메뉴 건너뛰기




Volumn 29, Issue 2-3, 1997, Pages 131-163

Bayesian Network Classifiers

Author keywords

Bayesian networks; Classification

Indexed keywords

COMPUTATIONAL COMPLEXITY; PROBABILITY; TREES (MATHEMATICS);

EID: 0031276011     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/a:1007465528199     Document Type: Article
Times cited : (4265)

References (53)
  • 2
    • 0001916227 scopus 로고
    • Properties of Bayesian network learning algorithms
    • R. López de Mantarás & D. Poole (Eds.), San Francisco, CA: Morgan Kaufmann
    • Bouckaert, R. R. (1994). Properties of Bayesian network learning algorithms. In R. López de Mantarás & D. Poole (Eds.), Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (pp. 102-109). San Francisco, CA: Morgan Kaufmann.
    • (1994) Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence , pp. 102-109
    • Bouckaert, R.R.1
  • 3
    • 0001926525 scopus 로고
    • Theory refinement on Bayesian networks
    • B. D. D'Ambrosio, P. Smets, & P. P. Bonissone (Eds.), San Francisco, CA: Morgan Kaufmann
    • Buntine, W. (1991). Theory refinement on Bayesian networks. In B. D. D'Ambrosio, P. Smets, & P. P. Bonissone (Eds.), Proceedings of the Seventh Annual Conference on Uncertainty Artificial Intelligence (pp. 52-60). San Francisco, CA: Morgan Kaufmann.
    • (1991) Proceedings of the Seventh Annual Conference on Uncertainty Artificial Intelligence , pp. 52-60
    • Buntine, W.1
  • 4
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Trans. on Knowledge and Data Engineering, 8, 195-210.
    • (1996) IEEE Trans. on Knowledge and Data Engineering , vol.8 , pp. 195-210
    • Buntine, W.1
  • 5
    • 0003006556 scopus 로고
    • Estimating probabilities: A crucial task in machine learning
    • L. C. Aiello (Ed.), London: Pitman
    • Cestnik, B. (1990). Estimating probabilities: a crucial task in machine learning. In L. C. Aiello (Ed.), Proceedings of the 9th European Conference on Artificial Intelligence (pp. 147-149). London: Pitman.
    • (1990) Proceedings of the 9th European Conference on Artificial Intelligence , pp. 147-149
    • Cestnik, B.1
  • 6
    • 0001019707 scopus 로고
    • Learning Bayesian networks is NP-complete
    • D. Fisher & A. Lenz, Springer-Verlag
    • Chickering, D.M. (1995). Learning Bayesian networks is NP-complete. In D. Fisher & A. Lenz, Learning from Data. Springer-Verlag.
    • (1995) Learning from Data
    • Chickering, D.M.1
  • 7
    • 0042883436 scopus 로고    scopus 로고
    • Efficient approximations for the marginal likelihood of incomplete data given a Bayesian network
    • E. Horvits & F. Jensen (Eds.), San Francisco, CA: Morgan Kaufmann
    • Chickering, D. M. & D. Heckerman (1996). Efficient approximations for the marginal likelihood of incomplete data given a Bayesian network. In E. Horvits & F. Jensen (Eds.), Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (pp. 158-168). San Francisco, CA: Morgan Kaufmann.
    • (1996) Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence , pp. 158-168
    • Chickering, D.M.1    Heckerman, D.2
  • 8
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C. K. & C. N. Liu (1968). Approximating discrete probability distributions with dependence trees. IEEE Trans. on Info. Theory, 14, 462-467.
    • (1968) IEEE Trans. on Info. Theory , vol.14 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F. & E. Herskovits (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 12
    • 0017094666 scopus 로고
    • Properties of diagnostic data distributions
    • Dawid, A. P. (1976). Properties of diagnostic data distributions. Biometrics, 32, 647-658.
    • (1976) Biometrics , vol.32 , pp. 647-658
    • Dawid, A.P.1
  • 14
    • 0002419948 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple Bayesian classifier
    • L. Saitta (Ed.), San Francisco, CA: Morgan Kaufmann
    • Domingos, P. & M. Pazzani (1996). Beyond independence: Conditions for the optimality of the simple Bayesian classifier. In L. Saitta (Ed.), Proceedings of the Thirteenth International Conference on Machine Learning (pp. 105-112). San Francisco, CA: Morgan Kaufmann.
    • (1996) Proceedings of the Thirteenth International Conference on Machine Learning , pp. 105-112
    • Domingos, P.1    Pazzani, M.2
  • 15
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • A. Prieditis & S. Russell (Eds.), San Francisco, CA: Morgan Kaufmann
    • Dougherty, J., R. Kohavi, & M. Sahami (1995). Supervised and unsupervised discretization of continuous features. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine Learning (pp. 194-202). San Francisco, CA: Morgan Kaufmann.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 17
    • 0005253845 scopus 로고
    • Fraud/uncollectable debt detection using a Bayesian network based learning system: A rare binary outcome with mixed data structures
