메뉴 건너뛰기




Volumn 13, Issue 1, 2012, Pages 20-30

Random feature weights for decision tree ensemble construction

Author keywords

Bagging; Boosting; Classifier ensembles; Decision trees; Random Forests; Random Subspaces

Indexed keywords

BAGGING; BOOSTING; CLASSIFIER ENSEMBLES; RANDOM FORESTS; RANDOM-SUBSPACES;

EID: 80053990343     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2010.11.004     Document Type: Article
Times cited : (57)

References (19)
  • 2
    • 36249013654 scopus 로고    scopus 로고
    • Applications of ensemble methods
    • DOI 10.1016/j.inffus.2007.07.004, PII S1566253507000656, Applications of Ensemble Methods
    • N.C. Oza, and K. Tumer Applications of ensemble methods Information Fusion 9 1 2008 2 3 (Pubitemid 350123478)
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 2-3
    • Oza, N.C.1    Tumer, K.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Freund, and R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting Journal of Computer and System Sciences 55 1 1997 119 139 (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 6
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • G.I. Webb Multiboosting: a technique for combining boosting and wagging Machine Learning 40 2 2000 159 196
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 7
    • 24144490154 scopus 로고    scopus 로고
    • Diversity in multiple classifier systems
    • L.I. Kuncheva Diversity in multiple classifier systems Information Fusion 6 1 2005 3 4
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 3-4
    • Kuncheva, L.I.1
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Machine Learning 40 2 2000 139 157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 13
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer, and R. Kohavi An empirical comparison of voting classification algorithms: bagging, boosting, and variants Machine Learning 36 1-2 1999 105 139
    • (1999) Machine Learning , vol.36 , Issue.12 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 16
    • 0000259511 scopus 로고    scopus 로고
    • Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms
    • T.G. Dietterich Approximate statistical test for comparing supervised classification learning algorithms Neural Computation 10 7 1998 1895 1923 (Pubitemid 128463689)
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 17
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.