메뉴 건너뛰기




Volumn 78, Issue 1, 2012, Pages 133-138

Remote sensing image classification based on neural network ensemble algorithm

Author keywords

DECORATE; Hybrid algorithm; RBFNN; Rotation Forest

Indexed keywords

ARTIFICIAL TRAINING; BASE CLASSIFIERS; CLASSIFICATION ERRORS; DATA SETS; DECORATE; ENSEMBLE ALGORITHMS; HYBRID ALGORITHMS; INTERPOLATION TECHNOLOGY; NEURAL NETWORK ENSEMBLES; RBF NEURAL NETWORK; RBFNN; RELABELING; REMOTE SENSING DATA; REMOTE SENSING IMAGE CLASSIFICATION; REMOTE SENSING IMAGES;

EID: 82655173888     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.04.044     Document Type: Article
Times cited : (61)

References (21)
  • 1
    • 44649165024 scopus 로고    scopus 로고
    • Statistical pattern recognition in remote sensing
    • Chen C.H., Peter Ho P.-G. Statistical pattern recognition in remote sensing. Pattern Recognition 2008, 41:2731-2741.
    • (2008) Pattern Recognition , vol.41 , pp. 2731-2741
    • Chen, C.H.1    Peter Ho, P.-G.2
  • 2
    • 78049316273 scopus 로고    scopus 로고
    • Ensemble of niching algorithms
    • Yu E.L., Suganthan P.N. Ensemble of niching algorithms. Inf. Sci. 2010, 180:2815-2833.
    • (2010) Inf. Sci. , vol.180 , pp. 2815-2833
    • Yu, E.L.1    Suganthan, P.N.2
  • 3
    • 58649110205 scopus 로고    scopus 로고
    • Overfitting cautious selection of classifier ensembles with genetic algorithms
    • Dos Santos E.M., Sabourin R., Maupin P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Inf. Fusion 2009, 10:150-162.
    • (2009) Inf. Fusion , vol.10 , pp. 150-162
    • Dos Santos, E.M.1    Sabourin, R.2    Maupin, P.3
  • 5
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.H., Wu J., Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 2002, 137:239-263.
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 6
    • 0036791948 scopus 로고    scopus 로고
    • A perspective view and survey of meta-learning
    • Vilalta R., Drissi Y. A perspective view and survey of meta-learning. Artif. Intell. Rev. 2002, 18:77-95.
    • (2002) Artif. Intell. Rev. , vol.18 , pp. 77-95
    • Vilalta, R.1    Drissi, Y.2
  • 7
    • 84880708659 scopus 로고    scopus 로고
    • Stacked sequential learning
    • Proceedings of the 19th International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., Edinburgh, Scotland
    • W.W. Cohen, V.R. Carvalho, Stacked sequential learning, in: Proceedings of the 19th International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., Edinburgh, Scotland, 2005, pp. 671-676.
    • (2005) , pp. 671-676
    • Cohen, W.W.1    Carvalho, V.R.2
  • 8
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Advances in Neural Information Processing Systems, Denver, CO, USA
    • A. Krogh, J. Vedelsby, Neural network ensembles, cross validation, and active learning, in: Advances in Neural Information Processing Systems, Denver, CO, USA, 1995, pp. 231-238.
    • (1995) , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 9
    • 77950187695 scopus 로고    scopus 로고
    • Mix-ratio sampling: classifying multiclass imbalanced mouse brain images using support vector machine
    • Bae M.H., Wu T., Pan R. Mix-ratio sampling: classifying multiclass imbalanced mouse brain images using support vector machine. Expert Syst. Appl. 2010, 37:4955-4965.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4955-4965
    • Bae, M.H.1    Wu, T.2    Pan, R.3
  • 11
    • 84880832861 scopus 로고    scopus 로고
    • Constructing diverse classifier ensembles using artificial training examples, in: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico
    • P. Melville, R.J. Mooney, Constructing diverse classifier ensembles using artificial training examples, in: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003, pp. 505-510.
    • (2003) , pp. 505-510
    • Melville, P.1    Mooney, R.J.2
  • 12
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl M.A., Brodley C.E. Decision tree classification of land cover from remotely sensed data. Remote Sensing Environ. 1997, 61:399-409.
    • (1997) Remote Sensing Environ. , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 13
    • 42749094856 scopus 로고    scopus 로고
    • Cancer classification using rotation forest
    • Liu K.H., Huang D.S. Cancer classification using rotation forest. Comput. Biol. Med. 2008, 38:601-610.
    • (2008) Comput. Biol. Med. , vol.38 , pp. 601-610
    • Liu, K.H.1    Huang, D.S.2
  • 14
    • 0003408496 scopus 로고    scopus 로고
    • UCI Repository of Machine Learning Databases
    • C.J. Blake, C.J. Merz, UCI Repository of Machine Learning Databases, 1998. http://www.ics.uci.edu.
    • (1998)
    • Blake, C.J.1    Merz, C.J.2
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 16
    • 0036896235 scopus 로고    scopus 로고
    • An experimental study on diversity for bagging and boosting with linear classifiers
    • Kuncheva L.I., Skurichina M., Duin R.P.W. An experimental study on diversity for bagging and boosting with linear classifiers. Inf. Fusion 2002, 3:245-258.
    • (2002) Inf. Fusion , vol.3 , pp. 245-258
    • Kuncheva, L.I.1    Skurichina, M.2    Duin, R.P.W.3
  • 17
    • 79959506160 scopus 로고    scopus 로고
    • Dual-population based coevolutionary algorithm for designing RBFNN with feature selection
    • Tian J., Li M., Chen F. Dual-population based coevolutionary algorithm for designing RBFNN with feature selection. Expert Syst. Appl. 2010, 37:6904-6918.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 6904-6918
    • Tian, J.1    Li, M.2    Chen, F.3
  • 18
    • 37349035781 scopus 로고    scopus 로고
    • An empirical study of using rotation forest to improve regressors
    • Zhang C.X., Zhang J.S., Wang G.W. An empirical study of using rotation forest to improve regressors. Appl. Math. Comput. 2008, 195:618-629.
    • (2008) Appl. Math. Comput. , vol.195 , pp. 618-629
    • Zhang, C.X.1    Zhang, J.S.2    Wang, G.W.3
  • 19
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 21
    • 60249093947 scopus 로고    scopus 로고
    • Class dependent feature scaling method using naive Bayes classifier for text datamining
    • Youn E., Jeong M.K. Class dependent feature scaling method using naive Bayes classifier for text datamining. Pattern Recognition Lett. 2009, 30:477-485.
    • (2009) Pattern Recognition Lett. , vol.30 , pp. 477-485
    • Youn, E.1    Jeong, M.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.