eds), Seventh International Workshop, MCS 2007, Prague, Czech Republic, Lecture Notes in Computer Science, Springer
-
J.A. Benediktsson, J. Chanussot, and M. Fauvel. Multiple classifier systems in remote sensing:From basics to recent developments. In M. Haindl, J. Kittler, and F. Roli, (eds), Multiple Classifier Systems. Seventh International Workshop, MCS 2007, Prague, Czech Republic, volume 4472 of Lecture Notes in Computer Science, pp. 511-512, Springer, 2007.
-
(2007)
Multiple Classifier Systems
, vol.4472
, pp. 511-512
-
-
Benediktsson, J.A.1
Chanussot, J.2
Fauvel, M.3
-
20
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
21
-
-
0003619255
-
-
Technical Report TR 460, Statistics Department, University of California, Berkeley, CA
-
L. Breiman. Bias, variance and arcing classifiers. Technical Report TR 460, Statistics Department, University of California, Berkeley, CA, 1996.
-
(1996)
Bias, variance and arcing classifiers
-
-
Breiman, L.1
-
22
-
-
0346786584
-
Arcing classifiers
-
L. Breiman. Arcing classifiers. Annals of Statistics, 26(3):801-849, 1998.
-
(1998)
Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
23
-
-
0032634129
-
Pasting small votes for classification in large databases and on-line
-
L. Breiman. Pasting small votes for classification in large databases and on-line. Machine Learning, 36:85-103, 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 85-103
-
-
Breiman, L.1
-
24
-
-
0000275022
-
Prediction games and arcing classifiers
-
L. Breiman. Prediction games and arcing classifiers. Neural Computation, 11(7):1493-1517, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
25
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
26
-
-
0008578789
-
Combining classifiers for the recognition of handwritten digits
-
Prague, Czech Republic
-
M. van Breukelen, R.P.W. Duin, D. Tax, and J.E. den Hartog. Combining classifiers for the recognition of handwritten digits. In Ist IAPR TC1 Workshop on Statistical Techniques in Pattern Recognition, pp. 13-18, Prague, Czech Republic, 1997.
-
(1997)
Ist IAPR TC1 Workshop on Statistical Techniques in Pattern Recognition
, pp. 13-18
-
-
van Breukelen, M.1
Duin, R.P.W.2
Tax, D.3
den Hartog, J.E.4
-
27
-
-
84865736463
-
Boosting. Bagging and consensus based classification of multisource remote sensing data
-
J. Kittler and F. Roli, (eds), Lecture Notes in Computer Science, Springer-Verlag
-
G.J. Briem, J.A. Benediktsson, and J.R. Sveinsson. Boosting. Bagging and consensus based classification of multisource remote sensing data. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 279-288, Springer-Verlag, 2001.
-
(2001)
Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK
, vol.2096
, pp. 279-288
-
-
Briem, G.J.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
28
-
-
10444221886
-
Diversity creation methods: A survey and categorisation
-
G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: A survey and categorisation. Information Fusion, 6(1):5-20, 2005.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
29
-
-
0242515926
-
Attribute bagging: Improving accuracy od classifier ensembles by uing random feature subsets
-
R. Bryll, R. Gutierrez-Osuna, and F. Quek. Attribute bagging: Improving accuracy od classifier ensembles by uing random feature subsets. Pattern Recognition, 36:1291-1302, 2003.
-
(2003)
Pattern Recognition
, vol.36
, pp. 1291-1302
-
-
Bryll, R.1
Gutierrez-Osuna, R.2
Quek, F.3
-
30
-
-
14344255621
-
Ensemble selction from libraries of models
-
ACM Press
-
R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selction from libraries of models. In 21th International Conference on Machine Learning, ICML 2004, pp. 18, ACM Press, 2004.
-
(2004)
21th International Conference on Machine Learning, ICML 2004
, pp. 18
-
-
Caruana, R.1
Niculescu-Mizil, A.2
Crew, G.3
Ksikes, A.4
-
32
-
-
84865232794
-
Functional inference in FunCat through the combination of hierarchical ensembles with data fusion methods
-
Haifa, Israel
-
N. Cesa-Bianchi, M. Re, and G. Valentini. Functional inference in FunCat through the combination of hierarchical ensembles with data fusion methods. In ICML-MLD 2nd International Workshop on Learning from Multi-Label Data, pp. 13-20, Haifa, Israel, 2010.
-
(2010)
ICML-MLD 2nd International Workshop on Learning from Multi-Label Data
, pp. 13-20
-
-
Cesa-Bianchi, N.1
Re, M.2
Valentini, G.3
-
33
-
-
79952857163
-
Hierarchical cost-sensitive algorithms for genome-wide gene function prediction
-
N. Cesa-Bianchi and G. Valentini. Hierarchical cost-sensitive algorithms for genome-wide gene function prediction. Journal of Machine Learning Research, WandC Proceedings, Machine Learning in Systems Biology, 8:14-29, 2010.
-
(2010)
Journal of Machine Learning Research, WandC Proceedings, Machine Learning in Systems Biology
, vol.8
, pp. 14-29
-
-
Cesa-Bianchi, N.1
Valentini, G.2
-
34
-
-
85152630265
-
A comparative evaluation of voting and meta-learning on partitioned data
-
Tahoe City, California, USA
-
P. Chan and S. Stolfo. A comparative evaluation of voting and meta-learning on partitioned data. In Proceedings 12th ICML, pp. 90-98, Tahoe City, California, USA, 1995.
-
(1995)
Proceedings 12th ICML
, pp. 90-98
-
-
Chan, P.1
Stolfo, S.2
-
36
-
-
24644437145
-
Learning ensembles from bites: A scalable and accurate approach
-
N.V. Chawla, L.O. Hall, K.W. Bowyer, and W.P. Kegelmeyer. Learning ensembles from bites:A scalable and accurate approach. Journal of Machine Learning Research, 5:421-451, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 421-451
-
-
Chawla, N.V.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
37
-
-
84947592660
-
Distributed pasting of small votes
-
Lecture Notes in Computer Science, Springer-Verlag
-
N.V. Chawla, L.O. Hall, K.W. Bowyer, T.E. Moore, and W.P. Kegelmeyer. Distributed pasting of small votes. In Multiple Classifier Systems. Third International Workshop, MCS2002, Cagliari, Italy, volume 2364 of Lecture Notes in Computer Science, pp. 52-61, Springer-Verlag, 2002.
-
(2002)
Multiple Classifier Systems. Third International Workshop, MCS2002, Cagliari, Italy
, vol.2364
, pp. 52-61
-
-
Chawla, N.V.1
Hall, L.O.2
Bowyer, K.W.3
Moore, T.E.4
Kegelmeyer, W.P.5
-
39
-
-
0029247604
-
Combining multiple neural networks by fuzzy integral and robust classification
-
S. Cho and J. Kim. Combining multiple neural networks by fuzzy integral and robust classification. IEEE Transactions on Systems, Man and Cybernetics, 25:380-384, 1995.
-
(1995)
IEEE Transactions on Systems, Man and Cybernetics
, vol.25
, pp. 380-384
-
-
Cho, S.1
Kim, J.2
-
41
-
-
0037776084
-
A hybrid projection based and radial basis function architecture
-
J. Kittler and F. Roli, (eds), First International Workshop, MCS 2000, Cagliari, Italy, Lecture Notes in Computer Science, Springer-Verlag
-
S. Cohen and N. Intrator. A hybrid projection based and radial basis function architecture. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 147-156, Springer-Verlag, 2000.
-
(2000)
Multiple Classifier Systems
, vol.1857
, pp. 147-156
-
-
Cohen, S.1
Intrator, N.2
-
42
-
-
1642395900
-
Automatic model selection in a hybrid perceptron/radial network
-
Lecture Notes in Computer Science, Springer-Verlag
-
S. Cohen and N. Intrator. Automatic model selection in a hybrid perceptron/radial network. In Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 349-358, Springer-Verlag, 2001.
-
(2001)
Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK
, vol.2096
, pp. 349-358
-
-
Cohen, S.1
Intrator, N.2
-
43
-
-
0036643072
-
Logistic regression, AdaBoost and Bregman distances
-
M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances. Machine Learning, 48:31-44, 2002.
