메뉴 건너뛰기




Volumn , Issue , 2012, Pages 563-593

Ensemble Methods: A Review

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84899928683     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b11822-20     Document Type: Chapter
Times cited : (89)

References (215)
  • 6
    • 22444454855 scopus 로고    scopus 로고
    • Cascading classifiers
    • E. Alpaydin and C. Kaynak. Cascading classifiers. Kybernetika, 34(4):369-374, 1998.
    • (1998) Kybernetika , vol.34 , Issue.4 , pp. 369-374
    • Alpaydin, E.1    Kaynak, C.2
  • 7
    • 0033330591 scopus 로고    scopus 로고
    • Learning error-correcting output codes fromdata
    • Edinburgh, UK
    • E. Alpaydin and E. Mayoraz. Learning error-correcting output codes fromdata. In ICANN’99, pp. 743-748, Edinburgh, UK, 1999.
    • (1999) ICANN’99 , pp. 743-748
    • Alpaydin, E.1    Mayoraz, E.2
  • 11
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning, 36(1/2):105-139, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 12
    • 80053022972 scopus 로고    scopus 로고
    • Compact evolutive design of error-correcting output codes
    • O. Okun, M. Re, and G. Valentini, (eds), Barcelona, Spain
    • M.A. Bautista, X. Baro, O. Pujol, P. Radeva, J. Vitria, and S. Escalera. Compact evolutive design of error-correcting output codes. In O. Okun, M. Re, and G. Valentini, (eds), ECML-SUEMA 2010 Proceedings, pp. 119-128, Barcelona, Spain, 2010.
    • (2010) ECML-SUEMA 2010 Proceedings , pp. 119-128
    • Bautista, M.A.1    Baro, X.2    Pujol, O.3    Radeva, P.4    Vitria, J.5    Escalera, S.6
  • 13
    • 0035835579 scopus 로고    scopus 로고
    • Ensemble of classifiers for morphological galaxy classification
    • D. Bazell and W.D. Aha. Ensemble of classifiers for morphological galaxy classification. The Astrophysical Journal, 548:219-223, 2001.
    • (2001) The Astrophysical Journal , vol.548 , pp. 219-223
    • Bazell, D.1    Aha, W.D.2
  • 17
    • 37249003229 scopus 로고    scopus 로고
    • Multiple classifier systems in remote sensing: From basics to recent developments
    • M. Haindl, J. Kittler, and F. Roli, (eds), Seventh International Workshop, MCS 2007, Prague, Czech Republic, Lecture Notes in Computer Science, Springer
    • J.A. Benediktsson, J. Chanussot, and M. Fauvel. Multiple classifier systems in remote sensing:From basics to recent developments. In M. Haindl, J. Kittler, and F. Roli, (eds), Multiple Classifier Systems. Seventh International Workshop, MCS 2007, Prague, Czech Republic, volume 4472 of Lecture Notes in Computer Science, pp. 511-512, Springer, 2007.
    • (2007) Multiple Classifier Systems , vol.4472 , pp. 511-512
    • Benediktsson, J.A.1    Chanussot, J.2    Fauvel, M.3
  • 20
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 21
    • 0003619255 scopus 로고    scopus 로고
    • Technical Report TR 460, Statistics Department, University of California, Berkeley, CA
    • L. Breiman. Bias, variance and arcing classifiers. Technical Report TR 460, Statistics Department, University of California, Berkeley, CA, 1996.
    • (1996) Bias, variance and arcing classifiers
    • Breiman, L.1
  • 22
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman. Arcing classifiers. Annals of Statistics, 26(3):801-849, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 23
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • L. Breiman. Pasting small votes for classification in large databases and on-line. Machine Learning, 36:85-103, 1999.
    • (1999) Machine Learning , vol.36 , pp. 85-103
    • Breiman, L.1
  • 24
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing classifiers
    • L. Breiman. Prediction games and arcing classifiers. Neural Computation, 11(7):1493-1517, 1999.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 25
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 27
    • 84865736463 scopus 로고    scopus 로고
    • Boosting. Bagging and consensus based classification of multisource remote sensing data
    • J. Kittler and F. Roli, (eds), Lecture Notes in Computer Science, Springer-Verlag
    • G.J. Briem, J.A. Benediktsson, and J.R. Sveinsson. Boosting. Bagging and consensus based classification of multisource remote sensing data. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 279-288, Springer-Verlag, 2001.
    • (2001) Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK , vol.2096 , pp. 279-288
    • Briem, G.J.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 28
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: A survey and categorisation. Information Fusion, 6(1):5-20, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 29
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy od classifier ensembles by uing random feature subsets
    • R. Bryll, R. Gutierrez-Osuna, and F. Quek. Attribute bagging: Improving accuracy od classifier ensembles by uing random feature subsets. Pattern Recognition, 36:1291-1302, 2003.
    • (2003) Pattern Recognition , vol.36 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 34
    • 85152630265 scopus 로고
    • A comparative evaluation of voting and meta-learning on partitioned data
    • Tahoe City, California, USA
    • P. Chan and S. Stolfo. A comparative evaluation of voting and meta-learning on partitioned data. In Proceedings 12th ICML, pp. 90-98, Tahoe City, California, USA, 1995.
    • (1995) Proceedings 12th ICML , pp. 90-98
    • Chan, P.1    Stolfo, S.2
  • 39
    • 0029247604 scopus 로고
    • Combining multiple neural networks by fuzzy integral and robust classification
    • S. Cho and J. Kim. Combining multiple neural networks by fuzzy integral and robust classification. IEEE Transactions on Systems, Man and Cybernetics, 25:380-384, 1995.
