메뉴 건너뛰기




Volumn 1, Issue 3, 1997, Pages 131-156

Feature selection for classification

Author keywords

Classification; Feature selection; Framework

Indexed keywords

BENCHMARK DATASETS; COMPARATIVE STUDIES; DOMAIN SPECIFIC; EVALUATION FUNCTION; FEATURE SELECTION METHODS; FRAMEWORK; MACHINE LEARNING TECHNIQUES; REAL-WORLD;

EID: 0013326060     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-1997-1302     Document Type: Article
Times cited : (3030)

References (50)
  • 3
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • November
    • Almuallim, H., and Dietterich, T.G., Learning Boolean Concepts in the Presence of Many Irrelevant Features. Artificial Intelligence, 69(1-2):279-305, November, 1994.
    • (1994) Artificial Intelligence , vol.69 , Issue.1-2 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 4
    • 0001500753 scopus 로고
    • Pattern recognition and reduction of dimensionality
    • (P. R. Krishnaiah and L. N. Kanal eds.) North Holland
    • Ben-Bassat, M., Pattern recognition and reduction of dimensionality. In: Handbook of Statistics, (P. R. Krishnaiah and L. N. Kanal, eds.), North Holland, 773-791, 1982.
    • (1982) Handbook of Statistics , pp. 773-791
    • Ben-Bassat, M.1
  • 11
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P. and Niblett, T., The CN2 Induction Algorithm. Machine Learning, 3:261-283, 1989.
    • (1989) Machine Learning , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 14
    • 2342538251 scopus 로고    scopus 로고
    • Context-sensitive feature selection for lazy learners
    • Domingos, P., Context-sensitive feature selection for lazy learners. Artificial Intelligence Review, 1996.
    • (1996) Artificial Intelligence Review
    • Domingos, P.1
  • 16
    • 0022030443 scopus 로고
    • Feature selection for automatic classification of non-gaussian data
    • Foroutan, 1. and Sklansky, J., Feature selection for automatic classification of non-gaussian data. IEEE Transactions on Systems, Man, and Cybernatics, SMC-17(2):187-198, 1987.
    • (1987) IEEE Transactions on Systems, Man, and Cybernatics , vol.SMC-17 , Issue.2 , pp. 187-198
    • Foroutan, I.1    Sklansky, J.2
  • 17
    • 0001606686 scopus 로고
    • Integer programming by implicit enumeration and balas, method
    • Geoffrion, AM., Integer programming by implicit enumeration and balas, method. SIAM Review, 9: 178-190, 1967.
    • (1967) SIAM Review , vol.9 , pp. 178-190
    • Geoffrion, A.M.1
  • 18
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, Re., Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1):63-90,1993.
    • (1993) Machine Learning , vol.11 , Issue.1 , pp. 63-90
    • Re, H.1
  • 20
    • 0021487289 scopus 로고
    • Optimum feature selection by zero-one programming
    • September/October
    • Ichino, M. and Sklansky, J., Optimum feature selection by zero-one programming. IEEE Trans. on Systems, Man and Cybernetics, SMC-I4(5):737-746, September/October 1984.
    • (1984) IEEE Trans on Systems, Man and Cybernetics , vol.5 SMC-I4 , pp. 737-746
    • Ichino, M.1    Sklansky, J.2
  • 32
  • 33
    • 84948597805 scopus 로고
    • A comparison of seven techniques for choosing subsets of pattern recognition
    • September
    • Mucciardi, AN. and Gose, B.B., A comparison of seven techniques for choosing subsets of pattern recognition. IEEE Transactions on Computers, C-20:1023-1031, September 1971.
    • (1971) IEEE Transactions on Computers , vol.C-20 , pp. 1023-1031
    • Mucciardi, A.N.1    Gose, B.B.2
  • 34
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature selection
    • September
    • Narendra, P.M. and Fukunaga, K., A branch and bound algorithm for feature selection. IEEE Transactions on Computers, C-26(9):917-922, September 1977.
    • (1977) IEEE Transactions on Computers , vol.9 C-26 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 36
    • 84883704746 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G. and Haussler, D., Boolean feature discovery in empirical learning. Machine Learning, 1(1):81-106, 1986.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Pagallo, G.1    Haussler, D.2
  • 38
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Morgan Kaufmann
    • Quinlan, J., Induction of decision trees. In: Machine Learning, Morgan Kaufmann, 81-106. 1986.
    • (1986) Machine Learning , pp. 81-106
    • Quinlan, J.1
  • 40
    • 0018015137 scopus 로고
    • Modelling by shortest data description
    • Rissanen, J., Modelling by shortest data description. Automatica, 14:465-471, 1978.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 41
    • 0001259758 scopus 로고
    • Overfitting avoidance as bias
    • Schaffer, C., Overfitting avoidance as bias. Machine Learning, 10(2):153-178,1993.
    • (1993) Machine Learning , vol.10 , Issue.2 , pp. 153-178
    • Schaffer, C.1
  • 43
    • 85152626023 scopus 로고
    • Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning
    • Schlimmer, J.e., Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning. In: Proceedings of Tenth International Conference on Machine Learning, 284-290, (1993).
    • (1993) Proceedings of Tenth International Conference on Machine Learning , pp. 284-290
    • Schlimmer, J.E.1
  • 47
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill-climbing algorithms
    • Morgan Kaufmann, New Brunswick
    • Skalak, D.B., Prototype and feature selection by sampling and random mutation hill-climbing algorithms. In: Proceedings of Eleventh International Conference on Machine Learning, Morgan Kaufmann, New Brunswick, 293-301, 1994.
    • (1994) Proceedings of Eleventh International Conference on Machine Learning , pp. 293-301
    • Skalak, D.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.