-
(2002)
Machine Learning
, vol.48
, pp. 31-44
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
44
-
-
0010099436
-
On the learnability and design of output codes for multiclass problems
-
Palo Alto, California, USA
-
K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass problems. In Proceedings of the Thirteenth Annual Conference on Computational Learning Theory, pp. 35-46, Palo Alto, California, USA, 2000.
-
(2000)
Proceedings of the Thirteenth Annual Conference on Computational Learning Theory
, pp. 35-46
-
-
Crammer, K.1
Singer, Y.2
-
47
-
-
0038137313
-
Decision templates for the classification of bioacoustic time series
-
C. Dietrich, G. Palm, and F. Schwenker. Decision templates for the classification of bioacoustic time series. Information Fusion, 4(2):101-109, 2003.
-
(2003)
Information Fusion
, vol.4
, Issue.2
, pp. 101-109
-
-
Dietrich, C.1
Palm, G.2
Schwenker, F.3
-
48
-
-
80053403826
-
Ensemble methods in machine learning
-
J. Kittler and F. Roli, (eds), Lecture Notes in Computer Science, Springer-Verlag
-
T.G. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 1-15, Springer-Verlag, 2000.
-
(2000)
Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
49
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40(2):139-158, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-158
-
-
Dietterich, T.G.1
-
50
-
-
69549123046
-
Error-correcting output codes: A general method for improving multiclass inductive learning programs
-
AAAI Press/MIT Press
-
T.G. Dietterich and G. Bakiri. Error-correcting output codes:A general method for improving multiclass inductive learning programs. In Proceedings of AAAI-91, pp. 572-577, AAAI Press/MIT Press, 1991.
-
(1991)
Proceedings of AAAI-91
, pp. 572-577
-
-
Dietterich, T.G.1
Bakiri, G.2
-
54
-
-
0031269184
-
On the optimality of the simple bayesian classifier under zero-one loss
-
P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning, 29:103-130, 1997.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
55
-
-
85156217048
-
Boosting decision trees
-
D. Touretsky, M. Mozer, and M. Hasselmo (eds), MIT Press, Cambridge, MA
-
H. Drucker and C. Cortes. Boosting decision trees. In D. Touretsky, M. Mozer, and M. Hasselmo (eds), Advances in Neural Information Processing Systems, Vol. 8, pp. 479-485. MIT Press, Cambridge, MA, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 479-485
-
-
Drucker, H.1
Cortes, C.2
-
56
-
-
0001337304
-
Boosting and other ensemble methods
-
H. Drucker, C. Cortes, L. Jackel, Y. LeCun, and V. Vapnik. Boosting and other ensemble methods. Neural Computation, 6(6):1289-1301, 1994.
-
(1994)
Neural Computation
, vol.6
, Issue.6
, pp. 1289-1301
-
-
Drucker, H.1
Cortes, C.2
Jackel, L.3
LeCun, Y.4
Vapnik, V.5
-
59
-
-
84867038939
-
Experiments with classifier combination rules
-
J. Kittler and F. Roli, (eds), Lecture Notes in Computer Science, Springer-Verlag
-
R.P.W. Duin and D.M.J. Tax. Experiments with classifier combination rules. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 16-29, Springer-Verlag, 2000.
-
(2000)
Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy
, vol.1857
, pp. 16-29
-
-
Duin, R.P.W.1
Tax, D.M.J.2
-
60
-
-
12144288329
-
Is combining classifiers with stacking better than selcting the best one?
-
S. Dzeroski and B. Zenko. Is combining classifiers with stacking better than selcting the best one? Machine Learning, 54(3):255-273, 2004.
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
62
-
-
85138323388
-
-
Lecture Notes in Computer Science. Springer-Verlag, Berlin
-
N. El Gayar, F. Roli, and Kittler. Multiple Classifier Systems, 9th International Workshop, MCS2010, volume 5997 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2010.
-
(2010)
Multiple Classifier Systems, 9th International Workshop, MCS2010
, vol.5997
-
-
El Gayar, N.1
Roli, F.2
Kittler3
-
63
-
-
84871533042
-
On the decoding process in ternary error-correcting output codes
-
S. Escalera, O. Pujol, and P. Radeva. On the decoding process in ternary error-correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1):120-134, 2010.
-
(2010)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.32
, Issue.1
, pp. 120-134
-
-
Escalera, S.1
Pujol, O.2
Radeva, P.3
-
64
-
-
2342622786
-
Leave one out error, stability, and generalization of voting combinations of classifiers
-
T. Evgeniou, M. Pontil, and A. Elisseeff. Leave one out error, stability, and generalization of voting combinations of classifiers. Machine Learning, 55(1):71-97, 2004.
-
(2004)
Machine Learning
, vol.55
, Issue.1
, pp. 71-97
-
-
Evgeniou, T.1
Pontil, M.2
Elisseeff, A.3
-
65
-
-
77956161421
-
Random forests: Finding quasars
-
E.D. Feigelson and G. Jogesh Babu (eds), Springer, New York
-
E.D. Feigelson, G. Jogesh Babu, L. Breiman, M. Last, and J. Rice. Random forests: Finding quasars. In E.D. Feigelson and G. Jogesh Babu (eds), Statistical Challenges in Astronomy, pp. 243-254, Springer, New York, 2003.
-
(2003)
Statistical Challenges in Astronomy
, pp. 243-254
-
-
Feigelson, E.D.1
Jogesh Babu, G.2
Breiman, L.3
Last, M.4
Rice, J.5
-
66
-
-
0028756112
-
Multi-layer perceptron ensembles for increased performance and fault-tolerance in pattern recognition tasks
-
Orlando, Florida
-
E. Filippi, M. Costa, and E. Pasero. Multi-layer perceptron ensembles for increased performance and fault-tolerance in pattern recognition tasks. In IEEE International Conference on Neural Networks, pp. 2901-2906, Orlando, Florida, 1994.
-
(1994)
IEEE International Conference on Neural Networks
, pp. 2901-2906
-
-
Filippi, E.1
Costa, M.2
Pasero, E.3
-
67
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, 1995.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
68
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and Systems Sciences, 55(1):119-139, 1997.
-
(1997)
Journal of Computer and Systems Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
70
-
-
0013281807
-
-
Technical Report Technical Report, Statistics Department, University of Stanford, CA
-
J. Friedman and P. Hall. On bagging and nonlinear estimation. Technical Report Technical Report, Statistics Department, University of Stanford, CA, 2000.
-
(2000)
On bagging and nonlinear estimation
-
-
Friedman, J.1
Hall, P.2
-
71
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Annals of Statistics, 38(2):337-374, 2000.
-
(2000)
Annals of Statistics
, vol.38
, Issue.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
72
-
-
21744462998
-
On bias, variance, 0/1 loss and the curse of dimensionality
-
J.H. Friedman. On bias, variance, 0/1 loss and the curse of dimensionality. Data Mining and Knowledge Discovery, 1:55-77, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.H.1
-
73
-
-
21244501361
-
Atheoretical and experimental analysis of linear combiners for multiple classifer systems
-
G. Fumera and F. Roli. Atheoretical and experimental analysis of linear combiners for multiple classifer systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):942-956, 2005.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.6
, pp. 942-956
-
-
Fumera, G.1
Roli, F.2
-
74
-
-
0034541162
-
Cascade generalization
-
J. Gamma and P. Brazdil. Cascade generalization. Machine Learning, 41(3):315-343, 2000.
-
(2000)
Machine Learning
, vol.41
, Issue.3
, pp. 315-343
-
-
Gamma, J.1
Brazdil, P.2
-
75
-
-
67650431890
-
Random forest algorithm for classification of multiwavelength data
-
Y. Zhang, D. Gao and Y. Zhao. Random forest algorithm for classification of multiwavelength data. Research in Astronomy Astrophysics, 9(2):220-226, 2009.