    • (1995) IEEE Transactions on Systems, Man and Cybernetics , vol.25 , pp. 380-384
    • Cho, S.1    Kim, J.2
  • 41
    • 0037776084 scopus 로고    scopus 로고
    • A hybrid projection based and radial basis function architecture
    • J. Kittler and F. Roli, (eds), First International Workshop, MCS 2000, Cagliari, Italy, Lecture Notes in Computer Science, Springer-Verlag
    • S. Cohen and N. Intrator. A hybrid projection based and radial basis function architecture. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 147-156, Springer-Verlag, 2000.
    • (2000) Multiple Classifier Systems , vol.1857 , pp. 147-156
    • Cohen, S.1    Intrator, N.2
  • 42
    • 1642395900 scopus 로고    scopus 로고
    • Automatic model selection in a hybrid perceptron/radial network
    • Lecture Notes in Computer Science, Springer-Verlag
    • S. Cohen and N. Intrator. Automatic model selection in a hybrid perceptron/radial network. In Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 349-358, Springer-Verlag, 2001.
    • (2001) Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK , vol.2096 , pp. 349-358
    • Cohen, S.1    Intrator, N.2
  • 43
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, AdaBoost and Bregman distances
    • M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances. Machine Learning, 48:31-44, 2002.
    • (2002) Machine Learning , vol.48 , pp. 31-44
    • Collins, M.1    Schapire, R.E.2    Singer, Y.3
  • 47
    • 0038137313 scopus 로고    scopus 로고
    • Decision templates for the classification of bioacoustic time series
    • C. Dietrich, G. Palm, and F. Schwenker. Decision templates for the classification of bioacoustic time series. Information Fusion, 4(2):101-109, 2003.
    • (2003) Information Fusion , vol.4 , Issue.2 , pp. 101-109
    • Dietrich, C.1    Palm, G.2    Schwenker, F.3
  • 48
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • J. Kittler and F. Roli, (eds), Lecture Notes in Computer Science, Springer-Verlag
    • T.G. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 1-15, Springer-Verlag, 2000.
    • (2000) Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 49
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40(2):139-158, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 50
    • 69549123046 scopus 로고
    • Error-correcting output codes: A general method for improving multiclass inductive learning programs
    • AAAI Press/MIT Press
    • T.G. Dietterich and G. Bakiri. Error-correcting output codes:A general method for improving multiclass inductive learning programs. In Proceedings of AAAI-91, pp. 572-577, AAAI Press/MIT Press, 1991.
    • (1991) Proceedings of AAAI-91 , pp. 572-577
    • Dietterich, T.G.1    Bakiri, G.2
  • 51
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, (2):263-286, 1995.
    • (1995) Journal of Artificial Intelligence Research , Issue.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 54
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning, 29:103-130, 1997.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 55
    • 85156217048 scopus 로고    scopus 로고
    • Boosting decision trees
    • D. Touretsky, M. Mozer, and M. Hasselmo (eds), MIT Press, Cambridge, MA
    • H. Drucker and C. Cortes. Boosting decision trees. In D. Touretsky, M. Mozer, and M. Hasselmo (eds), Advances in Neural Information Processing Systems, Vol. 8, pp. 479-485. MIT Press, Cambridge, MA, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 479-485
    • Drucker, H.1    Cortes, C.2
  • 59
    • 84867038939 scopus 로고    scopus 로고
    • Experiments with classifier combination rules
    • J. Kittler and F. Roli, (eds), Lecture Notes in Computer Science, Springer-Verlag
    • R.P.W. Duin and D.M.J. Tax. Experiments with classifier combination rules. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 16-29, Springer-Verlag, 2000.
    • (2000) Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy , vol.1857 , pp. 16-29
    • Duin, R.P.W.1    Tax, D.M.J.2
  • 60
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selcting the best one?
    • S. Dzeroski and B. Zenko. Is combining classifiers with stacking better than selcting the best one? Machine Learning, 54(3):255-273, 2004.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 64
    • 2342622786 scopus 로고    scopus 로고
    • Leave one out error, stability, and generalization of voting combinations of classifiers
    • T. Evgeniou, M. Pontil, and A. Elisseeff. Leave one out error, stability, and generalization of voting combinations of classifiers. Machine Learning, 55(1):71-97, 2004.
    • (2004) Machine Learning , vol.55 , Issue.1 , pp. 71-97
    • Evgeniou, T.1    Pontil, M.2    Elisseeff, A.3
  • 66
    • 0028756112 scopus 로고
    • Multi-layer perceptron ensembles for increased performance and fault-tolerance in pattern recognition tasks
    • Orlando, Florida
    • E. Filippi, M. Costa, and E. Pasero. Multi-layer perceptron ensembles for increased performance and fault-tolerance in pattern recognition tasks. In IEEE International Conference on Neural Networks, pp. 2901-2906, Orlando, Florida, 1994.
    • (1994) IEEE International Conference on Neural Networks , pp. 2901-2906
    • Filippi, E.1    Costa, M.2    Pasero, E.3
  • 67
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, 1995.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 68
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and Systems Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and Systems Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 70
    • 0013281807 scopus 로고    scopus 로고
    • Technical Report Technical Report, Statistics Department, University of Stanford, CA
    • J. Friedman and P. Hall. On bagging and nonlinear estimation. Technical Report Technical Report, Statistics Department, University of Stanford, CA, 2000.
    • (2000) On bagging and nonlinear estimation
    • Friedman, J.1    Hall, P.2
  • 71
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Annals of Statistics, 38(2):337-374, 2000.
    • (2000) Annals of Statistics , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 72
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1 loss and the curse of dimensionality
    • J.H. Friedman. On bias, variance, 0/1 loss and the curse of dimensionality. Data Mining and Knowledge Discovery, 1:55-77, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 73
    • 21244501361 scopus 로고    scopus 로고
    • Atheoretical and experimental analysis of linear combiners for multiple classifer systems
    • G. Fumera and F. Roli. Atheoretical and experimental analysis of linear combiners for multiple classifer systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):942-956, 2005.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.6 , pp. 942-956
    • Fumera, G.1    Roli, F.2
  • 74
    • 0034541162 scopus 로고    scopus 로고
    • Cascade generalization
    • J. Gamma and P. Brazdil. Cascade generalization. Machine Learning, 41(3):315-343, 2000.