    • P. Besnard & S. Hanks (Eds.), San Francisco, CA: Morgan Kaufmann
    • Ezawa, K. J. & T. Schuermann (1995). Fraud/uncollectable debt detection using a Bayesian network based learning system: A rare binary outcome with mixed data structures. In P. Besnard & S. Hanks (Eds.), Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 157-166). San Francisco, CA: Morgan Kaufmann.
    • (1995) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence , pp. 157-166
    • Ezawa, K.J.1    Schuermann, T.2
  • 19
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1 - Loss, and the curse-of-dimensionality
    • Friedman, J. (1997a). On bias, variance, 0/1 - loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1, 55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.1
  • 20
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • D. Fisher (Ed.), San Francisco, CA: Morgan Kaufmann
    • Friedman, N. (1997b). Learning belief networks in the presence of missing values and hidden variables. In D. Fisher (Ed.), Proceedings of the Fourteenth International Conference on Machine Learning (pp. 125-133). San Francisco, CA: Morgan Kaufmann.
    • (1997) Proceedings of the Fourteenth International Conference on Machine Learning , pp. 125-133
    • Friedman, N.1
  • 22
    • 0001156075 scopus 로고    scopus 로고
    • Discretization of continuous attributes while learning Bayesian networks
    • L. Saitta (Ed.), San Francisco, CA: Morgan Kaufmann
    • Friedman, N. & M. Goldszmidt (1996b). Discretization of continuous attributes while learning Bayesian networks. In L. Saitta (Ed.), Proceedings of the Thirteenth International Conference on Machine Learning (pp. 157-165). San Francisco, CA: Morgan Kaufmann.
    • (1996) Proceedings of the Thirteenth International Conference on Machine Learning , pp. 157-165
    • Friedman, N.1    Goldszmidt, M.2
  • 24
    • 0041315314 scopus 로고
    • An entropy-based learning algorithm of Bayesian conditional trees
    • D. Dubois, M. P. Wellman, B. D. D'Ambrosio, & P. Smets (Eds.), San Francisco, CA: Morgan Kaufmann
    • Geiger, D. (1992). An entropy-based learning algorithm of Bayesian conditional trees. In D. Dubois, M. P. Wellman, B. D. D'Ambrosio, & P. Smets (Eds.), Proceedings of the Eighth Annual Conference on Uncertainty Artificial Intelligence (pp. 92-97). San Francisco, CA: Morgan Kaufmann.
    • (1992) Proceedings of the Eighth Annual Conference on Uncertainty Artificial Intelligence , pp. 92-97
    • Geiger, D.1
  • 25
    • 0030125397 scopus 로고    scopus 로고
    • Knowledge representation and inference in similarity networks and Bayesian multinets
    • Geiger, D. & D. Heckerman (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45-74.
    • (1996) Artificial Intelligence , vol.82 , pp. 45-74
    • Geiger, D.1    Heckerman, D.2
  • 26
    • 0002017385 scopus 로고    scopus 로고
    • Asymptotic model selection for directed graphs with hidden variables
    • E. Horvits & F. Jensen (Eds.), San Francisco, CA: Morgan Kaufmann
    • Geiger, D., D. Heckerman, & C. Meek (1996). Asymptotic model selection for directed graphs with hidden variables. In E. Horvits & F. Jensen (Eds.), Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (pp. 283-290). San Francisco, CA: Morgan Kaufmann.
    • (1996) Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence , pp. 283-290
    • Geiger, D.1    Heckerman, D.2    Meek, C.3
  • 29
    • 0002594891 scopus 로고
    • Learning Bayesian networks: A unification for discrete and Gaussian domains
    • P. Besnard & S. Hanks (Eds.), San Francisco, CA: Morgan Kaufmann
    • Heckerman, D. & D. Geiger (1995). Learning Bayesian networks: a unification for discrete and Gaussian domains. In P. Besnard & S. Hanks (Eds.), Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 274-284). San Francisco, CA: Morgan Kaufmann.
    • (1995) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence , pp. 274-284
    • Heckerman, D.1    Geiger, D.2
  • 30
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., D. Geiger, & D. M. Chickering (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 31
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Accepted for publication.
    • John, G. & R. Kohavi (1997). Wrappers for feature subset selection. Artificial Intelligence. Accepted for publication. A preliminary version appears in Proceedings of the Eleventh International Conference on Machine Learning, 1994, pp. 121-129, under the title "Irrelevant features and the subset selection problem".
    • (1997) Artificial Intelligence
    • John, G.1    Kohavi, R.2
  • 32
    • 46149108293 scopus 로고
    • Proceedings of the Eleventh International Conference on Machine Learning
    • under the title