-
(2009)
Research in Astronomy Astrophysics
, vol.9
, Issue.2
, pp. 220-226
-
-
Zhang, Y.1
Gao, D.2
Zhao, Y.3
-
76
-
-
0001942829
-
Neural networks and the bias-variance dilemma
-
S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias-variance dilemma. Neural Computation, 4(1):1-58, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
77
-
-
79955449578
-
A survey: Clustering ensembles techniques
-
R. Ghaemi, M. Sulaiman, H. Ibrahim, and N. Mustapha. A survey: clustering ensembles techniques. InWorld Academy of Science, Engineering and Technology 50, pp. 636-645, 2009.
-
(2009)
World Academy of Science, Engineering and Technology
, vol.50
, pp. 636-645
-
-
Ghaemi, R.1
Sulaiman, M.2
Ibrahim, H.3
Mustapha, N.4
-
78
-
-
0011803637
-
Using error correcting output codes for text classification
-
Morgan Kaufmann Publishers, San Francisco, US
-
R. Ghani. Using error correcting output codes for text classification. In ICML2000: Proceedings of the 17th International Conference on Machine Learning, pp. 303-310, Morgan Kaufmann Publishers, San Francisco, US, 2000.
-
(2000)
ICML2000: Proceedings of the 17th International Conference on Machine Learning
, pp. 303-310
-
-
Ghani, R.1
-
79
-
-
73249153387
-
Automatic annotation of planetary surfaces with geomorphic labels
-
S. Ghosh, T.F. Stepinski, and R. Vilalta. Automatic annotation of planetary surfaces with geomorphic labels. IEEE Transactions on Geoscience and Remote Sensing, 48(1):175-185, 2010.
-
(2010)
IEEE Transactions on Geoscience and Remote Sensing
, vol.48
, Issue.1
, pp. 175-185
-
-
Ghosh, S.1
Stepinski, T.F.2
Vilalta, R.3
-
80
-
-
84867091494
-
Dynamic classifier fusion
-
J. Kittler and F. Roli (eds), First International Workshop, MCS 2000, Cagliari, Italy, Lecture Notes in Computer Science, Springer-Verlag
-
G. Giacinto and F. Roli. Dynamic classifier fusion. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 177-189, Springer-Verlag, 2000.
-
(2000)
Multiple Classifier Systems
, vol.1857
, pp. 177-189
-
-
Giacinto, G.1
Roli, F.2
-
81
-
-
0035202645
-
An approach to the automatic design of multiple classifier systems
-
G. Giacinto and F. Roli. An approach to the automatic design of multiple classifier systems. Pattern Recognition Letters, 22(1):25-33, 2001.
-
(2001)
Pattern Recognition Letters
, vol.22
, Issue.1
, pp. 25-33
-
-
Giacinto, G.1
Roli, F.2
-
82
-
-
0342838353
-
Design of effectivemultiple classifier systems by clustering of classifiers
-
Barcelona, Spain
-
G. Giacinto, F. Roli, and G. Fumera. Design of effectivemultiple classifier systems by clustering of classifiers. In 15th International Conference on Pattern Recognition ICPR 2000, pp. 160-163, Barcelona, Spain, 2000.
-
(2000)
15th International Conference on Pattern Recognition ICPR 2000
, pp. 160-163
-
-
Giacinto, G.1
Roli, F.2
Fumera, G.3
-
83
-
-
47549108100
-
Predicting gene function in a hierarchical context with an ensemble of classifiers
-
Y. Guan, C.L. Myers, D.C. Hess, Z. Barutcuoglu, A. Caudy, and O.G. Troyanskaya. Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biology, 9(suppl 1):S3, 2008.
-
(2008)
Genome Biology
, vol.9
, pp. S3
-
-
Guan, Y.1
Myers, C.L.2
Hess, D.C.3
Barutcuoglu, Z.4
Caudy, A.5
Troyanskaya, O.G.6
-
84
-
-
23844545305
-
Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition
-
S. Gunter and H. Bunke. Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition. Pattern Recognition Letters, 25:1323-1336, 2004.
-
(2004)
Pattern Recognition Letters
, vol.25
, pp. 1323-1336
-
-
Gunter, S.1
Bunke, H.2
-
85
-
-
85138373214
-
-
Lecture Notes in Computer Science. Springer-Verlag, Berlin
-
M. Haindl, F. Roli, and Kittler. Multiple Classifier Systems, 7th International Workshop, MCS2007, volume 4472 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2007.
-
(2007)
Multiple Classifier Systems, 7th International Workshop, MCS2007
, vol.4472
-
-
Haindl, M.1
Roli, F.2
Kittler3
-
86
-
-
0032355984
-
Classification by pairwise coupling
-
T. Hastie and R. Tibshirani. Classification by pairwise coupling. Annals of Statistics, 26(1):451-471, 1998.
-
(1998)
Annals of Statistics
, vol.26
, Issue.1
, pp. 451-471
-
-
Hastie, T.1
Tibshirani, R.2
-
88
-
-
84867095498
-
Complexity of classification problems ans comparative advantages of combined classifiers
-
J. Kittler and F. Roli, (eds), Lecture Notes in Computer Science, Springer-Verlag
-
T.K. Ho. Complexity of classification problems ans comparative advantages of combined classifiers. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 97-106, Springer-Verlag, 2000.
-
(2000)
Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy
, vol.1857
, pp. 97-106
-
-
Ho, T.K.1
-
89
-
-
84956973748
-
Data complexity analysis for classifiers combination
-
J. Kittler and F. Roli, (eds), Lecture Notes in Computer Science, Springer-Verlag, Berlin
-
T.K. Ho. Data complexity analysis for classifiers combination. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. Second International Workshop, MCS2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 53-67, Springer-Verlag, Berlin, 2001.
-
(2001)
Multiple Classifier Systems. Second International Workshop, MCS2001, Cambridge, UK
, vol.2096
, pp. 53-67
-
-
Ho, T.K.1
-
90
-
-
0011187879
-
Multiple classifier combinations: Lessons and the next steps
-
A. Kandel and K. Bunke, (eds), World Scientific, Hackensack, NJ, USA
-
T.K. Ho. Multiple classifier combinations: Lessons and the next steps. In A. Kandel and K. Bunke, (eds), Hybrid Methods in Pattern Recognition, pp. 171-198, World Scientific, Hackensack, NJ, USA, 2002.
-
(2002)
Hybrid Methods in Pattern Recognition
, pp. 171-198
-
-
Ho, T.K.1
-
91
-
-
85138397485
-
Decision combination in multiple classifiers
-
T.K. Ho, J.J. Hull, and S.N. Srihari. Decision combination in multiple classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):405-410, 1997.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.4
, pp. 405-410
-
-
Ho, T.K.1
Hull, J.J.2
Srihari, S.N.3
-
92
-
-
34248182550
-
An x-ray spectral classification algorithm with application to young stellar clusters
-
S.M. Hojnacki, J.H. Kastner, G. Micela, E.D. Feigelson, and S.M. LaLonde. An x-ray spectral classification algorithm with application to young stellar clusters. Astrophysical Journal, 659:659, 2007.
-
(2007)
Astrophysical Journal
, vol.659
, pp. 659
-
-
Hojnacki, S.M.1
Kastner, J.H.2
Micela, G.3
Feigelson, E.D.4
LaLonde, S.M.5
-
93
-
-
44649129936
-
An unsupervised, ensemble clustering algorithm: A new approach for classification of x-ray sources
-
S. Hojnacki, G. Micela, S. Lalonde, E. Feigelson, and J. Kastner. An unsupervised, ensemble clustering algorithm: A new approach for classification of x-ray sources. Statistical Methodology, 5:350-360, 2008.
-
(2008)
Statistical Methodology
, vol.5
, pp. 350-360
-
-
Hojnacki, S.1
Micela, G.2
Lalonde, S.3
Feigelson, E.4
Kastner, J.5
-
94
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4:251-257, 1991.
-
(1991)
Neural Networks
, vol.4
, pp. 251-257
-
-
Hornik, K.1
-
97
-
-
0029372769
-
Methods for combining experts probability assessment
-
R.A. Jacobs. Methods for combining experts probability assessment. Neural Computation, 7:867-888, 1995.