    • (2000) Machine Learning , vol.41 , Issue.3 , pp. 315-343
    • Gamma, J.1    Brazdil, P.2
  • 75
    • 67650431890 scopus 로고    scopus 로고
    • Random forest algorithm for classification of multiwavelength data
    • Y. Zhang, D. Gao and Y. Zhao. Random forest algorithm for classification of multiwavelength data. Research in Astronomy Astrophysics, 9(2):220-226, 2009.
    • (2009) Research in Astronomy Astrophysics , vol.9 , Issue.2 , pp. 220-226
    • Zhang, Y.1    Gao, D.2    Zhao, Y.3
  • 76
    • 0001942829 scopus 로고
    • Neural networks and the bias-variance dilemma
    • S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias-variance dilemma. Neural Computation, 4(1):1-58, 1992.
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 78
    • 0011803637 scopus 로고    scopus 로고
    • Using error correcting output codes for text classification
    • Morgan Kaufmann Publishers, San Francisco, US
    • R. Ghani. Using error correcting output codes for text classification. In ICML2000: Proceedings of the 17th International Conference on Machine Learning, pp. 303-310, Morgan Kaufmann Publishers, San Francisco, US, 2000.
    • (2000) ICML2000: Proceedings of the 17th International Conference on Machine Learning , pp. 303-310
    • Ghani, R.1
  • 80
    • 84867091494 scopus 로고    scopus 로고
    • Dynamic classifier fusion
    • J. Kittler and F. Roli (eds), First International Workshop, MCS 2000, Cagliari, Italy, Lecture Notes in Computer Science, Springer-Verlag
    • G. Giacinto and F. Roli. Dynamic classifier fusion. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 177-189, Springer-Verlag, 2000.
    • (2000) Multiple Classifier Systems , vol.1857 , pp. 177-189
    • Giacinto, G.1    Roli, F.2
  • 81
    • 0035202645 scopus 로고    scopus 로고
    • An approach to the automatic design of multiple classifier systems
    • G. Giacinto and F. Roli. An approach to the automatic design of multiple classifier systems. Pattern Recognition Letters, 22(1):25-33, 2001.
    • (2001) Pattern Recognition Letters , vol.22 , Issue.1 , pp. 25-33
    • Giacinto, G.1    Roli, F.2
  • 84
    • 23844545305 scopus 로고    scopus 로고
    • Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition
    • S. Gunter and H. Bunke. Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition. Pattern Recognition Letters, 25:1323-1336, 2004.
    • (2004) Pattern Recognition Letters , vol.25 , pp. 1323-1336
    • Gunter, S.1    Bunke, H.2
  • 86
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie and R. Tibshirani. Classification by pairwise coupling. Annals of Statistics, 26(1):451-471, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.1 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 88
    • 84867095498 scopus 로고    scopus 로고
    • Complexity of classification problems ans comparative advantages of combined classifiers
    • J. Kittler and F. Roli, (eds), Lecture Notes in Computer Science, Springer-Verlag
    • T.K. Ho. Complexity of classification problems ans comparative advantages of combined classifiers. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 97-106, Springer-Verlag, 2000.
    • (2000) Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy , vol.1857 , pp. 97-106
    • Ho, T.K.1
  • 89
    • 84956973748 scopus 로고    scopus 로고
    • Data complexity analysis for classifiers combination
    • J. Kittler and F. Roli, (eds), Lecture Notes in Computer Science, Springer-Verlag, Berlin
    • T.K. Ho. Data complexity analysis for classifiers combination. In J. Kittler and F. Roli, (eds), Multiple Classifier Systems. Second International Workshop, MCS2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 53-67, Springer-Verlag, Berlin, 2001.
    • (2001) Multiple Classifier Systems. Second International Workshop, MCS2001, Cambridge, UK , vol.2096 , pp. 53-67
    • Ho, T.K.1
  • 90
    • 0011187879 scopus 로고    scopus 로고
    • Multiple classifier combinations: Lessons and the next steps
    • A. Kandel and K. Bunke, (eds), World Scientific, Hackensack, NJ, USA
    • T.K. Ho. Multiple classifier combinations: Lessons and the next steps. In A. Kandel and K. Bunke, (eds), Hybrid Methods in Pattern Recognition, pp. 171-198, World Scientific, Hackensack, NJ, USA, 2002.
    • (2002) Hybrid Methods in Pattern Recognition , pp. 171-198
    • Ho, T.K.1
  • 93
    • 44649129936 scopus 로고    scopus 로고
    • An unsupervised, ensemble clustering algorithm: A new approach for classification of x-ray sources
    • S. Hojnacki, G. Micela, S. Lalonde, E. Feigelson, and J. Kastner. An unsupervised, ensemble clustering algorithm: A new approach for classification of x-ray sources. Statistical Methodology, 5:350-360, 2008.
    • (2008) Statistical Methodology , vol.5 , pp. 350-360
    • Hojnacki, S.1    Micela, G.2    Lalonde, S.3    Feigelson, E.4    Kastner, J.5
  • 94
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4:251-257, 1991.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 97
    • 0029372769 scopus 로고
    • Methods for combining experts probability assessment
    • R.A. Jacobs. Methods for combining experts probability assessment. Neural Computation, 7:867-888, 1995.
