-
1
-
-
0013337086
-
A comparative evaluation of sequential feature selection algorithms
-
D. Fisher, H. Lenz (Eds.)
-
D.W. Aha, R.L. Bankert, A comparative evaluation of sequential feature selection algorithms, in: D. Fisher, H. Lenz (Eds.), Proceedings of 5th International Workshop on Artificial Intelligence and Statistics, 1995, pp. 1-7.
-
(1995)
Proceedings of 5th International Workshop on Artificial Intelligence and Statistics
, pp. 1-7
-
-
Aha, D.W.1
Bankert, R.L.2
-
2
-
-
35248848402
-
A new ensemble diversity measure applied to thinning ensembles
-
T. Windeatt, F. Roli (Eds.), LNCS 2709, Springer
-
R.E. Banfield, L.O. Hall, K.W. Bowyer, W.P. Kegelmeyer, A new ensemble diversity measure applied to thinning ensembles, in: T. Windeatt, F. Roli (Eds.), Multiple Classifier Systems, 4th International Workshop, MCS 2003, LNCS 2709, Springer, 2003, pp. 306-316.
-
(2003)
Multiple Classifier Systems, 4th International Workshop, MCS 2003
, pp. 306-316
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
3
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
E. Bauer, R. Kohavi, An empirical comparison of voting classification algorithms: bagging, boosting, and variants, Machine Learning 36 (1,2) (1999) 105-139.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
4
-
-
0003408496
-
-
Dept. of Information and Computer Science, University of California, Irvine, CA
-
C.L. Blake, E. Keogh, C.J. Merz, UCI repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html], Dept. of Information and Computer Science, University of California, Irvine, CA, 1999.
-
(1999)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Keogh, E.2
Merz, C.J.3
-
5
-
-
0010687007
-
Creating and exploiting coverage and diversity
-
Portland, OR
-
C. Brodley, T. Lane, Creating and exploiting coverage and diversity, in: Proceedings of AAAI-96 Workshop on Integrating Multiple Learned Models, Portland, OR, 1996, pp. 8-14.
-
(1996)
Proceedings of AAAI-96 Workshop on Integrating Multiple Learned Models
, pp. 8-14
-
-
Brodley, C.1
Lane, T.2
-
7
-
-
0033461670
-
Reliability parameters to improve combination strategies in multiexpert systems
-
L.P. Cordelia, P. Foggia, C. Sansone, F. Tortorella, M. Vento, Reliability parameters to improve combination strategies in multiexpert systems, Pattern Analysis and Applications 2 (3) (1999) 205-214.
-
(1999)
Pattern Analysis and Applications
, vol.2
, Issue.3
, pp. 205-214
-
-
Cordelia, L.P.1
Foggia, P.2
Sansone, C.3
Tortorella, F.4
Vento, M.5
-
8
-
-
84974722422
-
Diversity versus quality in classification ensembles based on feature selection
-
R.L. deMántaras, E. Plaza (Eds.), Barcelona, Spain, LNCS 1810, Springer
-
P. Cunningham, J. Carney, Diversity versus quality in classification ensembles based on feature selection, in: R.L. deMántaras, E. Plaza (Eds.), Proceedings of ECML 2000 11th European Conference on Machine Learning, Barcelona, Spain, LNCS 1810, Springer, 2000, pp. 109-116.
-
(2000)
Proceedings of ECML 2000 11th European Conference on Machine Learning
, pp. 109-116
-
-
Cunningham, P.1
Carney, J.2
-
9
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, Machine Learning 40 (2) (2000) 139-157.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
10
-
-
0031361611
-
Machine learning research: Four current directions
-
T.G. Dietterich, Machine learning research: four current directions, AI Magazine 18 (4) (1997) 97-136.
-
(1997)
AI Magazine
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.G.1
-
11
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
P. Domingos, M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning 29 (2,3) (1997) 103-130.
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
12
-
-
84949787320
-
From ensemble methods to comprehensible models
-
S. Lange, K. Satoh, C.H. Smith (Eds.), LNCS 2534, Springer
-
C. Ferri, J. Hernández-Orallo, M.J. Ramírez-Quintana, From ensemble methods to comprehensible models, in: S. Lange, K. Satoh, C.H. Smith (Eds.), Proceedings of DS 2002, 5th International Conference on Discovery Science, LNCS 2534, Springer, 2002, pp. 165-177.