-
(1995)
Neural Computation
, vol.7
, pp. 867-888
-
-
Jacobs, R.A.1
-
98
-
-
0001940458
-
Adaptive mixtures of local experts
-
R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3(1):125-130, 1991.
-
(1991)
Neural Computation
, vol.3
, Issue.1
, pp. 125-130
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
100
-
-
51749110896
-
Integration of relational and hierarchical network information for protein function prediction
-
X. Jiang, N. Nariai, M. Steffen, S. Kasif, and E. Kolaczyk. Integration of relational and hierarchical network information for protein function prediction. BMC Bioinformatics, 9:350, 2008.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 350
-
-
Jiang, X.1
Nariai, N.2
Steffen, M.3
Kasif, S.4
Kolaczyk, E.5
-
101
-
-
0001632132
-
Hierarchies of adaptive experts
-
J. Moody, S. Hanson, and R. Lippmann (eds), Morgan Kauffman, San Mateo, CA
-
M. Jordan and R. Jacobs. Hierarchies of adaptive experts. In J. Moody, S. Hanson, and R. Lippmann (eds), Advances in Neural Information Processing Systems, Vol. 4, pp. 985-992, Morgan Kauffman, San Mateo, CA, 1992.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 985-992
-
-
Jordan, M.1
Jacobs, R.2
-
102
-
-
0000262562
-
Hierarchical mixture of experts and the em algorithm
-
M.I. Jordan and R.A. Jacobs. Hierarchical mixture of experts and the em algorithm. Neural Computation, 6:181-214, 1994.
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
103
-
-
0029617280
-
Convergence results for the EM approach to mixture of experts architectures
-
M.I. Jordan and L. Xu. Convergence results for the EM approach to mixture of experts architectures. Neural Networks, 8:1409-1431, 1995.
-
(1995)
Neural Networks
, vol.8
, pp. 1409-1431
-
-
Jordan, M.I.1
Xu, L.2
-
105
-
-
0028481924
-
Advances in fuzzy integration for pattern recognition
-
J.M. Keller, P. Gader, H. Tahani, J. Chiang, and M. Mohamed. Advances in fuzzy integration for pattern recognition. Fuzzy Sets and Systems, 65:273-283, 1994.
-
(1994)
Fuzzy Sets and Systems
, vol.65
, pp. 273-283
-
-
Keller, J.M.1
Gader, P.2
Tahani, H.3
Chiang, J.4
Mohamed, M.5
-
106
-
-
0026367884
-
Handwritten numerical recognition based on multiple algorithms
-
F. Kimura and M. Shridar. Handwritten numerical recognition based on multiple algorithms. Pattern Recognition, 24(10):969-983, 1991.
-
(1991)
Pattern Recognition
, vol.24
, Issue.10
, pp. 969-983
-
-
Kimura, F.1
Shridar, M.2
-
107
-
-
22444454265
-
Combining classifiers: A theoretical framework
-
J. Kittler. Combining classifiers: A theoretical framework. Pattern Analysis and Applications, 1:18-27, 1998.
-
(1998)
Pattern Analysis and Applications
, vol.1
, pp. 18-27
-
-
Kittler, J.1
-
108
-
-
0032021555
-
On combining classifiers
-
J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3):226-239, 1998.
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.P.W.3
Matas, J.4
-
110
-
-
0030343231
-
An overtraining-resistant stochastic modeling method for pattern recognition
-
E.M. Kleinberg. An overtraining-resistant stochastic modeling method for pattern recognition. Annals of Statistics, 4(6):2319-2349, 1996.
-
(1996)
Annals of Statistics
, vol.4
, Issue.6
, pp. 2319-2349
-
-
Kleinberg, E.M.1
-
111
-
-
56749113088
-
A mathematically rigorous foundation for supervised learning
-
J. Kittler and F. Roli (eds), First International Workshop, MCS 2000, Cagliari, Italy, Lecture Notes in Computer Science, Springer-Verlag
-
E.M. Kleinberg. A mathematically rigorous foundation for supervised learning. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 67-76, Springer-Verlag, 2000.
-
(2000)
Multiple Classifier Systems
, vol.1857
, pp. 67-76
-
-
Kleinberg, E.M.1
-
113
-
-
84992322729
-
Error-correcting output coding correct bias and variance
-
Morgan Kauffman, San Francisco, CA
-
E. Kong and T.G. Dietterich. Error-correcting output coding correct bias and variance. In The XII International Conference on Machine Learning, pp. 313-321, Morgan Kauffman, San Francisco, CA, 1995.
-
(1995)
The XII International Conference on Machine Learning
, pp. 313-321
-
-
Kong, E.1
Dietterich, T.G.2
-
114
-
-
0037740553
-
An application of OWA operators to the aggregation of multiple classification decisions
-
Kluwer Academic Publisher, USA
-
L.I. Kuncheva. An application of OWA operators to the aggregation of multiple classification decisions. In The OrderedWeightedAveraging Operators. Theory and Applications, pp. 330-343, Kluwer Academic Publisher, USA, 1997.
-
(1997)
The OrderedWeightedAveraging Operators. Theory and Applications
, pp. 330-343
-
-
Kuncheva, L.I.1
-
115
-
-
0036532571
-
Switching between selection and fusion in combining classifiers: An experiment
-
L.I. Kuncheva. Switching between selection and fusion in combining classifiers: An experiment. IEEE Transactions on Systems, Man and Cybernetics, 32(2):146-156, 2002.
-
(2002)
IEEE Transactions on Systems, Man and Cybernetics
, vol.32
, Issue.2
, pp. 146-156
-
-
Kuncheva, L.I.1
-
117
-
-
0034830461
-
Decision templates formultiple classifier fusion: An experimental comparison
-
L.I. Kuncheva, J.C. Bezdek, and R.P.W. Duin. Decision templates formultiple classifier fusion:An experimental comparison. Pattern Recognition, 34(2):299-314, 2001.
-
(2001)
Pattern Recognition
, vol.34
, Issue.2
, pp. 299-314
-
-
Kuncheva, L.I.1
Bezdek, J.C.2
Duin, R.P.W.3
-
119
-
-
37249046891
-
An experimental study on rotation forest ensembles
-
M. Haindl, J. Kittler, and F. Roli (eds), Lecture Notes in Computer Science, Springer
-
L.I. Kuncheva and J. Rodriguez. An experimental study on rotation forest ensembles. In M. Haindl, J. Kittler, and F. Roli (eds), Multiple Classifier Systems. Seventh International Workshop, MCS 2007, Prague, Czech Republic, volume 4472 of Lecture Notes in Computer Science, pp. 459-468, Springer, 2007.
-
(2007)
Multiple Classifier Systems. Seventh International Workshop, MCS 2007, Prague, Czech Republic
, vol.4472
, pp. 459-468
-
-
Kuncheva, L.I.1
Rodriguez, J.2
-
120
-
-
84925741661
-
Complexity of data subsets generated by the random subspace method: An experimental investigation
-
J. Kittler and F. Roli (eds), Lecture Notes in Computer Science, Springer-Verlag
-
L.I. Kuncheva, F. Roli, G.L. Marcialis, and C.A. Shipp. Complexity of data subsets generated by the random subspace method: An experimental investigation. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 349-358, Springer-Verlag, 2001.
-
(2001)
Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK
, vol.2096
, pp. 349-358
-
-
Kuncheva, L.I.1
Roli, F.2
Marcialis, G.L.3
Shipp, C.A.4
-
121
-
-
0037403516
-
Measures of diversity in classifier ensembles
-
L.I. Kuncheva and C.J. Whitaker. Measures of diversity in classifier ensembles. Machine Learning, 51:181-207, 2003.
-
(2003)
Machine Learning
, vol.51
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
122
-
-
84867038166
-
Classifier combinations: Implementations and theoretical issues
-
Lecture Notes in Computer Science, Springer-Verlag
-
L. Lam. Classifier combinations: Implementations and theoretical issues. InMultiple Classifier Systems. First International Workshop, MCS2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 77-86, Springer-Verlag, 2000.