    • (1995) Neural Computation , vol.7 , pp. 867-888
    • Jacobs, R.A.1
  • 100
    • 51749110896 scopus 로고    scopus 로고
    • Integration of relational and hierarchical network information for protein function prediction
    • X. Jiang, N. Nariai, M. Steffen, S. Kasif, and E. Kolaczyk. Integration of relational and hierarchical network information for protein function prediction. BMC Bioinformatics, 9:350, 2008.
    • (2008) BMC Bioinformatics , vol.9 , pp. 350
    • Jiang, X.1    Nariai, N.2    Steffen, M.3    Kasif, S.4    Kolaczyk, E.5
  • 101
    • 0001632132 scopus 로고
    • Hierarchies of adaptive experts
    • J. Moody, S. Hanson, and R. Lippmann (eds), Morgan Kauffman, San Mateo, CA
    • M. Jordan and R. Jacobs. Hierarchies of adaptive experts. In J. Moody, S. Hanson, and R. Lippmann (eds), Advances in Neural Information Processing Systems, Vol. 4, pp. 985-992, Morgan Kauffman, San Mateo, CA, 1992.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 985-992
    • Jordan, M.1    Jacobs, R.2
  • 102
    • 0000262562 scopus 로고
    • Hierarchical mixture of experts and the em algorithm
    • M.I. Jordan and R.A. Jacobs. Hierarchical mixture of experts and the em algorithm. Neural Computation, 6:181-214, 1994.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 103
    • 0029617280 scopus 로고
    • Convergence results for the EM approach to mixture of experts architectures
    • M.I. Jordan and L. Xu. Convergence results for the EM approach to mixture of experts architectures. Neural Networks, 8:1409-1431, 1995.
    • (1995) Neural Networks , vol.8 , pp. 1409-1431
    • Jordan, M.I.1    Xu, L.2
  • 106
    • 0026367884 scopus 로고
    • Handwritten numerical recognition based on multiple algorithms
    • F. Kimura and M. Shridar. Handwritten numerical recognition based on multiple algorithms. Pattern Recognition, 24(10):969-983, 1991.
    • (1991) Pattern Recognition , vol.24 , Issue.10 , pp. 969-983
    • Kimura, F.1    Shridar, M.2
  • 107
    • 22444454265 scopus 로고    scopus 로고
    • Combining classifiers: A theoretical framework
    • J. Kittler. Combining classifiers: A theoretical framework. Pattern Analysis and Applications, 1:18-27, 1998.
    • (1998) Pattern Analysis and Applications , vol.1 , pp. 18-27
    • Kittler, J.1
  • 110
    • 0030343231 scopus 로고    scopus 로고
    • An overtraining-resistant stochastic modeling method for pattern recognition
    • E.M. Kleinberg. An overtraining-resistant stochastic modeling method for pattern recognition. Annals of Statistics, 4(6):2319-2349, 1996.
    • (1996) Annals of Statistics , vol.4 , Issue.6 , pp. 2319-2349
    • Kleinberg, E.M.1
  • 111
    • 56749113088 scopus 로고    scopus 로고
    • A mathematically rigorous foundation for supervised learning
    • J. Kittler and F. Roli (eds), First International Workshop, MCS 2000, Cagliari, Italy, Lecture Notes in Computer Science, Springer-Verlag
    • E.M. Kleinberg. A mathematically rigorous foundation for supervised learning. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 67-76, Springer-Verlag, 2000.
    • (2000) Multiple Classifier Systems , vol.1857 , pp. 67-76
    • Kleinberg, E.M.1
  • 113
    • 84992322729 scopus 로고
    • Error-correcting output coding correct bias and variance
    • Morgan Kauffman, San Francisco, CA
    • E. Kong and T.G. Dietterich. Error-correcting output coding correct bias and variance. In The XII International Conference on Machine Learning, pp. 313-321, Morgan Kauffman, San Francisco, CA, 1995.
    • (1995) The XII International Conference on Machine Learning , pp. 313-321
    • Kong, E.1    Dietterich, T.G.2
  • 114
    • 0037740553 scopus 로고    scopus 로고
    • An application of OWA operators to the aggregation of multiple classification decisions
    • Kluwer Academic Publisher, USA
    • L.I. Kuncheva. An application of OWA operators to the aggregation of multiple classification decisions. In The OrderedWeightedAveraging Operators. Theory and Applications, pp. 330-343, Kluwer Academic Publisher, USA, 1997.
    • (1997) The OrderedWeightedAveraging Operators. Theory and Applications , pp. 330-343
    • Kuncheva, L.I.1
  • 115
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers: An experiment
    • L.I. Kuncheva. Switching between selection and fusion in combining classifiers: An experiment. IEEE Transactions on Systems, Man and Cybernetics, 32(2):146-156, 2002.
    • (2002) IEEE Transactions on Systems, Man and Cybernetics , vol.32 , Issue.2 , pp. 146-156
    • Kuncheva, L.I.1
  • 117
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates formultiple classifier fusion: An experimental comparison
    • L.I. Kuncheva, J.C. Bezdek, and R.P.W. Duin. Decision templates formultiple classifier fusion:An experimental comparison. Pattern Recognition, 34(2):299-314, 2001.
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.W.3
  • 119
    • 37249046891 scopus 로고    scopus 로고
    • An experimental study on rotation forest ensembles
    • M. Haindl, J. Kittler, and F. Roli (eds), Lecture Notes in Computer Science, Springer
    • L.I. Kuncheva and J. Rodriguez. An experimental study on rotation forest ensembles. In M. Haindl, J. Kittler, and F. Roli (eds), Multiple Classifier Systems. Seventh International Workshop, MCS 2007, Prague, Czech Republic, volume 4472 of Lecture Notes in Computer Science, pp. 459-468, Springer, 2007.
