-
1
-
-
61849124013
-
-
UCI machine learning repository, URL
-
D.N.A. Asuncion, UCI machine learning repository, 2007. URL 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
-
(2007)
-
-
Asuncion, D.N.A.1
-
2
-
-
10444241978
-
Ensemble diversity measures and their application to thinning
-
Banfield R.E., Hall L.O., Bowyer K.W., and Kegelmeyer W.P. Ensemble diversity measures and their application to thinning. Inf. Fusion 6 1 (2005) 49-62
-
(2005)
Inf. Fusion
, vol.6
, Issue.1
, pp. 49-62
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 24 2 (1996) 123-140
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
14344255621
-
Ensemble selection from libraries of models
-
Banff, Alberta, Canada
-
Caruana R., Niculescu-Mizil A., Crew G., and Ksikes A. Ensemble selection from libraries of models. Proceedings of the 21st International Conference on Machine learning, ICML' 04. Banff, Alberta, Canada (2004)
-
(2004)
Proceedings of the 21st International Conference on Machine learning, ICML' 04
-
-
Caruana, R.1
Niculescu-Mizil, A.2
Crew, G.3
Ksikes, A.4
-
5
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006) 1-30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
6
-
-
0031361611
-
Machine-learning research: four current directions
-
Dietterich T.G. Machine-learning research: four current directions. AI Mag. 18 4 (1998) 97-136
-
(1998)
AI Mag.
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.G.1
-
8
-
-
15844429144
-
Online adaptive policies for ensemble classifiers
-
Dimitrakakis C., and Bengio S. Online adaptive policies for ensemble classifiers. Trends Neurocomput. 64 (2005) 211-221
-
(2005)
Trends Neurocomput.
, vol.64
, pp. 211-221
-
-
Dimitrakakis, C.1
Bengio, S.2
-
9
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Mach. Learn. 54 3 (2004) 255-273
-
(2004)
Mach. Learn.
, vol.54
, Issue.3
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
10
-
-
0036931834
-
Pruning and dynamic scheduling of cost-sensitive ensembles
-
Edmonton, Alberta, Canada
-
Fan W., Chu F., Wang H., and Yu P.S. Pruning and dynamic scheduling of cost-sensitive ensembles. Proceedings of the 19th National Conference on Artificial Intelligence. Edmonton, Alberta, Canada (2002)
-
(2002)
Proceedings of the 19th National Conference on Artificial Intelligence
-
-
Fan, W.1
Chu, F.2
Wang, H.3
Yu, P.S.4
-
11
-
-
0001837148
-
A comparison of alternative tests of significance for the problem of m rankings
-
Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Statist. 11 (1940) 86-92
-
(1940)
Ann. Math. Statist.
, vol.11
, pp. 86-92
-
-
Friedman, M.1
-
12
-
-
0035202645
-
An approach to the automatic design of multiple classifier systems
-
Giacinto G., and Roli F. An approach to the automatic design of multiple classifier systems. Pattern Recognition Lett. 22 1 (2001) 25-33
-
(2001)
Pattern Recognition Lett.
, vol.22
, Issue.1
, pp. 25-33
-
-
Giacinto, G.1
Roli, F.2
-
13
-
-
0001750957
-
Approximations of the critical region of the Friedman statistic
-
Iman R.L., and Davenport J.M. Approximations of the critical region of the Friedman statistic. Commun. Stat. (1980) 571-595
-
(1980)
Commun. Stat.
, pp. 571-595
-
-
Iman, R.L.1
Davenport, J.M.2
-
23
-
-
0002522158
-
Meta-learning in distributed data mining systems: issues and approaches
-
Kargupta H., and Chan P. (Eds), MIT, AAAI Press, Cambridge, MA
-
Prodromidis A., and Chan P. Meta-learning in distributed data mining systems: issues and approaches. In: Kargupta H., and Chan P. (Eds). Advances of Distributed Data Mining (2000), MIT, AAAI Press, Cambridge, MA
-
(2000)
Advances of Distributed Data Mining
-
-
Prodromidis, A.1
Chan, P.2
-
24
-
-
0012467735
-
Cost complexity-based pruning of ensemble classifiers
-
Prodromidis A., and Stolfo S.J. Cost complexity-based pruning of ensemble classifiers. Knowl. Inf. Syst. 3 4 (2001) 449-469
-
(2001)
Knowl. Inf. Syst.
, vol.3
, Issue.4
, pp. 449-469
-
-
Prodromidis, A.1
Stolfo, S.J.2
-
25
-
-
0141771188
-
A survey of methods for scaling up inductive algorithms
-
Provost F., and Kolluri V. A survey of methods for scaling up inductive algorithms. Data Mining Knowl. Discovery 3 2 (1999) 131-169
-
(1999)
Data Mining Knowl. Discovery
, vol.3
, Issue.2
, pp. 131-169
-
-
Provost, F.1
Kolluri, V.2
-
26
-
-
0025448521
-
The strength of weak learnability
-
Schapire R.E. The strength of weak learnability. Mach. Learn. 5 (1990) 197-227
-
(1990)
Mach. Learn.
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
28
-
-
0004102479
-
-
MIT Press, Cambridge, MA
-
Sutton R.S., and Barto A.G. Reinforcement Learning, An Introduction (1999), MIT Press, Cambridge, MA
-
(1999)
Reinforcement Learning, An Introduction
-
-
Sutton, R.S.1
Barto, A.G.2
-
33
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
ACM, New York, NY, USA
-
Wang H., Fan W., Yu P.S., and Han J. Mining concept-drifting data streams using ensemble classifiers. 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2003), ACM, New York, NY, USA
-
(2003)
9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
36
-
-
0026692226
-
Stacked generalization
-
Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
37
-
-
33745794076
-
Ensemble pruning via semi-definite programming
-
Zhang Y., Burer S., and Street W.N. Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 7 (2006) 1315-1338
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1315-1338
-
-
Zhang, Y.1
Burer, S.2
Street, W.N.3
-
38
-
-
33646887846
-
Selective ensemble of decision trees
-
Chongqing, China
-
Zhou Z., and Tang W. Selective ensemble of decision trees. Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2003. Chongqing, China (2003)
-
(2003)
Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2003
-
-
Zhou, Z.1
Tang, W.2
|