-
(2002)
Proceedings of DS 2002, 5th International Conference on Discovery Science
, pp. 165-177
-
-
Ferri, C.1
Hernández-Orallo, J.2
Ramírez-Quintana, M.J.3
-
13
-
-
0000179430
-
Methods for dynamic classifier selection
-
IEEE CS Press
-
G. Giacinto, F. Roli, Methods for dynamic classifier selection, in: Proceedings of ICIAP '99, 10th International Conference on Image Analysis and Processing, IEEE CS Press, 1999, pp. 659-664.
-
(1999)
Proceedings of ICIAP '99, 10th International Conference on Image Analysis and Processing
, pp. 659-664
-
-
Giacinto, G.1
Roli, F.2
-
15
-
-
0003763626
-
-
Dept. of Computer Science, Stanford University, Stanford, USA, PhD Thesis
-
R. Kohavi, Wrappers for performance enhancement and oblivious decision graphs, Dept. of Computer Science, Stanford University, Stanford, USA, PhD Thesis, 1995.
-
(1995)
Wrappers for Performance Enhancement and Oblivious Decision Graphs
-
-
Kohavi, R.1
-
16
-
-
0030422272
-
Data mining using MLC++: A machine learning library in C++
-
IEEE CS Press
-
R. Kohavi, D. Sommerfield, J. Dougherty, Data mining using MLC++: a machine learning library in C++, Tools with Artificial Intelligence, IEEE CS Press, 1996, pp. 234-245.
-
(1996)
Tools with Artificial Intelligence
, pp. 234-245
-
-
Kohavi, R.1
Sommerfield, D.2
Dougherty, J.3
-
17
-
-
0033640901
-
Comparison of algorithms that select features for pattern classifiers
-
M. Kudo, J. Sklansky, Comparison of algorithms that select features for pattern classifiers, Pattern Recognition 33 (1) (2000) 24-41.
-
(2000)
Pattern Recognition
, vol.33
, Issue.1
, pp. 24-41
-
-
Kudo, M.1
Sklansky, J.2
-
18
-
-
0027610524
-
Genetic algorithm for feature selection for parallel classifiers
-
L.I. Kuncheva, Genetic algorithm for feature selection for parallel classifiers, Information Processing Letters 46 (1993) 163-168.
-
(1993)
Information Processing Letters
, vol.46
, pp. 163-168
-
-
Kuncheva, L.I.1
-
20
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
L.I. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Machine Learning 51 (2) (2003) 181-207.
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
22
-
-
0142086622
-
A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition
-
L.S. Oliveira, R. Sabourin, F. Bortolozzi, C.Y. Suen, A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition, International Journal of Pattern Recognition and Artificial Intelligence 17 (6) (2003) 903-930.
-
(2003)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.17
, Issue.6
, pp. 903-930
-
-
Oliveira, L.S.1
Sabourin, R.2
Bortolozzi, F.3
Suen, C.Y.4
-
24
-
-
0004037141
-
Dimensionality reduction through classifier ensembles
-
Computational Sciences Division, NASA Ames Research Center
-
N. Oza, K. Turner, Dimensionality reduction through classifier ensembles, Computational Sciences Division, NASA Ames Research Center, Technical report NASA-ARC-IC-1999-126, 1999.
-
(1999)
Technical Report
, vol.NASA-ARC-IC-1999-126
-
-
Oza, N.1
Turner, K.2
-
25
-
-
84957702069
-
A dynamic integration algorithm for an ensemble of classifiers
-
Z.W. Ras, A. Skowron (Eds.), Warsaw, Poland, LNAI 1609, Springer
-
S. Puuronen, V. Terziyan, A. Tsymbal, A dynamic integration algorithm for an ensemble of classifiers, in: Z.W. Ras, A. Skowron (Eds.), Foundations of Intelligent Systems: 11th Int. Symp. ISMIS'99, Warsaw, Poland, LNAI 1609, Springer, 1999, pp. 592-600.
-
(1999)
Foundations of Intelligent Systems: 11th Int. Symp. ISMIS'99
, pp. 592-600
-
-
Puuronen, S.1
Terziyan, V.2
Tsymbal, A.3
-
26
-
-
84890445089
-
Overfitting in making comparisons between variable selection methods (special issue on variable and feature selection)
-
J. Reunanen, Overfitting in making comparisons between variable selection methods (Special Issue on Variable and Feature Selection), Journal of Machine Learning Research 3 (2003) 1371-1382.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1371-1382
-
-
Reunanen, J.1
-
27
-
-
0002534234
-
On comparing classifiers: A critique of current research and methods
-
S.L. Salzberg, On comparing classifiers: a critique of current research and methods, Data Mining and Knowledge Discovery 1 (1999). 1-12.
