-
2
-
-
0001916227
-
Properties of Bayesian network learning algorithms
-
R. López de Mantarás & D. Poole (Eds.), San Francisco, CA: Morgan Kaufmann
-
Bouckaert, R. R. (1994). Properties of Bayesian network learning algorithms. In R. López de Mantarás & D. Poole (Eds.), Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (pp. 102-109). San Francisco, CA: Morgan Kaufmann.
-
(1994)
Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence
, pp. 102-109
-
-
Bouckaert, R.R.1
-
3
-
-
0001926525
-
Theory refinement on Bayesian networks
-
B. D. D'Ambrosio, P. Smets, & P. P. Bonissone (Eds.), San Francisco, CA: Morgan Kaufmann
-
Buntine, W. (1991). Theory refinement on Bayesian networks. In B. D. D'Ambrosio, P. Smets, & P. P. Bonissone (Eds.), Proceedings of the Seventh Annual Conference on Uncertainty Artificial Intelligence (pp. 52-60). San Francisco, CA: Morgan Kaufmann.
-
(1991)
Proceedings of the Seventh Annual Conference on Uncertainty Artificial Intelligence
, pp. 52-60
-
-
Buntine, W.1
-
4
-
-
0030124955
-
A guide to the literature on learning probabilistic networks from data
-
Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Trans. on Knowledge and Data Engineering, 8, 195-210.
-
(1996)
IEEE Trans. on Knowledge and Data Engineering
, vol.8
, pp. 195-210
-
-
Buntine, W.1
-
5
-
-
0003006556
-
Estimating probabilities: A crucial task in machine learning
-
L. C. Aiello (Ed.), London: Pitman
-
Cestnik, B. (1990). Estimating probabilities: a crucial task in machine learning. In L. C. Aiello (Ed.), Proceedings of the 9th European Conference on Artificial Intelligence (pp. 147-149). London: Pitman.
-
(1990)
Proceedings of the 9th European Conference on Artificial Intelligence
, pp. 147-149
-
-
Cestnik, B.1
-
6
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
D. Fisher & A. Lenz, Springer-Verlag
-
Chickering, D.M. (1995). Learning Bayesian networks is NP-complete. In D. Fisher & A. Lenz, Learning from Data. Springer-Verlag.
-
(1995)
Learning from Data
-
-
Chickering, D.M.1
-
7
-
-
0042883436
-
Efficient approximations for the marginal likelihood of incomplete data given a Bayesian network
-
E. Horvits & F. Jensen (Eds.), San Francisco, CA: Morgan Kaufmann
-
Chickering, D. M. & D. Heckerman (1996). Efficient approximations for the marginal likelihood of incomplete data given a Bayesian network. In E. Horvits & F. Jensen (Eds.), Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (pp. 158-168). San Francisco, CA: Morgan Kaufmann.
-
(1996)
Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence
, pp. 158-168
-
-
Chickering, D.M.1
Heckerman, D.2
-
8
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
Chow, C. K. & C. N. Liu (1968). Approximating discrete probability distributions with dependence trees. IEEE Trans. on Info. Theory, 14, 462-467.
-
(1968)
IEEE Trans. on Info. Theory
, vol.14
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
9
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F. & E. Herskovits (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
12
-
-
0017094666
-
Properties of diagnostic data distributions
-
Dawid, A. P. (1976). Properties of diagnostic data distributions. Biometrics, 32, 647-658.
-
(1976)
Biometrics
, vol.32
, pp. 647-658
-
-
Dawid, A.P.1
-
14
-
-
0002419948
-
Beyond independence: Conditions for the optimality of the simple Bayesian classifier
-
L. Saitta (Ed.), San Francisco, CA: Morgan Kaufmann
-
Domingos, P. & M. Pazzani (1996). Beyond independence: Conditions for the optimality of the simple Bayesian classifier. In L. Saitta (Ed.), Proceedings of the Thirteenth International Conference on Machine Learning (pp. 105-112). San Francisco, CA: Morgan Kaufmann.