    • (2007) Multiple Classifier Systems. Seventh International Workshop, MCS 2007, Prague, Czech Republic , vol.4472 , pp. 459-468
    • Kuncheva, L.I.1    Rodriguez, J.2
  • 120
    • 84925741661 scopus 로고    scopus 로고
    • Complexity of data subsets generated by the random subspace method: An experimental investigation
    • J. Kittler and F. Roli (eds), Lecture Notes in Computer Science, Springer-Verlag
    • L.I. Kuncheva, F. Roli, G.L. Marcialis, and C.A. Shipp. Complexity of data subsets generated by the random subspace method: An experimental investigation. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 349-358, Springer-Verlag, 2001.
    • (2001) Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK , vol.2096 , pp. 349-358
    • Kuncheva, L.I.1    Roli, F.2    Marcialis, G.L.3    Shipp, C.A.4
  • 121
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • L.I. Kuncheva and C.J. Whitaker. Measures of diversity in classifier ensembles. Machine Learning, 51:181-207, 2003.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 122
    • 84867038166 scopus 로고    scopus 로고
    • Classifier combinations: Implementations and theoretical issues
    • Lecture Notes in Computer Science, Springer-Verlag
    • L. Lam. Classifier combinations: Implementations and theoretical issues. InMultiple Classifier Systems. First International Workshop, MCS2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 77-86, Springer-Verlag, 2000.
    • (2000) Multiple Classifier Systems. First International Workshop, MCS2000, Cagliari, Italy , vol.1857 , pp. 77-86
    • Lam, L.1
  • 123
    • 0029373189 scopus 로고
    • Optimal combination of pattern classifiers
    • L. Lam and C. Sue. Optimal combination of pattern classifiers. Pattern Recognition Letters, 16:945-954, 1995.
    • (1995) Pattern Recognition Letters , vol.16 , pp. 945-954
    • Lam, L.1    Sue, C.2
  • 124
    • 0031238275 scopus 로고    scopus 로고
    • Application of majority voting to pattern recognition: An analysis of its behavior and performance
    • L. Lam and C. Sue. Application of majority voting to pattern recognition: An analysis of its behavior and performance. IEEE Transactions on Systems, Man and Cybernetics, 27(5):553-568, 1997.
    • (1997) IEEE Transactions on Systems, Man and Cybernetics , vol.27 , Issue.5 , pp. 553-568
    • Lam, L.1    Sue, C.2
  • 125
    • 84858999492 scopus 로고    scopus 로고
    • Genetic programming for improved receiver operating characteristics
    • J. Kittler and F. Roli (eds), LNCS, Springer-Verlag, Cambridge
    • W.B. Langdon and B.F. Buxton. Genetic programming for improved receiver operating characteristics. In J. Kittler and F. Roli (eds), Second International Conference onMultiple Classifier System, volume 2096 of LNCS, pp. 68-77, Springer-Verlag, Cambridge, 2001.
    • (2001) Second International Conference onMultiple Classifier System , vol.2096 , pp. 68-77
    • Langdon, W.B.1    Buxton, B.F.2
  • 128
    • 0036498492 scopus 로고    scopus 로고
    • Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural networks and genetic algorithm: A case study
    • W. Leigh, R. Purvis, and J.M. Ragusa. Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural networks and genetic algorithm: A case study. Decision Support Systems, 32(4):361-377, 2002.
    • (2002) Decision Support Systems , vol.32 , Issue.4 , pp. 361-377
    • Leigh, W.1    Purvis, R.2    Ragusa, J.M.3
  • 130
    • 0035457787 scopus 로고    scopus 로고
    • Multiple classifier combination by clustering and selection
    • R. Liu and B. Yuan. Multiple classifier combination by clustering and selection. Information Fusion, 2:163-168, 2001.
    • (2001) Information Fusion , vol.2 , pp. 163-168
    • Liu, R.1    Yuan, B.2
  • 131
    • 33144481453 scopus 로고    scopus 로고
    • Ensemble learning for independent component analysis of normal galaxy spectra
    • H. Lu, H. Zhou, J. Wang, T. Wang, X. Dong, Z. Zhuang, and C. Li. Ensemble learning for independent component analysis of normal galaxy spectra. Astronomical Journal, 131:790-805, 2006.
    • (2006) Astronomical Journal , vol.131 , pp. 790-805
    • Lu, H.1    Zhou, H.2    Wang, J.3    Wang, T.4    Dong, X.5    Zhuang, Z.6    Li, C.7
  • 133
    • 0033870982 scopus 로고    scopus 로고
    • Improved generalization through explicit optimization of margins
    • L. Mason, P. Bartlett, and J. Baxter. Improved generalization through explicit optimization of margins. Machine Learning, 38(3):243-255, 2000.
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 243-255
    • Mason, L.1    Bartlett, P.2    Baxter, J.3
  • 134
    • 84867071286 scopus 로고    scopus 로고
    • Effectiveness of error correcting output codes in multiclass learning problems
    • Springer-Verlag, Berlin, Heidelberg
    • F. Masulli and G. Valentini. Effectiveness of error correcting output codes in multiclass learning problems. In Lecture Notes in Computer Science, volume 1857, pp. 107-116, Springer-Verlag, Berlin, Heidelberg, 2000.
    • (2000) Lecture Notes in Computer Science , vol.1857 , pp. 107-116
    • Masulli, F.1    Valentini, G.2
  • 135
    • 0034877853 scopus 로고    scopus 로고
    • Quantitative evaluation of dependence among outputs in ECOC classifiers using mutual information based measures
    • K. Marko and P. Webos (eds), Piscataway, NJ, USA, IEEE
    • F. Masulli and G. Valentini. Quantitative evaluation of dependence among outputs in ECOC classifiers using mutual information based measures. In K. Marko and P. Webos (eds), Proceedings of the International Joint Conference on Neural Networks IJCNN’01, volume 2, pp. 784-789, Piscataway, NJ, USA, IEEE, 2001.
