메뉴 건너뛰기




Volumn 72, Issue 7-9, 2009, Pages 1900-1909

Pruning an ensemble of classifiers via reinforcement learning

Author keywords

Ensemble selection; Reinforcement learning

Indexed keywords

COMBINATION METHODS; CRITICAL DOMAINS; ENSEMBLE OF CLASSIFIERS; ENSEMBLE SELECTION; EXPERIMENTAL COMPARISONS; OPTIMAL POLICIES; Q-LEARNING ALGORITHMS;

EID: 61849098236     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.06.007     Document Type: Article
Times cited : (81)

References (38)
  • 1
    • 61849124013 scopus 로고    scopus 로고
    • UCI machine learning repository, URL
    • D.N.A. Asuncion, UCI machine learning repository, 2007. URL 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
    • (2007)
    • Asuncion, D.N.A.1
  • 2
    • 10444241978 scopus 로고    scopus 로고
    • Ensemble diversity measures and their application to thinning
    • Banfield R.E., Hall L.O., Bowyer K.W., and Kegelmeyer W.P. Ensemble diversity measures and their application to thinning. Inf. Fusion 6 1 (2005) 49-62
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 49-62
    • Banfield, R.E.1    Hall, L.O.2    Bowyer, K.W.3    Kegelmeyer, W.P.4
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 24 2 (1996) 123-140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006) 1-30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 6
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: four current directions
    • Dietterich T.G. Machine-learning research: four current directions. AI Mag. 18 4 (1998) 97-136
    • (1998) AI Mag. , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 8
    • 15844429144 scopus 로고    scopus 로고
    • Online adaptive policies for ensemble classifiers
    • Dimitrakakis C., and Bengio S. Online adaptive policies for ensemble classifiers. Trends Neurocomput. 64 (2005) 211-221
    • (2005) Trends Neurocomput. , vol.64 , pp. 211-221
    • Dimitrakakis, C.1    Bengio, S.2
  • 9
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Mach. Learn. 54 3 (2004) 255-273
    • (2004) Mach. Learn. , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 11
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Statist. 11 (1940) 86-92
    • (1940) Ann. Math. Statist. , vol.11 , pp. 86-92
    • Friedman, M.1
  • 12
    • 0035202645 scopus 로고    scopus 로고
    • An approach to the automatic design of multiple classifier systems
    • Giacinto G., and Roli F. An approach to the automatic design of multiple classifier systems. Pattern Recognition Lett. 22 1 (2001) 25-33
    • (2001) Pattern Recognition Lett. , vol.22 , Issue.1 , pp. 25-33
    • Giacinto, G.1    Roli, F.2
  • 13
    • 0001750957 scopus 로고
    • Approximations of the critical region of the Friedman statistic
    • Iman R.L., and Davenport J.M. Approximations of the critical region of the Friedman statistic. Commun. Stat. (1980) 571-595
    • (1980) Commun. Stat. , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 20
    • 33750460241 scopus 로고    scopus 로고
    • Using boosting to prune bagging ensembles
    • Martinez-Munoz G., and Suarez A. Using boosting to prune bagging ensembles. Pattern Recognition Lett. 28 1 (2007) 156-165
    • (2007) Pattern Recognition Lett. , vol.28 , Issue.1 , pp. 156-165
    • Martinez-Munoz, G.1    Suarez, A.2
  • 23
    • 0002522158 scopus 로고    scopus 로고
    • Meta-learning in distributed data mining systems: issues and approaches
    • Kargupta H., and Chan P. (Eds), MIT, AAAI Press, Cambridge, MA
    • Prodromidis A., and Chan P. Meta-learning in distributed data mining systems: issues and approaches. In: Kargupta H., and Chan P. (Eds). Advances of Distributed Data Mining (2000), MIT, AAAI Press, Cambridge, MA
    • (2000) Advances of Distributed Data Mining
    • Prodromidis, A.1    Chan, P.2
  • 24
    • 0012467735 scopus 로고    scopus 로고
    • Cost complexity-based pruning of ensemble classifiers
    • Prodromidis A., and Stolfo S.J. Cost complexity-based pruning of ensemble classifiers. Knowl. Inf. Syst. 3 4 (2001) 449-469
    • (2001) Knowl. Inf. Syst. , vol.3 , Issue.4 , pp. 449-469
    • Prodromidis, A.1    Stolfo, S.J.2
  • 25
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • Provost F., and Kolluri V. A survey of methods for scaling up inductive algorithms. Data Mining Knowl. Discovery 3 2 (1999) 131-169
    • (1999) Data Mining Knowl. Discovery , vol.3 , Issue.2 , pp. 131-169
    • Provost, F.1    Kolluri, V.2
  • 26
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Mach. Learn. 5 (1990) 197-227
    • (1990) Mach. Learn. , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 36
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 37
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Zhang Y., Burer S., and Street W.N. Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 7 (2006) 1315-1338
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.