-
(2000)
Multiple Classifier Systems. First International Workshop, MCS2000, Cagliari, Italy
, vol.1857
, pp. 77-86
-
-
Lam, L.1
-
123
-
-
0029373189
-
Optimal combination of pattern classifiers
-
L. Lam and C. Sue. Optimal combination of pattern classifiers. Pattern Recognition Letters, 16:945-954, 1995.
-
(1995)
Pattern Recognition Letters
, vol.16
, pp. 945-954
-
-
Lam, L.1
Sue, C.2
-
124
-
-
0031238275
-
Application of majority voting to pattern recognition: An analysis of its behavior and performance
-
L. Lam and C. Sue. Application of majority voting to pattern recognition: An analysis of its behavior and performance. IEEE Transactions on Systems, Man and Cybernetics, 27(5):553-568, 1997.
-
(1997)
IEEE Transactions on Systems, Man and Cybernetics
, vol.27
, Issue.5
, pp. 553-568
-
-
Lam, L.1
Sue, C.2
-
125
-
-
84858999492
-
Genetic programming for improved receiver operating characteristics
-
J. Kittler and F. Roli (eds), LNCS, Springer-Verlag, Cambridge
-
W.B. Langdon and B.F. Buxton. Genetic programming for improved receiver operating characteristics. In J. Kittler and F. Roli (eds), Second International Conference onMultiple Classifier System, volume 2096 of LNCS, pp. 68-77, Springer-Verlag, Cambridge, 2001.
-
(2001)
Second International Conference onMultiple Classifier System
, vol.2096
, pp. 68-77
-
-
Langdon, W.B.1
Buxton, B.F.2
-
127
-
-
0034875216
-
Effective pruning of neural network classifiers
-
IEEE, Washington, DC, USA
-
A. Lazarevic and Z. Obradovic. Effective pruning of neural network classifiers. In Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN’01, pp. 796-801, IEEE, Washington, DC, USA, 2001.
-
(2001)
Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN’01
, pp. 796-801
-
-
Lazarevic, A.1
Obradovic, Z.2
-
128
-
-
0036498492
-
Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural networks and genetic algorithm: A case study
-
W. Leigh, R. Purvis, and J.M. Ragusa. Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural networks and genetic algorithm: A case study. Decision Support Systems, 32(4):361-377, 2002.
-
(2002)
Decision Support Systems
, vol.32
, Issue.4
, pp. 361-377
-
-
Leigh, W.1
Purvis, R.2
Ragusa, J.M.3
-
130
-
-
0035457787
-
Multiple classifier combination by clustering and selection
-
R. Liu and B. Yuan. Multiple classifier combination by clustering and selection. Information Fusion, 2:163-168, 2001.
-
(2001)
Information Fusion
, vol.2
, pp. 163-168
-
-
Liu, R.1
Yuan, B.2
-
131
-
-
33144481453
-
Ensemble learning for independent component analysis of normal galaxy spectra
-
H. Lu, H. Zhou, J. Wang, T. Wang, X. Dong, Z. Zhuang, and C. Li. Ensemble learning for independent component analysis of normal galaxy spectra. Astronomical Journal, 131:790-805, 2006.
-
(2006)
Astronomical Journal
, vol.131
, pp. 790-805
-
-
Lu, H.1
Zhou, H.2
Wang, J.3
Wang, T.4
Dong, X.5
Zhuang, Z.6
Li, C.7
-
133
-
-
0033870982
-
Improved generalization through explicit optimization of margins
-
L. Mason, P. Bartlett, and J. Baxter. Improved generalization through explicit optimization of margins. Machine Learning, 38(3):243-255, 2000.
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 243-255
-
-
Mason, L.1
Bartlett, P.2
Baxter, J.3
-
134
-
-
84867071286
-
Effectiveness of error correcting output codes in multiclass learning problems
-
Springer-Verlag, Berlin, Heidelberg
-
F. Masulli and G. Valentini. Effectiveness of error correcting output codes in multiclass learning problems. In Lecture Notes in Computer Science, volume 1857, pp. 107-116, Springer-Verlag, Berlin, Heidelberg, 2000.
-
(2000)
Lecture Notes in Computer Science
, vol.1857
, pp. 107-116
-
-
Masulli, F.1
Valentini, G.2
-
135
-
-
0034877853
-
Quantitative evaluation of dependence among outputs in ECOC classifiers using mutual information based measures
-
K. Marko and P. Webos (eds), Piscataway, NJ, USA, IEEE
-
F. Masulli and G. Valentini. Quantitative evaluation of dependence among outputs in ECOC classifiers using mutual information based measures. In K. Marko and P. Webos (eds), Proceedings of the International Joint Conference on Neural Networks IJCNN’01, volume 2, pp. 784-789, Piscataway, NJ, USA, IEEE, 2001.
-
(2001)
Proceedings of the International Joint Conference on Neural Networks IJCNN’01
, vol.2
, pp. 784-789
-
-
Masulli, F.1
Valentini, G.2
-
136
-
-
1642313738
-
Effectiveness of error correcting output coding decomposition schemes in ensemble and monolithic learning machines
-
F. Masulli and G. Valentini. Effectiveness of error correcting output coding decomposition schemes in ensemble and monolithic learning machines. Pattern Analysis and Application, 6:285-300, 2003.
-
(2003)
Pattern Analysis and Application
, vol.6
, pp. 285-300
-
-
Masulli, F.1
Valentini, G.2
-
137
-
-
1542786181
-
An experimental analysis of the dependence among codeword bit errors in ecoc learning machines
-
F. Masulli and G. Valentini. An experimental analysis of the dependence among codeword bit errors in ecoc learning machines. Neurocomputing, 57:189-214, 2004.
-
(2004)
Neurocomputing
, vol.57
, pp. 189-214
-
-
Masulli, F.1
Valentini, G.2
-
139
-
-
58549090885
-
Improving malware detection by applying multi-iducer ensemble
-
E. Menahem, A. Shabtai, L. Rokach, Y. Elovici, and A. Troiha. Improving malware detection by applying multi-iducer ensemble. Computational Statistics and Data Analysis, 53(4):1483-1494, 2009.
-
(2009)
Computational Statistics and Data Analysis
, vol.53
, Issue.4
, pp. 1483-1494
-
-
Menahem, E.1
Shabtai, A.2
Rokach, L.3
Elovici, Y.4
Troiha, A.5
-
140
-
-
10044239599
-
Ensemble methods for classification in cheminformatics
-
C. Merkwirth, H. Mauser, T. Schulz-Gasch, O. Roche, M. Stahl, and T. Lengauer. Ensemble methods for classification in cheminformatics. Journal of Chemical Information and Modeling, 44(6):1971-1978, 2009.
-
(2009)
Journal of Chemical Information and Modeling
, vol.44
, Issue.6
, pp. 1971-1978
-
-
Merkwirth, C.1
Mauser, H.2
Schulz-Gasch, T.3
Roche, O.4
Stahl, M.5
Lengauer, T.6
-
141
-
-
84957087567
-
Improved pairwise coupling classifiers with correcting classifiers
-
C. Nedellec and C. Rouveirol (eds), Berlin, Heidelberg, New York
-
M. Moreira and E. Mayoraz. Improved pairwise coupling classifiers with correcting classifiers. In C. Nedellec and C. Rouveirol (eds), Lecture Notes in Artificial Intelligence, Volume 1398, pp. 160-171, Berlin, Heidelberg, New York, 1998.
-
(1998)
Lecture Notes in Artificial Intelligence
, vol.1398
, pp. 160-171
-
-
Moreira, M.1
Mayoraz, E.2
-
142
-
-
47549088657
-
Consistent probabilistic output for protein function prediction
-
G. Obozinski, G. Lanckriet, C. Grant, M. Jordan, and W.S. Noble. Consistent probabilistic output for protein function prediction. Genome Biology, 9(supp. 1), 2008.
-
(2008)
Genome Biology
, vol.9
-
-
Obozinski, G.1
Lanckriet, G.2
Grant, C.3
Jordan, M.4
Noble, W.S.5
-
146
-
-
0030356238
-
Actively searching for an effective neural network ensemble
-
D.W. Opitz and J.W. Shavlik. Actively searching for an effective neural network ensemble. Connection Science, 8(3/4):337-353, 1996.