    • (2001) Proceedings of the International Joint Conference on Neural Networks IJCNN’01 , vol.2 , pp. 784-789
    • Masulli, F.1    Valentini, G.2
  • 136
    • 1642313738 scopus 로고    scopus 로고
    • Effectiveness of error correcting output coding decomposition schemes in ensemble and monolithic learning machines
    • F. Masulli and G. Valentini. Effectiveness of error correcting output coding decomposition schemes in ensemble and monolithic learning machines. Pattern Analysis and Application, 6:285-300, 2003.
    • (2003) Pattern Analysis and Application , vol.6 , pp. 285-300
    • Masulli, F.1    Valentini, G.2
  • 137
    • 1542786181 scopus 로고    scopus 로고
    • An experimental analysis of the dependence among codeword bit errors in ecoc learning machines
    • F. Masulli and G. Valentini. An experimental analysis of the dependence among codeword bit errors in ecoc learning machines. Neurocomputing, 57:189-214, 2004.
    • (2004) Neurocomputing , vol.57 , pp. 189-214
    • Masulli, F.1    Valentini, G.2
  • 141
    • 84957087567 scopus 로고    scopus 로고
    • Improved pairwise coupling classifiers with correcting classifiers
    • C. Nedellec and C. Rouveirol (eds), Berlin, Heidelberg, New York
    • M. Moreira and E. Mayoraz. Improved pairwise coupling classifiers with correcting classifiers. In C. Nedellec and C. Rouveirol (eds), Lecture Notes in Artificial Intelligence, Volume 1398, pp. 160-171, Berlin, Heidelberg, New York, 1998.
    • (1998) Lecture Notes in Artificial Intelligence , vol.1398 , pp. 160-171
    • Moreira, M.1    Mayoraz, E.2
  • 146
    • 0030356238 scopus 로고    scopus 로고
    • Actively searching for an effective neural network ensemble
    • D.W. Opitz and J.W. Shavlik. Actively searching for an effective neural network ensemble. Connection Science, 8(3/4):337-353, 1996.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 337-353
    • Opitz, D.W.1    Shavlik, J.W.2
  • 147
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • D. Touretzky, M. Mozer, and M. Hasselmo (eds), MIT Press, Cambridge, MA
    • D.W. Opitz and J.W. Shavlik. Generating accurate and diverse members of a neural-network ensemble. In D. Touretzky, M. Mozer, and M. Hasselmo (eds), Advances in Neural Information Processing Systems, volume 8, pp. 535-541, MIT Press, Cambridge, MA, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 535-541
    • Opitz, D.W.1    Shavlik, J.W.2
  • 150
    • 84944215019 scopus 로고    scopus 로고
    • Input decimation ensembles: Decorrelation through dimensionality reduction
    • J. Kittler and F. Roli (eds), Lecture Notes in Computer Science, Springer-Verlag
    • N.C. Oza and K. Tumer. Input decimation ensembles: Decorrelation through dimensionality reduction. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 238-247, Springer-Verlag, 2001.
    • (2001) Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK , vol.2096 , pp. 238-247
    • Oza, N.C.1    Tumer, K.2
  • 151
    • 0001002401 scopus 로고
    • Approximation and radial basis function networks
    • J. Park and I.W. Sandberg. Approximation and radial basis function networks. Neural Computation, 5(2):305-316, 1993.
    • (1993) Neural Computation , vol.5 , Issue.2 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 152
    • 85156199954 scopus 로고    scopus 로고
    • Improving committe diagnosis with resampling techniques
    • D.S. Touretzky, M. Mozer, and M. Hesselmo (eds), MIT Press, Cambridge, MA
    • B. Parmanto, P. Munro, and H. Doyle. Improving committe diagnosis with resampling techniques. In D.S. Touretzky, M. Mozer, and M. Hesselmo (eds), Advances in Neural Information Processing Systems, volume 8, pp. 882-888, MIT Press, Cambridge, MA, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 882-888
    • Parmanto, B.1    Munro, P.2    Doyle, H.3
  • 153
    • 0030352275 scopus 로고    scopus 로고
    • Reducing variance of committee predition with resampling techniques
    • B. Parmanto, P. Munro, and H. Doyle. Reducing variance of committee predition with resampling techniques. Connection Science, 8(3/4):405-416, 1996.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 405-416
    • Parmanto, B.1    Munro, P.2    Doyle, H.3
  • 155
    • 78049528785 scopus 로고    scopus 로고
    • An ensemble uncertainty aware measure for directed hill climbing ensemble pruning
    • I. Partalas, G. Tsoumakas, and I. Vlahavas. An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Machine Learning, 81(3):257-282, 2010.
    • (2010) Machine Learning , vol.81 , Issue.3 , pp. 257-282
    • Partalas, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 156
    • 0030585190 scopus 로고    scopus 로고
    • Engineering multiversion neural-net systems
    • D. Partridge, and W.B Yates. Engineering multiversion neural-net systems. Neural Computation, 8:869-893, 1996.
    • (1996) Neural Computation , vol.8 , pp. 869-893
    • Partridge, D.1    Yates, W.B.2
  • 157
    • 84926396757 scopus 로고    scopus 로고
    • Combining Fisher linear discriminant for dissimilarity representations
    • J. Kittler and F. Roli (eds), Lecture Notes in Computer Science, Springer-Verlag
    • E. Pekalska, M. Skurichina, and R.P.W. Duin. Combining Fisher linear discriminant for dissimilarity representations. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy, volume 1857 of Lecture Notes in Computer Science, pp. 230-239, Springer-Verlag, 2000.
