메뉴 건너뛰기




Volumn 6, Issue 1, 2005, Pages 83-98

Diversity in search strategies for ensemble feature selection

Author keywords

Dynamic integration of classifiers; Ensemble diversity; Ensemble of classifiers; Feature selection; Search strategy

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; GENETIC ALGORITHMS; INTEGRATION; METRIC SYSTEM; PERSONNEL TRAINING;

EID: 10444238133     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2004.04.003     Document Type: Article
Times cited : (296)

References (35)
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer, R. Kohavi, An empirical comparison of voting classification algorithms: bagging, boosting, and variants, Machine Learning 36 (1,2) (1999) 105-139.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • Dept. of Information and Computer Science, University of California, Irvine, CA
    • C.L. Blake, E. Keogh, C.J. Merz, UCI repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html], Dept. of Information and Computer Science, University of California, Irvine, CA, 1999.
    • (1999) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Keogh, E.2    Merz, C.J.3
  • 8
    • 84974722422 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • R.L. deMántaras, E. Plaza (Eds.), Barcelona, Spain, LNCS 1810, Springer
    • P. Cunningham, J. Carney, Diversity versus quality in classification ensembles based on feature selection, in: R.L. deMántaras, E. Plaza (Eds.), Proceedings of ECML 2000 11th European Conference on Machine Learning, Barcelona, Spain, LNCS 1810, Springer, 2000, pp. 109-116.
    • (2000) Proceedings of ECML 2000 11th European Conference on Machine Learning , pp. 109-116
    • Cunningham, P.1    Carney, J.2
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, Machine Learning 40 (2) (2000) 139-157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 10
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research: Four current directions
    • T.G. Dietterich, Machine learning research: four current directions, AI Magazine 18 (4) (1997) 97-136.
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 11
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos, M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning 29 (2,3) (1997) 103-130.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 17
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • M. Kudo, J. Sklansky, Comparison of algorithms that select features for pattern classifiers, Pattern Recognition 33 (1) (2000) 24-41.
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 24-41
    • Kudo, M.1    Sklansky, J.2
  • 18
    • 0027610524 scopus 로고
    • Genetic algorithm for feature selection for parallel classifiers
    • L.I. Kuncheva, Genetic algorithm for feature selection for parallel classifiers, Information Processing Letters 46 (1993) 163-168.
    • (1993) Information Processing Letters , vol.46 , pp. 163-168
    • Kuncheva, L.I.1
  • 20
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L.I. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Machine Learning 51 (2) (2003) 181-207.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 24
    • 0004037141 scopus 로고    scopus 로고
    • Dimensionality reduction through classifier ensembles
    • Computational Sciences Division, NASA Ames Research Center
    • N. Oza, K. Turner, Dimensionality reduction through classifier ensembles, Computational Sciences Division, NASA Ames Research Center, Technical report NASA-ARC-IC-1999-126, 1999.
    • (1999) Technical Report , vol.NASA-ARC-IC-1999-126
    • Oza, N.1    Turner, K.2
  • 25
    • 84957702069 scopus 로고    scopus 로고
    • A dynamic integration algorithm for an ensemble of classifiers
    • Z.W. Ras, A. Skowron (Eds.), Warsaw, Poland, LNAI 1609, Springer
    • S. Puuronen, V. Terziyan, A. Tsymbal, A dynamic integration algorithm for an ensemble of classifiers, in: Z.W. Ras, A. Skowron (Eds.), Foundations of Intelligent Systems: 11th Int. Symp. ISMIS'99, Warsaw, Poland, LNAI 1609, Springer, 1999, pp. 592-600.
    • (1999) Foundations of Intelligent Systems: 11th Int. Symp. ISMIS'99 , pp. 592-600
    • Puuronen, S.1    Terziyan, V.2    Tsymbal, A.3
  • 26
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods (special issue on variable and feature selection)
    • J. Reunanen, Overfitting in making comparisons between variable selection methods (Special Issue on Variable and Feature Selection), Journal of Machine Learning Research 3 (2003) 1371-1382.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 27
    • 0002534234 scopus 로고    scopus 로고
    • On comparing classifiers: A critique of current research and methods
    • S.L. Salzberg, On comparing classifiers: a critique of current research and methods, Data Mining and Knowledge Discovery 1 (1999). 1-12.
    • (1999) Data Mining and Knowledge Discovery , vol.1 , pp. 1-12
    • Salzberg, S.L.1
  • 28
    • 0000245470 scopus 로고
    • Selecting a classification method by cross-validation
    • C. Schaffer, Selecting a classification method by cross-validation, Machine Learning 13 (1993) 135-143.
    • (1993) Machine Learning , vol.13 , pp. 135-143
    • Schaffer, C.1
  • 32
    • 0042622207 scopus 로고    scopus 로고
    • Search strategies for ensemble feature selection in medical diagnostics
    • M. Krol, S. Mitra, D.J. Lee (Eds.), The Mount Sinai School of Medicine, New York, NY, IEEE CS Press
    • A. Tsymbal, P. Cunningham, M. Pechinizkiy, S. Puuronen, Search strategies for ensemble feature selection in medical diagnostics, in: M. Krol, S. Mitra, D.J. Lee (Eds.), Proceedings of 16th IEEE Symposium on Computer-Based Medical Systems CBMS'2003, The Mount Sinai School of Medicine, New York, NY, IEEE CS Press, 2003, pp. 124-129.
    • (2003) Proceedings of 16th IEEE Symposium on Computer-based Medical Systems CBMS'2003 , pp. 124-129
    • Tsymbal, A.1    Cunningham, P.2    Pechinizkiy, M.3    Puuronen, S.4
  • 33
    • 0038137315 scopus 로고    scopus 로고
    • Ensemble feature selection with the simple Bayesian classification
    • A. Tsymbal, S. Puuronen, D. Patterson, Ensemble feature selection with the simple Bayesian classification, Information Fusion 4 (2) (2003) 87-100.
    • (2003) Information Fusion , vol.4 , Issue.2 , pp. 87-100
    • Tsymbal, A.1    Puuronen, S.2    Patterson, D.3
  • 35
    • 84948152666 scopus 로고    scopus 로고
    • Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
    • L.D. Raedt, P.A. Flach (Eds.), LNCS 2167, Springer
    • G. Zenobi, P. Cunningham, Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error, in: L.D. Raedt, P.A. Flach (Eds.), Proc. ECML 2001 12th European Conf. On Machine Learning, LNCS 2167, Springer, 2001, pp. 576-587.
    • (2001) Proc. ECML 2001 12th European Conf. on Machine Learning , pp. 576-587
    • Zenobi, G.1    Cunningham, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.