-
(1996)
Proceedings of the Thirteenth International Conference on Machine Learning
, pp. 105-112
-
-
Domingos, P.1
Pazzani, M.2
-
15
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
A. Prieditis & S. Russell (Eds.), San Francisco, CA: Morgan Kaufmann
-
Dougherty, J., R. Kohavi, & M. Sahami (1995). Supervised and unsupervised discretization of continuous features. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine Learning (pp. 194-202). San Francisco, CA: Morgan Kaufmann.
-
(1995)
Proceedings of the Twelfth International Conference on Machine Learning
, pp. 194-202
-
-
Dougherty, J.1
Kohavi, R.2
Sahami, M.3
-
17
-
-
0005253845
-
Fraud/uncollectable debt detection using a Bayesian network based learning system: A rare binary outcome with mixed data structures
-
P. Besnard & S. Hanks (Eds.), San Francisco, CA: Morgan Kaufmann
-
Ezawa, K. J. & T. Schuermann (1995). Fraud/uncollectable debt detection using a Bayesian network based learning system: A rare binary outcome with mixed data structures. In P. Besnard & S. Hanks (Eds.), Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 157-166). San Francisco, CA: Morgan Kaufmann.
-
(1995)
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, pp. 157-166
-
-
Ezawa, K.J.1
Schuermann, T.2
-
19
-
-
21744462998
-
On bias, variance, 0/1 - Loss, and the curse-of-dimensionality
-
Friedman, J. (1997a). On bias, variance, 0/1 - loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1, 55-77.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.1
-
20
-
-
0001586968
-
Learning belief networks in the presence of missing values and hidden variables
-
D. Fisher (Ed.), San Francisco, CA: Morgan Kaufmann
-
Friedman, N. (1997b). Learning belief networks in the presence of missing values and hidden variables. In D. Fisher (Ed.), Proceedings of the Fourteenth International Conference on Machine Learning (pp. 125-133). San Francisco, CA: Morgan Kaufmann.
-
(1997)
Proceedings of the Fourteenth International Conference on Machine Learning
, pp. 125-133
-
-
Friedman, N.1
-
22
-
-
0001156075
-
Discretization of continuous attributes while learning Bayesian networks
-
L. Saitta (Ed.), San Francisco, CA: Morgan Kaufmann
-
Friedman, N. & M. Goldszmidt (1996b). Discretization of continuous attributes while learning Bayesian networks. In L. Saitta (Ed.), Proceedings of the Thirteenth International Conference on Machine Learning (pp. 157-165). San Francisco, CA: Morgan Kaufmann.
-
(1996)
Proceedings of the Thirteenth International Conference on Machine Learning
, pp. 157-165
-
-
Friedman, N.1
Goldszmidt, M.2
-
24
-
-
0041315314
-
An entropy-based learning algorithm of Bayesian conditional trees
-
D. Dubois, M. P. Wellman, B. D. D'Ambrosio, & P. Smets (Eds.), San Francisco, CA: Morgan Kaufmann
-
Geiger, D. (1992). An entropy-based learning algorithm of Bayesian conditional trees. In D. Dubois, M. P. Wellman, B. D. D'Ambrosio, & P. Smets (Eds.), Proceedings of the Eighth Annual Conference on Uncertainty Artificial Intelligence (pp. 92-97). San Francisco, CA: Morgan Kaufmann.
-
(1992)
Proceedings of the Eighth Annual Conference on Uncertainty Artificial Intelligence
, pp. 92-97
-
-
Geiger, D.1
-
25
-
-
0030125397
-
Knowledge representation and inference in similarity networks and Bayesian multinets
-
Geiger, D. & D. Heckerman (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45-74.
-
(1996)
Artificial Intelligence
, vol.82
, pp. 45-74
-
-
Geiger, D.1
Heckerman, D.2
-
26
-
-
0002017385
-
Asymptotic model selection for directed graphs with hidden variables
-
E. Horvits & F. Jensen (Eds.), San Francisco, CA: Morgan Kaufmann
-
Geiger, D., D. Heckerman, & C. Meek (1996). Asymptotic model selection for directed graphs with hidden variables. In E. Horvits & F. Jensen (Eds.), Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (pp. 283-290). San Francisco, CA: Morgan Kaufmann.