    • (2000) Multiple Classifier Systems. First International Workshop, MCS 2000, Cagliari, Italy , vol.1857 , pp. 230-239
    • Pekalska, E.1    Skurichina, M.2    Duin, R.P.W.3
  • 158
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • R.J. Mammone (ed.), Chapman and Hall, London
    • M.P. Perrone and L.N. Cooper. When networks disagree: Ensemble methods for hybrid neural networks. In R.J. Mammone (ed.), Artificial Neural Networks for Speech and Vision, pp. 126-142, Chapman and Hall, London, 1993.
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 161
    • 33645963453 scopus 로고    scopus 로고
    • Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes
    • O. Pujol, P. Radeva, and J. Vitria. Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:1001-1007, 2006.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , pp. 1001-1007
    • Pujol, O.1    Radeva, P.2    Vitria, J.3
  • 163
    • 0030374103 scopus 로고    scopus 로고
    • Bootstrapping with noise: An effective regularization technique
    • Y. Raviv and N. Intrator. Bootstrapping with noise: An effective regularization technique. Connection Science, 8(3/4):355-372, 1996.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 355-372
    • Raviv, Y.1    Intrator, N.2
  • 164
    • 77649231429 scopus 로고    scopus 로고
    • Integration of heterogeneous data sources for gene function prediction using decision templates and ensembles of learning machines
    • M. Re and G. Valentini. Integration of heterogeneous data sources for gene function prediction using decision templates and ensembles of learning machines. Neurocomputing, 73(7-9):1533-1537, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1533-1537
    • Re, M.1    Valentini, G.2
  • 165
    • 77954524622 scopus 로고    scopus 로고
    • Noise tolerance of multiple classifier systems in data integration-based gene function prediction
    • M. Re and G. Valentini. Noise tolerance of multiple classifier systems in data integration-based gene function prediction. Journal of Integrative Bioinformatics, 7(3):139, 2010.
    • (2010) Journal of Integrative Bioinformatics , vol.7 , Issue.3 , pp. 139
    • Re, M.1    Valentini, G.2
  • 167
    • 70349303514 scopus 로고    scopus 로고
    • Regularized linear models in stacked generalization
    • J. Kittler, J. Benediktsson, and F. Roli, (eds), Lecture Notes in Computer Science, Springer
    • S. Reid and G. Grudic. Regularized linear models in stacked generalization. In J. Kittler, J. Benediktsson, and F. Roli, (eds), Multiple Classifier Systems. Eighth International Workshop, MCS 2009, Reykjavik, Iceland, volume 5519 of Lecture Notes in Computer Science, pp. 112-121, Springer, 2009.
    • (2009) Multiple Classifier Systems. Eighth International Workshop, MCS 2009, Reykjavik, Iceland , vol.5519 , pp. 112-121
    • Reid, S.1    Grudic, G.2
  • 169
    • 0027961797 scopus 로고
    • Combining the results of several neural neetworks classifiers
    • G. Rogova. Combining the results of several neural neetworks classifiers. Neural Networks, 7:777-781, 1994.
    • (1994) Neural Networks , vol.7 , pp. 777-781
    • Rogova, G.1
  • 170
    • 38349121661 scopus 로고    scopus 로고
    • Genetic algorithm-based feature set partitioning for classifiaction problems
    • L. Rokach. Genetic algorithm-based feature set partitioning for classifiaction problems. Pattern Recognition, 41(5):1676-1700, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1676-1700
    • Rokach, L.1
  • 171
    • 69449097857 scopus 로고    scopus 로고
    • Taxonomy for characterizing ensemble methods in classification asks: A reveiw and annotated bibliography
    • L. Rokach. Taxonomy for characterizing ensemble methods in classification asks: A reveiw and annotated bibliography. Computational Statistics and Data Analysis, 53:4046-4072, 2009.
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 4046-4072
    • Rokach, L.1
  • 172
    • 84956994921 scopus 로고    scopus 로고
    • Methods for designing multiple classifier systems
    • J. Kittler and F. Roli (eds), Lecture Notes in Computer Science, Springer-Verlag
    • F. Roli, G. Giacinto, and G. Vernazza. Methods for designing multiple classifier systems. In J. Kittler and F. Roli (eds), Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK, volume 2096 of Lecture Notes in Computer Science, pp. 78-87, Springer-Verlag, 2001.
    • (2001) Multiple Classifier Systems. Second International Workshop, MCS 2001, Cambridge, UK , vol.2096 , pp. 78-87
    • Roli, F.1    Giacinto, G.2    Vernazza, G.3
  • 174
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • R. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2/3):135-168, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.1    Singer, Y.2
  • 175
    • 0025448521 scopus 로고
    • The strenght of weak learnability
    • R.E. Schapire. The strenght of weak learnability. Machine Learning, 5(2):197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 177
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R.E. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651-1686, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 178
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 179
    • 77349119213 scopus 로고    scopus 로고
    • Predicting gene function using hierarchical multi-label decision tree ensembles
    • L. Schietgat, C. Vens, J. Struyf, H. Blockeel, and S. Dzeroski. Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinformatics, 11:2, 2010.
    • (2010) BMC Bioinformatics , vol.11 , pp. 2
    • Schietgat, L.1    Vens, C.2    Struyf, J.3    Blockeel, H.4    Dzeroski, S.5
  • 181
    • 68949137209 scopus 로고    scopus 로고
    • Technical Report Computer Sciences Technical Report 1648, University of Wisconsin, Madison
    • B. Settles. Active learning literature survey. Technical Report Computer Sciences Technical Report 1648, University of Wisconsin, Madison, 2010.
    • (2010) Active learning literature survey
    • Settles, B.1
  • 182
    • 84947596646 scopus 로고    scopus 로고
    • Types of multi-net systems
    • F. Roli and J. Kittler (eds), Lecture Notes in Computer Science, Springer-Verlag
    • A. Sharkey. Types of multi-net systems. In F. Roli and J. Kittler (eds), Multiple Classifier Systems, Third International Workshop, MCS2002, volume 2364 of Lecture Notes in Computer Science, pp. 108-117, Springer-Verlag, 2002.