-
(1996)
Connection Science
, vol.8
, Issue.3-4
, pp. 337-353
-
-
Opitz, D.W.1
Shavlik, J.W.2
-
147
-
-
85156192015
-
Generating accurate and diverse members of a neural-network ensemble
-
D. Touretzky, M. Mozer, and M. Hasselmo (eds), MIT Press, Cambridge, MA
-
D.W. Opitz and J.W. Shavlik. Generating accurate and diverse members of a neural-network ensemble. In D. Touretzky, M. Mozer, and M. Hasselmo (eds), Advances in Neural Information Processing Systems, volume 8, pp. 535-541, MIT Press, Cambridge, MA, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 535-541
-
-
Opitz, D.W.1
Shavlik, J.W.2
-
148
-
-
33748611698
-
Aveboost2: Boosting for noisy data
-
Lecture Notes in Computer Science, Springer-Verlag
-
N.C. Oza. Aveboost2: Boosting for noisy data. InMultiple Classifier Systems. Fifth International Workshop, MCS 2004, Cagliari, Italy, volume 3077 of Lecture Notes in Computer Science, pp. 31-40, Springer-Verlag, 2004.
-
(2004)
Multiple Classifier Systems. Fifth International Workshop, MCS 2004, Cagliari, Italy
, vol.3077
, pp. 31-40
-
-
Oza, N.C.1
-
149
-
-
85138378973
-
-
Lecture Notes in Computer Science. Springer-Verlag, Berlin
-
N.C. Oza, R. Polikar, F. Roli, and Kittler. Multiple Classifier Systems, 6th International Workshop, MCS2005, volume 3541 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2005.
-
(2005)
Multiple Classifier Systems, 6th International Workshop, MCS2005
, vol.3541
-
-
Oza, N.C.1
Polikar, R.2
Roli, F.3
Kittler4
-
150
-
-
84944215019
-
Input decimation ensembles: Decorrelation through dimensionality reduction
-
J. Kittler and F. Roli (eds), Lecture Notes in Computer Science, Springer-Verlag
-
N.C. Oza and K. Tumer. Input decimation ensembles: Decorrelation through dimensionality reduction. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 238-247, Springer-Verlag, 2001.
-
(2001)
Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK
, vol.2096
, pp. 238-247
-
-
Oza, N.C.1
Tumer, K.2
-
151
-
-
0001002401
-
Approximation and radial basis function networks
-
J. Park and I.W. Sandberg. Approximation and radial basis function networks. Neural Computation, 5(2):305-316, 1993.
-
(1993)
Neural Computation
, vol.5
, Issue.2
, pp. 305-316
-
-
Park, J.1
Sandberg, I.W.2
-
152
-
-
85156199954
-
Improving committe diagnosis with resampling techniques
-
D.S. Touretzky, M. Mozer, and M. Hesselmo (eds), MIT Press, Cambridge, MA
-
B. Parmanto, P. Munro, and H. Doyle. Improving committe diagnosis with resampling techniques. In D.S. Touretzky, M. Mozer, and M. Hesselmo (eds), Advances in Neural Information Processing Systems, volume 8, pp. 882-888, MIT Press, Cambridge, MA, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 882-888
-
-
Parmanto, B.1
Munro, P.2
Doyle, H.3
-
153
-
-
0030352275
-
Reducing variance of committee predition with resampling techniques
-
B. Parmanto, P. Munro, and H. Doyle. Reducing variance of committee predition with resampling techniques. Connection Science, 8(3/4):405-416, 1996.
-
(1996)
Connection Science
, vol.8
, Issue.3-4
, pp. 405-416
-
-
Parmanto, B.1
Munro, P.2
Doyle, H.3
-
155
-
-
78049528785
-
An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
-
I. Partalas, G. Tsoumakas, and I. Vlahavas. An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Machine Learning, 81(3):257-282, 2010.
-
(2010)
Machine Learning
, vol.81
, Issue.3
, pp. 257-282
-
-
Partalas, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
156
-
-
0030585190
-
Engineering multiversion neural-net systems
-
D. Partridge, and W.B Yates. Engineering multiversion neural-net systems. Neural Computation, 8:869-893, 1996.
-
(1996)
Neural Computation
, vol.8
, pp. 869-893
-
-
Partridge, D.1
Yates, W.B.2
-
157
-
-
84926396757
-
Combining Fisher linear discriminant for dissimilarity representations
-
J. Kittler and F. Roli (eds), Lecture Notes in Computer Science, Springer-Verlag
-
E. Pekalska, M. Skurichina, and R.P.W. Duin. Combining Fisher linear discriminant for dissimilarity representations. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 230-239, Springer-Verlag, 2000.
-
(2000)
Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy
, vol.1857
, pp. 230-239
-
-
Pekalska, E.1
Skurichina, M.2
Duin, R.P.W.3
-
158
-
-
0000926506
-
When networks disagree: Ensemble methods for hybrid neural networks
-
R.J. Mammone (ed.), Chapman and Hall, London
-
M.P. Perrone and L.N. Cooper. When networks disagree: Ensemble methods for hybrid neural networks. In R.J. Mammone (ed.), Artificial Neural Networks for Speech and Vision, pp. 126-142, Chapman and Hall, London, 1993.
-
(1993)
Artificial Neural Networks for Speech and Vision
, pp. 126-142
-
-
Perrone, M.P.1
Cooper, L.N.2
-
159
-
-
78049341530
-
Learn++.mf: A random subspace approach for the missing feature problem
-
R. Polikar, J. DePasquale, H. Syed Mohammed, G. Brown, and L.I. Kuncheva. Learn++.mf:A random subspace approach for the missing feature problem. Pattern Recognition, 43:3817-3832, 2010.
-
(2010)
Pattern Recognition
, vol.43
, pp. 3817-3832
-
-
Polikar, R.1
DePasquale, J.2
Syed Mohammed, H.3
Brown, G.4
Kuncheva, L.I.5
-
160
-
-
35348887748
-
An ensemble based data fusion approach for early diagnosis of alzheimer disease
-
R. Polikar, A. Topalis, D. Parikh, D. Green, J. Frymiare, J. Kounios, and C. Clark. An ensemble based data fusion approach for early diagnosis of alzheimer disease. Information Fusion, 9:83-95, 2008.
-
(2008)
Information Fusion
, vol.9
, pp. 83-95
-
-
Polikar, R.1
Topalis, A.2
Parikh, D.3
Green, D.4
Frymiare, J.5
Kounios, J.6
Clark, C.7
-
161
-
-
33645963453
-
Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes
-
O. Pujol, P. Radeva, and J. Vitria. Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:1001-1007, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, pp. 1001-1007
-
-
Pujol, O.1
Radeva, P.2
Vitria, J.3
-
163
-
-
0030374103
-
Bootstrapping with noise: An effective regularization technique
-
Y. Raviv and N. Intrator. Bootstrapping with noise: An effective regularization technique. Connection Science, 8(3/4):355-372, 1996.
-
(1996)
Connection Science
, vol.8
, Issue.3-4
, pp. 355-372
-
-
Raviv, Y.1
Intrator, N.2
-
164
-
-
77649231429
-
Integration of heterogeneous data sources for gene function prediction using decision templates and ensembles of learning machines
-
M. Re and G. Valentini. Integration of heterogeneous data sources for gene function prediction using decision templates and ensembles of learning machines. Neurocomputing, 73(7-9):1533-1537, 2010.
-
(2010)
Neurocomputing
, vol.73
, Issue.7-9
, pp. 1533-1537
-
-
Re, M.1
Valentini, G.2
-
165
-
-
77954524622
-
Noise tolerance of multiple classifier systems in data integration-based gene function prediction
-
M. Re and G. Valentini. Noise tolerance of multiple classifier systems in data integration-based gene function prediction. Journal of Integrative Bioinformatics, 7(3):139, 2010.
-
(2010)
Journal of Integrative Bioinformatics
, vol.7
, Issue.3
, pp. 139
-
-
Re, M.1
Valentini, G.2
-
166
-
-
79952821145
-
Simple ensemble methods are competitive with state-of-the-art data integration methods for gene function prediction
-
M. Re and G. Valentini. Simple ensemble methods are competitive with state-of-the-art data integration methods for gene function prediction. Journal of Machine Learning Research, WandC Proceedings, Machine Learning in Systems Biology, 8:98-111, 2010.