-
(1996)
Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence
, pp. 283-290
-
-
Geiger, D.1
Heckerman, D.2
Meek, C.3
-
29
-
-
0002594891
-
Learning Bayesian networks: A unification for discrete and Gaussian domains
-
P. Besnard & S. Hanks (Eds.), San Francisco, CA: Morgan Kaufmann
-
Heckerman, D. & D. Geiger (1995). Learning Bayesian networks: a unification for discrete and Gaussian domains. In P. Besnard & S. Hanks (Eds.), Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 274-284). San Francisco, CA: Morgan Kaufmann.
-
(1995)
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, pp. 274-284
-
-
Heckerman, D.1
Geiger, D.2
-
30
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., D. Geiger, & D. M. Chickering (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
31
-
-
0031381525
-
Wrappers for feature subset selection
-
Accepted for publication.
-
John, G. & R. Kohavi (1997). Wrappers for feature subset selection. Artificial Intelligence. Accepted for publication. A preliminary version appears in Proceedings of the Eleventh International Conference on Machine Learning, 1994, pp. 121-129, under the title "Irrelevant features and the subset selection problem".
-
(1997)
Artificial Intelligence
-
-
John, G.1
Kohavi, R.2
-
32
-
-
46149108293
-
Proceedings of the Eleventh International Conference on Machine Learning
-
under the title
-
John, G. & R. Kohavi (1997). Wrappers for feature subset selection. Artificial Intelligence. Accepted for publication. A preliminary version appears in Proceedings of the Eleventh International Conference on Machine Learning, 1994, pp. 121-129, under the title "Irrelevant features and the subset selection problem".
-
(1994)
Irrelevant Features and the Subset Selection Problem
, pp. 121-129
-
-
-
33
-
-
0000468432
-
Estimating continuous distributions in Bayesian classifiers
-
P. Besnard & S. Hanks (Eds.), San Francisco, CA: Morgan Kaufmann
-
John, G. H. & P. Langley (1995). Estimating continuous distributions in Bayesian classifiers. In P. Besnard & S. Hanks (Eds.), Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 338-345). San Francisco, CA: Morgan Kaufmann.
-
(1995)
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, pp. 338-345
-
-
John, G.H.1
Langley, P.2
-
34
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
San Francisco, CA: Morgan Kaufmann
-
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (pp. 1137-1143). San Francisco, CA: Morgan Kaufmann.
-
(1995)
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence
, pp. 1137-1143
-
-
Kohavi, R.1
-
35
-
-
84904506139
-
MLC++: A machine learning library in C++
-
IEEE Computer Society Press
-
Kohavi, R., G. John, R. Long, D. Manley, & K. Pfleger (1994). MLC++: A machine learning library in C++. In Proc. Sixth International Conference on Tools with Artificial Intelligence (pp. 740-743). IEEE Computer Society Press.
-
(1994)
Proc. Sixth International Conference on Tools with Artificial Intelligence
, pp. 740-743
-
-
Kohavi, R.1
John, G.2
Long, R.3
Manley, D.4
Pfleger, K.5
-
36
-
-
85031799549
-
Semi-naive Bayesian classifier
-
Y. Kodratoff (Ed.), Berlin: Springer-Verlag
-
Kononenko, I. (1991). Semi-naive Bayesian classifier. In Y. Kodratoff (Ed.), Proc. Sixth European Working Session on Learning (pp. 206-219). Berlin: Springer-Verlag.
-
(1991)
Proc. Sixth European Working Session on Learning
, pp. 206-219
-
-
Kononenko, I.1
-
38
-
-
0028482006
-
Learning Bayesian belief networks. An approach based on the MDL principle
-
Lam, W. & F. Bacchus (1994). Learning Bayesian belief networks. An approach based on the MDL principle. Computational Intelligence, 10, 269-293.