    • (2002) Multiple Classifier Systems, Third International Workshop, MCS2002 , vol.2364 , pp. 108-117
    • Sharkey, A.1
  • 185
    • 0032121371 scopus 로고    scopus 로고
    • Bagging for linear classifiers
    • M. Skurichina and R.P.W. Duin. Bagging for linear classifiers. Pattern Recognition, 31(7):909-930, 1998.
    • (1998) Pattern Recognition , vol.31 , Issue.7 , pp. 909-930
    • Skurichina, M.1    Duin, R.P.W.2
  • 187
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting and the random subspace method for linear classifiers
    • M. Skurichina and R.P.W. Duin. Bagging, boosting and the random subspace method for linear classifiers. Pattern Analysis and Applications, 5(2):121-135, 2002.
    • (2002) Pattern Analysis and Applications , vol.5 , Issue.2 , pp. 121-135
    • Skurichina, M.1    Duin, R.P.W.2
  • 188
    • 33749250604 scopus 로고    scopus 로고
    • Experimental study for the comparison of classifier combination methods
    • S.Y. Sohna and H.W. Shinb. Experimental study for the comparison of classifier combination methods. Pattern Recognition, 40:33-40, 2007.
    • (2007) Pattern Recognition , vol.40 , pp. 33-40
    • Sohna, S.Y.1    Shinb, H.W.2
  • 190
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machine-based relevance feedback in image retrieval
    • D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bagging and random subspace for support vector machine-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7):1088-1099, 2006.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 193
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • A. Tsymbal, M. Pechenizkiy, and P. Cunningham. Diversity in search strategies for ensemble feature selection. Information Fusion, 6:83-98, 2006.
    • (2006) Information Fusion , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 194
    • 0038137315 scopus 로고    scopus 로고
    • Ensemble feature selection with the simple bayesian classifiaction
    • A. Tsymbal, S. Puuronen, and D.W. Patterson. Ensemble feature selection with the simple bayesian classifiaction. Information Fusion, 4:87-100, 2003.
    • (2003) Information Fusion , vol.4 , pp. 87-100
    • Tsymbal, A.1    Puuronen, S.2    Patterson, D.W.3
  • 195
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • K. Tumer and J. Ghosh. Error correlation and error reduction in ensemble classifiers. Connection Science, 8(3/4):385-404, 1996.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 385-404
    • Tumer, K.1    Ghosh, J.2
  • 196
    • 0036851381 scopus 로고    scopus 로고
    • Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles
    • G. Valentini. Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles. Artificial Intelligence in Medicine, 26(3):283-306, 2002.
    • (2002) Artificial Intelligence in Medicine , vol.26 , Issue.3 , pp. 283-306
    • Valentini, G.1
  • 197
    • 29144474463 scopus 로고    scopus 로고
    • An experimental bias-variance analysis of SVM ensembles based on resampling techniques
    • G. Valentini. An experimental bias-variance analysis of SVM ensembles based on resampling techniques. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 35(6):1252-1271, 2005.
    • (2005) IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics , vol.35 , Issue.6 , pp. 1252-1271
    • Valentini, G.1
  • 200
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
    • G. Valentini and T.G. Dietterich. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. Journal ofMachine Learning Research, 5:725-775, 2004.
    • (2004) Journal ofMachine Learning Research , vol.5 , pp. 725-775
    • Valentini, G.1    Dietterich, T.G.2
  • 201
    • 84865801454 scopus 로고    scopus 로고
    • Ensembles of learning machines
    • Lecture Notes in Computer Science, Springer-Verlag
    • G. Valentini and F. Masulli. Ensembles of learning machines. InNeural NetsWIRN-02, volume 2486 of Lecture Notes in Computer Science, pp. 3-19, Springer-Verlag, 2002.
    • (2002) Neural NetsWIRN-02 , vol.2486 , pp. 3-19
    • Valentini, G.1    Masulli, F.2
  • 206
    • 48249084000 scopus 로고    scopus 로고
    • Making the most of missing values: Object clustering with partial data in astronomy
    • ASP Conference Series, Proceedings of the Conference held 24-27 October, 2004 in Pasadena, California, USA
    • K.L. Wagstaff and V.G. Laidler. Making the most of missing values: Object clustering with partial data in astronomy. In Astronomical Data Analysis Software and Systems XIV, ASP Conference Series, Vol. 347, Proceedings of the Conference held 24-27 October, 2004 in Pasadena, California, USA, p. 172, 2005.
    • (2005) Astronomical Data Analysis Software and Systems XIV , vol.347 , pp. 172
    • Wagstaff, K.L.1    Laidler, V.G.2
  • 208
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 210
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwritting recognition
    • L. Xu, C. Krzyzak, and C. Suen. Methods of combining multiple classifiers and their applications to handwritting recognition. IEEE Transactions on Systems, Man and Cybernetics, 22(3):418-435, 1992.
    • (1992) IEEE Transactions on Systems, Man and Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, C.2    Suen, C.3
  • 212
    • 35748956765 scopus 로고    scopus 로고
    • A local boosting algorithm for solving classification problems
    • C.X. Zhang and J.S. Zhang. A local boosting algorithm for solving classification problems. Computational Statistics and Data Analysis, 52(4):1928-1941, 2008.
    • (2008) Computational Statistics and Data Analysis , vol.52 , Issue.4 , pp. 1928-1941
    • Zhang, C.X.1    Zhang, J.S.2
  • 214
    • 34548126507 scopus 로고    scopus 로고
    • Data-driven decompositon for multi-class classification
    • J. Zhou, H. Peng, and C. Suen. Data-driven decompositon for multi-class classification. Pattern Recognition, 41(1):67-76, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 67-76
    • Zhou, J.1    Peng, H.2    Suen, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.