-
(2010)
Journal of Machine Learning Research, WandC Proceedings, Machine Learning in Systems Biology
, vol.8
, pp. 98-111
-
-
Re, M.1
Valentini, G.2
-
167
-
-
70349303514
-
Regularized linear models in stacked generalization
-
J. Kittler, J. Benediktsson, and F. Roli, (eds), Lecture Notes in Computer Science, Springer
-
S. Reid and G. Grudic. Regularized linear models in stacked generalization. In J. Kittler, J. Benediktsson, and F. Roli, (eds), Multiple Classifier Systems. Eighth International Workshop, MCS 2009, Reykjavik, Iceland, volume 5519 of Lecture Notes in Computer Science, pp. 112-121, Springer, 2009.
-
(2009)
Multiple Classifier Systems. Eighth International Workshop, MCS 2009, Reykjavik, Iceland
, vol.5519
, pp. 112-121
-
-
Reid, S.1
Grudic, G.2
-
169
-
-
0027961797
-
Combining the results of several neural neetworks classifiers
-
G. Rogova. Combining the results of several neural neetworks classifiers. Neural Networks, 7:777-781, 1994.
-
(1994)
Neural Networks
, vol.7
, pp. 777-781
-
-
Rogova, G.1
-
170
-
-
38349121661
-
Genetic algorithm-based feature set partitioning for classifiaction problems
-
L. Rokach. Genetic algorithm-based feature set partitioning for classifiaction problems. Pattern Recognition, 41(5):1676-1700, 2008.
-
(2008)
Pattern Recognition
, vol.41
, Issue.5
, pp. 1676-1700
-
-
Rokach, L.1
-
171
-
-
69449097857
-
Taxonomy for characterizing ensemble methods in classification asks: A reveiw and annotated bibliography
-
L. Rokach. Taxonomy for characterizing ensemble methods in classification asks: A reveiw and annotated bibliography. Computational Statistics and Data Analysis, 53:4046-4072, 2009.
-
(2009)
Computational Statistics and Data Analysis
, vol.53
, pp. 4046-4072
-
-
Rokach, L.1
-
172
-
-
84956994921
-
Methods for designing multiple classifier systems
-
J. Kittler and F. Roli (eds), Lecture Notes in Computer Science, Springer-Verlag
-
F. Roli, G. Giacinto, and G. Vernazza. Methods for designing multiple classifier systems. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 78-87, Springer-Verlag, 2001.
-
(2001)
Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK
, vol.2096
, pp. 78-87
-
-
Roli, F.1
Giacinto, G.2
Vernazza, G.3
-
173
-
-
85138424690
-
-
Lecture Notes in Computer Science. Springer-Verlag, Berlin
-
F. Roli, J. Kittler, and T. Windeatt. Multiple Classifier Systems, Fifth International Workshop, MCS2004, volume 3077 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2004.
-
(2004)
Multiple Classifier Systems, Fifth International Workshop, MCS2004
, vol.3077
-
-
Roli, F.1
Kittler, J.2
Windeatt, T.3
-
174
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
R. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2/3):135-168, 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.1
Singer, Y.2
-
175
-
-
0025448521
-
The strenght of weak learnability
-
R.E. Schapire. The strenght of weak learnability. Machine Learning, 5(2):197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
177
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R.E. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651-1686, 1998.
-
(1998)
Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
178
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
179
-
-
77349119213
-
Predicting gene function using hierarchical multi-label decision tree ensembles
-
L. Schietgat, C. Vens, J. Struyf, H. Blockeel, and S. Dzeroski. Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinformatics, 11:2, 2010.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 2
-
-
Schietgat, L.1
Vens, C.2
Struyf, J.3
Blockeel, H.4
Dzeroski, S.5
-
181
-
-
68949137209
-
-
Technical Report Computer Sciences Technical Report 1648, University of Wisconsin, Madison
-
B. Settles. Active learning literature survey. Technical Report Computer Sciences Technical Report 1648, University of Wisconsin, Madison, 2010.
-
(2010)
Active learning literature survey
-
-
Settles, B.1
-
182
-
-
84947596646
-
Types of multi-net systems
-
F. Roli and J. Kittler (eds), Lecture Notes in Computer Science, Springer-Verlag
-
A. Sharkey. Types of multi-net systems. In F. Roli and J. Kittler (eds), Multiple Classifier Systems, Third International Workshop, MCS2002, volume 2364 of Lecture Notes in Computer Science, pp. 108-117, Springer-Verlag, 2002.
-
(2002)
Multiple Classifier Systems, Third International Workshop, MCS2002
, vol.2364
, pp. 108-117
-
-
Sharkey, A.1
-
185
-
-
0032121371
-
Bagging for linear classifiers
-
M. Skurichina and R.P.W. Duin. Bagging for linear classifiers. Pattern Recognition, 31(7):909-930, 1998.
-
(1998)
Pattern Recognition
, vol.31
, Issue.7
, pp. 909-930
-
-
Skurichina, M.1
Duin, R.P.W.2
-
186
-
-
84957007471
-
Bagging and the random subspace method for redundant feature spaces
-
Lecture Notes in Computer Science, Springer-Verlag
-
M. Skurichina and R.P.W. Duin. Bagging and the random subspace method for redundant feature spaces. In Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 1-10, Springer-Verlag, 2001.
-
(2001)
Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK
, vol.2096
, pp. 1-10
-
-
Skurichina, M.1
Duin, R.P.W.2
-
187
-
-
0036080160
-
Bagging, boosting and the random subspace method for linear classifiers
-
M. Skurichina and R.P.W. Duin. Bagging, boosting and the random subspace method for linear classifiers. Pattern Analysis and Applications, 5(2):121-135, 2002.
-
(2002)
Pattern Analysis and Applications
, vol.5
, Issue.2
, pp. 121-135
-
-
Skurichina, M.1
Duin, R.P.W.2
-
188
-
-
33749250604
-
Experimental study for the comparison of classifier combination methods
-
S.Y. Sohna and H.W. Shinb. Experimental study for the comparison of classifier combination methods. Pattern Recognition, 40:33-40, 2007.
-
(2007)
Pattern Recognition
, vol.40
, pp. 33-40
-
-
Sohna, S.Y.1
Shinb, H.W.2
-
189
-
-
33845953137
-
Reducing the overfitting of adaboost by controlling its data distribution skewness
-
Y. Sun, S. Todorovic, and L. Li. Reducing the overfitting of adaboost by controlling its data distribution skewness. International Journal of Pattern Recognition and Artificial Intelligence, 20(7):1093-1116, 2006.
-
(2006)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.20
, Issue.7
, pp. 1093-1116
-
-
Sun, Y.1
Todorovic, S.2
Li, L.3
-
190
-
-
33746424489
-
Asymmetric bagging and random subspace for support vector machine-based relevance feedback in image retrieval
-
D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bagging and random subspace for support vector machine-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7):1088-1099, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.7
, pp. 1088-1099
-
-
Tao, D.1
Tang, X.2
Li, X.3
Wu, X.4
-
191
-
-
27944435917
-
Selective fusion of heterogeneous classifiers
-
G. Tsoumakas, L. Angelis, and I. Vlahavas. Selective fusion of heterogeneous classifiers. Intelligent Data Analysis, 9(6):511-525, 2005.
-
(2005)
Intelligent Data Analysis
, vol.9
, Issue.6
, pp. 511-525
-
-
Tsoumakas, G.1
Angelis, L.2
Vlahavas, I.3
-
192
-
-
22944467518
-
Effective voting of heterogeneous classifiers
-
Pisa, Italy
-
G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective voting of heterogeneous classifiers. In Proceedings of the 15th European Conference on Machine Learning, ECML 2004, pp. 465-476, Pisa, Italy, 2004.
-
(2004)
Proceedings of the 15th European Conference on Machine Learning, ECML 2004
, pp. 465-476
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
193
-
-
10444238133
-
Diversity in search strategies for ensemble feature selection
-
A. Tsymbal, M. Pechenizkiy, and P. Cunningham. Diversity in search strategies for ensemble feature selection. Information Fusion, 6:83-98, 2006.