    • John, G. & R. Kohavi (1997). Wrappers for feature subset selection. Artificial Intelligence. Accepted for publication. A preliminary version appears in Proceedings of the Eleventh International Conference on Machine Learning, 1994, pp. 121-129, under the title "Irrelevant features and the subset selection problem".
    • (1994) Irrelevant Features and the Subset Selection Problem , pp. 121-129
  • 33
    • 0000468432 scopus 로고
    • Estimating continuous distributions in Bayesian classifiers
    • P. Besnard & S. Hanks (Eds.), San Francisco, CA: Morgan Kaufmann
    • John, G. H. & P. Langley (1995). Estimating continuous distributions in Bayesian classifiers. In P. Besnard & S. Hanks (Eds.), Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 338-345). San Francisco, CA: Morgan Kaufmann.
    • (1995) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence , pp. 338-345
    • John, G.H.1    Langley, P.2
  • 34
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • San Francisco, CA: Morgan Kaufmann
    • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (pp. 1137-1143). San Francisco, CA: Morgan Kaufmann.
    • (1995) Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 36
    • 85031799549 scopus 로고
    • Semi-naive Bayesian classifier
    • Y. Kodratoff (Ed.), Berlin: Springer-Verlag
    • Kononenko, I. (1991). Semi-naive Bayesian classifier. In Y. Kodratoff (Ed.), Proc. Sixth European Working Session on Learning (pp. 206-219). Berlin: Springer-Verlag.
    • (1991) Proc. Sixth European Working Session on Learning , pp. 206-219
    • Kononenko, I.1
  • 38
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks. An approach based on the MDL principle
    • Lam, W. & F. Bacchus (1994). Learning Bayesian belief networks. An approach based on the MDL principle. Computational Intelligence, 10, 269-293.
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 40
    • 0001901666 scopus 로고
    • Induction of selective Bayesian classifiers
    • R. López de Mantarás & D. Poole (Eds.), San Francisco, CA: Morgan Kaufmann
    • Langley, P. & S. Sage (1994). Induction of selective Bayesian classifiers. In R. López de Mantarás & D. Poole (Eds.), Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (pp. 399-406). San Francisco, CA: Morgan Kaufmann.
    • (1994) Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence , pp. 399-406
    • Langley, P.1    Sage, S.2
  • 41
    • 58149210716 scopus 로고
    • The EM algorithm for graphical association models with missing data
    • Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19, 191-201.
    • (1995) Computational Statistics and Data Analysis , vol.19 , pp. 191-201
    • Lauritzen, S.L.1
  • 42
    • 0000956655 scopus 로고
    • Approximating probability distributions to reduce storage requirements
    • Lewis, P. M. (1959). Approximating probability distributions to reduce storage requirements. Information and Control, 2, 214-225.
    • (1959) Information and Control , vol.2 , pp. 214-225
    • Lewis, P.M.1
  • 48
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 49
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. R. (1976). Inference and missing data. Biometrica, 63, 581-592.
    • (1976) Biometrica , vol.63 , pp. 581-592
    • Rubin, D.R.1
  • 50
    • 0011225046 scopus 로고
    • A comparison of induction algorithms for selective and non-selective Bayesian classifiers
    • A. Prieditis & S. Russell (Eds.), San Francisco, CA: Morgan Kaufmann
    • Singh, M. & G. M. Provan (1995). A comparison of induction algorithms for selective and non-selective Bayesian classifiers. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine Learning (pp. 497-505). San Francisco, CA: Morgan Kaufmann.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 497-505
    • Singh, M.1    Provan, G.M.2
  • 51
    • 0007152230 scopus 로고    scopus 로고
    • Efficient learning of selective Bayesian network classifiers
    • L. Saitta (Ed.), San Francisco, CA: Morgan Kaufmann
    • Singh, M. & G. M. Provan (1996). Efficient learning of selective Bayesian network classifiers. In L. Saitta (Ed.), Proceedings of the Thirteenth International Conference on Machine Learning (pp. 453-461). San Francisco, CA: Morgan Kaufmann.
    • (1996) Proceedings of the Thirteenth International Conference on Machine Learning , pp. 453-461
    • Singh, M.1    Provan, G.M.2
  • 53
    • 0003021797 scopus 로고
    • A construction of Bayesian networks from databases based on an MDL scheme
    • D. Heckerman & A. Mamdani (Eds.), San Francisco, CA: Morgan Kaufmann
    • Suzuki, J. (1993). A construction of Bayesian networks from databases based on an MDL scheme. In D. Heckerman & A. Mamdani (Eds.), Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence (pp. 266-273). San Francisco, CA: Morgan Kaufmann.
    • (1993) Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence , pp. 266-273
    • Suzuki, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.