-
(1999)
Data Mining and Knowledge Discovery
, vol.1
, pp. 1-12
-
-
Salzberg, S.L.1
-
28
-
-
0000245470
-
Selecting a classification method by cross-validation
-
C. Schaffer, Selecting a classification method by cross-validation, Machine Learning 13 (1993) 135-143.
-
(1993)
Machine Learning
, vol.13
, pp. 135-143
-
-
Schaffer, C.1
-
30
-
-
0345143226
-
The sources of increased accuracy for two proposed boosting algorithms
-
Portland, Oregon, USA
-
D.B. Skalak, The sources of increased accuracy for two proposed boosting algorithms, in: AAAI-96 Workshop on Integrating Multiple Models for Improving and Scaling Machine Learning Algorithms (in conjunction with AAAI-96), Portland, Oregon, USA, 1996, pp. 120-125.
-
(1996)
AAAI-96 Workshop on Integrating Multiple Models for Improving and Scaling Machine Learning Algorithms (In Conjunction with AAAI-96)
, pp. 120-125
-
-
Skalak, D.B.1
-
31
-
-
84957007471
-
Bagging and the random subspace method for redundant feature spaces
-
J. Kittler, F. Roli (Eds.), Cambridge, UK
-
M. Skurichina, R.P.W. Duin, Bagging and the random subspace method for redundant feature spaces, in: J. Kittler, F. Roli (Eds.), Proceedings of 2nd International Workshop on Multiple Classifier Systems MCS 2001, Cambridge, UK, 2001, pp. 1-10.
-
(2001)
Proceedings of 2nd International Workshop on Multiple Classifier Systems MCS 2001
, pp. 1-10
-
-
Skurichina, M.1
Duin, R.P.W.2
-
32
-
-
0042622207
-
Search strategies for ensemble feature selection in medical diagnostics
-
M. Krol, S. Mitra, D.J. Lee (Eds.), The Mount Sinai School of Medicine, New York, NY, IEEE CS Press
-
A. Tsymbal, P. Cunningham, M. Pechinizkiy, S. Puuronen, Search strategies for ensemble feature selection in medical diagnostics, in: M. Krol, S. Mitra, D.J. Lee (Eds.), Proceedings of 16th IEEE Symposium on Computer-Based Medical Systems CBMS'2003, The Mount Sinai School of Medicine, New York, NY, IEEE CS Press, 2003, pp. 124-129.
-
(2003)
Proceedings of 16th IEEE Symposium on Computer-based Medical Systems CBMS'2003
, pp. 124-129
-
-
Tsymbal, A.1
Cunningham, P.2
Pechinizkiy, M.3
Puuronen, S.4
-
33
-
-
0038137315
-
Ensemble feature selection with the simple Bayesian classification
-
A. Tsymbal, S. Puuronen, D. Patterson, Ensemble feature selection with the simple Bayesian classification, Information Fusion 4 (2) (2003) 87-100.
-
(2003)
Information Fusion
, vol.4
, Issue.2
, pp. 87-100
-
-
Tsymbal, A.1
Puuronen, S.2
Patterson, D.3
-
34
-
-
0005746806
-
Ensemble feature selection with dynamic integration of classifiers
-
Bangor, Wales, UK
-
A. Tsymbal, S. Puuronen, I. Skrypnyk, Ensemble feature selection with dynamic integration of classifiers, in: Int. ICSC Congress on Computational Intelligence Methods and Applications CIMA'2001, Bangor, Wales, UK, 2001, pp. 558-564.
-
(2001)
Int. ICSC Congress on Computational Intelligence Methods and Applications CIMA'2001
, pp. 558-564
-
-
Tsymbal, A.1
Puuronen, S.2
Skrypnyk, I.3
-
35
-
-
84948152666
-
Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
-
L.D. Raedt, P.A. Flach (Eds.), LNCS 2167, Springer
-
G. Zenobi, P. Cunningham, Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error, in: L.D. Raedt, P.A. Flach (Eds.), Proc. ECML 2001 12th European Conf. On Machine Learning, LNCS 2167, Springer, 2001, pp. 576-587.
-
(2001)
Proc. ECML 2001 12th European Conf. on Machine Learning
, pp. 576-587
-
-
Zenobi, G.1
Cunningham, P.2
|