-
(2006)
Information Fusion
, vol.6
, pp. 83-98
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
-
194
-
-
0038137315
-
Ensemble feature selection with the simple bayesian classifiaction
-
A. Tsymbal, S. Puuronen, and D.W. Patterson. Ensemble feature selection with the simple bayesian classifiaction. Information Fusion, 4:87-100, 2003.
-
(2003)
Information Fusion
, vol.4
, pp. 87-100
-
-
Tsymbal, A.1
Puuronen, S.2
Patterson, D.W.3
-
195
-
-
0030365938
-
Error correlation and error reduction in ensemble classifiers
-
K. Tumer and J. Ghosh. Error correlation and error reduction in ensemble classifiers. Connection Science, 8(3/4):385-404, 1996.
-
(1996)
Connection Science
, vol.8
, Issue.3-4
, pp. 385-404
-
-
Tumer, K.1
Ghosh, J.2
-
196
-
-
0036851381
-
Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles
-
G. Valentini. Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles. Artificial Intelligence in Medicine, 26(3):283-306, 2002.
-
(2002)
Artificial Intelligence in Medicine
, vol.26
, Issue.3
, pp. 283-306
-
-
Valentini, G.1
-
197
-
-
29144474463
-
An experimental bias-variance analysis of SVM ensembles based on resampling techniques
-
G. Valentini. An experimental bias-variance analysis of SVM ensembles based on resampling techniques. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 35(6):1252-1271, 2005.
-
(2005)
IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics
, vol.35
, Issue.6
, pp. 1252-1271
-
-
Valentini, G.1
-
199
-
-
1942452226
-
Low bias bagged support vector machines
-
T. Fawcett and N. Mishra (eds), AAAI Press, Washington D.C., USA
-
G. Valentini and T.G. Dietterich. Low bias bagged support vector machines. In T. Fawcett and N. Mishra (eds), Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003), pp. 752-759, AAAI Press, Washington D.C., USA, 2003.
-
(2003)
Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003)
, pp. 752-759
-
-
Valentini, G.1
Dietterich, T.G.2
-
200
-
-
26944501740
-
Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
-
G. Valentini and T.G. Dietterich. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. Journal ofMachine Learning Research, 5:725-775, 2004.
-
(2004)
Journal ofMachine Learning Research
, vol.5
, pp. 725-775
-
-
Valentini, G.1
Dietterich, T.G.2
-
201
-
-
84865801454
-
Ensembles of learning machines
-
Lecture Notes in Computer Science, Springer-Verlag
-
G. Valentini and F. Masulli. Ensembles of learning machines. InNeural NetsWIRN-02, volume 2486 of Lecture Notes in Computer Science, pp. 3-19, Springer-Verlag, 2002.
-
(2002)
Neural NetsWIRN-02
, vol.2486
, pp. 3-19
-
-
Valentini, G.1
Masulli, F.2
-
204
-
-
52949141834
-
Decision trees for hierarchical multi-label classification
-
C. Vens, J. Struyf, L. Schietgat, S. Dzeroski, and H. Blockeel. Decision trees for hierarchical multi-label classification. Machine Learning, 73(2):185-214, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.2
, pp. 185-214
-
-
Vens, C.1
Struyf, J.2
Schietgat, L.3
Dzeroski, S.4
Blockeel, H.5
-
205
-
-
0033117452
-
Soft combination of neural classifiers: A comparative study
-
A. Verikas, A. Lipnickas, K. Malmqvist, M. Bacauskiene, and A. Gelzinis. Soft combination of neural classifiers: A comparative study. Pattern Recognition Letters, 20:429-444, 1999.
-
(1999)
Pattern Recognition Letters
, vol.20
, pp. 429-444
-
-
Verikas, A.1
Lipnickas, A.2
Malmqvist, K.3
Bacauskiene, M.4
Gelzinis, A.5
-
206
-
-
48249084000
-
Making the most of missing values: Object clustering with partial data in astronomy
-
ASP Conference Series, Proceedings of the Conference held 24-27 October, 2004 in Pasadena, California, USA
-
K.L. Wagstaff and V.G. Laidler. Making the most of missing values: Object clustering with partial data in astronomy. In Astronomical Data Analysis Software and Systems XIV, ASP Conference Series, Vol. 347, Proceedings of the Conference held 24-27 October, 2004 in Pasadena, California, USA, p. 172, 2005.
-
(2005)
Astronomical Data Analysis Software and Systems XIV
, vol.347
, pp. 172
-
-
Wagstaff, K.L.1
Laidler, V.G.2
-
207
-
-
0032137270
-
Use of fuzzy logic inspired features to improve bacterial recognition through classifier fusion
-
D. Wang, J.M. Keller, C.A. Carson, K.K. McAdoo-Edwards, and C.W. Bailey. Use of fuzzy logic inspired features to improve bacterial recognition through classifier fusion. IEEE Transactions on Systems, Man and Cybernetics, 28B(4):583-591, 1998.
-
(1998)
IEEE Transactions on Systems, Man and Cybernetics
, vol.28B
, Issue.4
, pp. 583-591
-
-
Wang, D.1
Keller, J.M.2
Carson, C.A.3
McAdoo-Edwards, K.K.4
Bailey, C.W.5
-
208
-
-
0026692226
-
Stacked generalization
-
D.H. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
209
-
-
0031121318
-
Combination of multiple classifiers using local accuracy estimates
-
K. Woods, W.P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on PatternAnalysis and Machine Intelligence, 19(4):405-410, 1997.
-
(1997)
IEEE Transactions on PatternAnalysis and Machine Intelligence
, vol.19
, Issue.4
, pp. 405-410
-
-
Woods, K.1
Kegelmeyer, W.P.2
Bowyer, K.3
-
210
-
-
0026860706
-
Methods of combining multiple classifiers and their applications to handwritting recognition
-
L. Xu, C. Krzyzak, and C. Suen. Methods of combining multiple classifiers and their applications to handwritting recognition. IEEE Transactions on Systems, Man and Cybernetics, 22(3):418-435, 1992.
-
(1992)
IEEE Transactions on Systems, Man and Cybernetics
, vol.22
, Issue.3
, pp. 418-435
-
-
Xu, L.1
Krzyzak, C.2
Suen, C.3
-
211
-
-
0000060617
-
Molecular classification of multiple tumor types
-
Oxford University Press, Copenaghen, Denmark
-
C. Yeang, S. Ramaswamy, P. Tamayo, S. Mukherjee, R.M. Rifkin, M. Angelo, M. Reich, E. Lander, J. Mesirov, and T. Golub. Molecular classification of multiple tumor types. In ISMB 2001, Proceedings of the 9th International Conference on Intelligent Systems for Molecular Biology, pp. 316-322, Oxford University Press, Copenaghen, Denmark, 2001.
-
(2001)
ISMB 2001, Proceedings of the 9th International Conference on Intelligent Systems for Molecular Biology
, pp. 316-322
-
-
Yeang, C.1
Ramaswamy, S.2
Tamayo, P.3
Mukherjee, S.4
Rifkin, R.M.5
Angelo, M.6
Reich, M.7
Lander, E.8
Mesirov, J.9
Golub, T.10
-
212
-
-
35748956765
-
A local boosting algorithm for solving classification problems
-
C.X. Zhang and J.S. Zhang. A local boosting algorithm for solving classification problems. Computational Statistics and Data Analysis, 52(4):1928-1941, 2008.
-
(2008)
Computational Statistics and Data Analysis
, vol.52
, Issue.4
, pp. 1928-1941
-
-
Zhang, C.X.1
Zhang, J.S.2
-
214
-
-
34548126507
-
Data-driven decompositon for multi-class classification
-
J. Zhou, H. Peng, and C. Suen. Data-driven decompositon for multi-class classification. Pattern Recognition, 41(1):67-76, 2008.
-
(2008)
Pattern Recognition
, vol.41
, Issue.1
, pp. 67-76
-
-
Zhou, J.1
Peng, H.2
Suen, C.3
|