-
(1994)
Computational Intelligence
, vol.10
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
39
-
-
0026992322
-
An analysis of Bayesian classifiers
-
Menlo Park, CA: AAAI Press
-
Langley, P., W. Iba, & K. Thompson (1992). An analysis of Bayesian classifiers. In Proceedings, Tenth National Conference on Artificial Intelligence (pp. 223-228). Menlo Park, CA: AAAI Press.
-
(1992)
Proceedings, Tenth National Conference on Artificial Intelligence
, pp. 223-228
-
-
Langley, P.1
Iba, W.2
Thompson, K.3
-
40
-
-
0001901666
-
Induction of selective Bayesian classifiers
-
R. López de Mantarás & D. Poole (Eds.), San Francisco, CA: Morgan Kaufmann
-
Langley, P. & S. Sage (1994). Induction of selective Bayesian classifiers. In R. López de Mantarás & D. Poole (Eds.), Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (pp. 399-406). San Francisco, CA: Morgan Kaufmann.
-
(1994)
Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence
, pp. 399-406
-
-
Langley, P.1
Sage, S.2
-
41
-
-
58149210716
-
The EM algorithm for graphical association models with missing data
-
Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19, 191-201.
-
(1995)
Computational Statistics and Data Analysis
, vol.19
, pp. 191-201
-
-
Lauritzen, S.L.1
-
42
-
-
0000956655
-
Approximating probability distributions to reduce storage requirements
-
Lewis, P. M. (1959). Approximating probability distributions to reduce storage requirements. Information and Control, 2, 214-225.
-
(1959)
Information and Control
, vol.2
, pp. 214-225
-
-
Lewis, P.M.1
-
48
-
-
0018015137
-
Modeling by shortest data description
-
Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465-471.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
49
-
-
0017133178
-
Inference and missing data
-
Rubin, D. R. (1976). Inference and missing data. Biometrica, 63, 581-592.
-
(1976)
Biometrica
, vol.63
, pp. 581-592
-
-
Rubin, D.R.1
-
50
-
-
0011225046
-
A comparison of induction algorithms for selective and non-selective Bayesian classifiers
-
A. Prieditis & S. Russell (Eds.), San Francisco, CA: Morgan Kaufmann
-
Singh, M. & G. M. Provan (1995). A comparison of induction algorithms for selective and non-selective Bayesian classifiers. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine Learning (pp. 497-505). San Francisco, CA: Morgan Kaufmann.
-
(1995)
Proceedings of the Twelfth International Conference on Machine Learning
, pp. 497-505
-
-
Singh, M.1
Provan, G.M.2
-
51
-
-
0007152230
-
Efficient learning of selective Bayesian network classifiers
-
L. Saitta (Ed.), San Francisco, CA: Morgan Kaufmann
-
Singh, M. & G. M. Provan (1996). Efficient learning of selective Bayesian network classifiers. In L. Saitta (Ed.), Proceedings of the Thirteenth International Conference on Machine Learning (pp. 453-461). San Francisco, CA: Morgan Kaufmann.
-
(1996)
Proceedings of the Thirteenth International Conference on Machine Learning
, pp. 453-461
-
-
Singh, M.1
Provan, G.M.2
-
52
-
-
84972488038
-
Bayesian analysis in expert systems
-
Spiegelhalter, D. J., A. P. Dawid, S. L. Lauritzen, & R. G. Cowell (1993). Bayesian analysis in expert systems. Statistical Science, 8, 219-283.
-
(1993)
Statistical Science
, vol.8
, pp. 219-283
-
-
Spiegelhalter, D.J.1
Dawid, A.P.2
Lauritzen, S.L.3
Cowell, R.G.4
-
53
-
-
0003021797
-
A construction of Bayesian networks from databases based on an MDL scheme
-
D. Heckerman & A. Mamdani (Eds.), San Francisco, CA: Morgan Kaufmann
-
Suzuki, J. (1993). A construction of Bayesian networks from databases based on an MDL scheme. In D. Heckerman & A. Mamdani (Eds.), Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence (pp. 266-273). San Francisco, CA: Morgan Kaufmann.
-
(1993)
Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence
, pp. 266-273
-
-
Suzuki, J.1
|