-
1
-
-
0025725905
-
Instance-based learning algorithms
-
Aha, D.W., Kibler, D. and Albert, M.K., Instance-Based Learning Algorithms. Machine Learning, 6:37-66, 1991.
-
(1991)
Machine Learning
, vol.6
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
-
2
-
-
85099479344
-
Learning with many irrelevant features
-
MIT Press, Cambridge, Massachusetts
-
Almuallim, H., and Dietterich, T.G., Learning with many irrelevant features. In: Proceedings of Ninth National Conference on Artifical Intelligence, MIT Press, Cambridge, Massachusetts, 547-552, 1992.
-
(1992)
Proceedings of Ninth National Conference on Artifical Intelligence
, pp. 547-552
-
-
Almuallim, H.1
Dietterich, T.G.2
-
3
-
-
0028496468
-
Learning boolean concepts in the presence of many irrelevant features
-
November
-
Almuallim, H., and Dietterich, T.G., Learning Boolean Concepts in the Presence of Many Irrelevant Features. Artificial Intelligence, 69(1-2):279-305, November, 1994.
-
(1994)
Artificial Intelligence
, vol.69
, Issue.1-2
, pp. 279-305
-
-
Almuallim, H.1
Dietterich, T.G.2
-
4
-
-
0001500753
-
Pattern recognition and reduction of dimensionality
-
(P. R. Krishnaiah and L. N. Kanal eds.) North Holland
-
Ben-Bassat, M., Pattern recognition and reduction of dimensionality. In: Handbook of Statistics, (P. R. Krishnaiah and L. N. Kanal, eds.), North Holland, 773-791, 1982.
-
(1982)
Handbook of Statistics
, pp. 773-791
-
-
Ben-Bassat, M.1
-
7
-
-
0003802343
-
-
Wadsworth International Group, Belmont, California
-
Breiman, G., Friedman, 1.R., Olshen, R.A. and Stone, c.J., Classification and Regression Trees. Wadsworth International Group, Belmont, California, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, G.1
Friedman, I.R.2
Olshen, R.A.3
Stone, C.J.4
-
8
-
-
84883732439
-
An adaptive approach to case-based search
-
Callan, J.P', Fawcett, T.E. and Rissland, E.L., An adaptive approach to case-based search. In: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, 803-808, 1991.
-
(1991)
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence
, pp. 803-808
-
-
Callan J.P'1
Fawcett, T.E.2
Rissland, E.L.3
-
10
-
-
0006500676
-
Greedy attribute selection
-
Morgan Kaufmann, New Brunswick, New Jersey
-
Caruana, R. and Freitag, D., Greedy attribute selection. In: Proceedings of Eleventh 1nternational Conference on Machine Learning, Morgan Kaufmann, New Brunswick, New Jersey, 28-36, 1994.
-
(1994)
Proceedings of Eleventh 1nternational Conference on Machine Learning
, pp. 28-36
-
-
Caruana, R.1
Freitag, D.2
-
11
-
-
34249966007
-
The CN2 induction algorithm
-
Clark, P. and Niblett, T., The CN2 Induction Algorithm. Machine Learning, 3:261-283, 1989.
-
(1989)
Machine Learning
, vol.3
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
14
-
-
2342538251
-
Context-sensitive feature selection for lazy learners
-
Domingos, P., Context-sensitive feature selection for lazy learners. Artificial Intelligence Review, 1996.
-
(1996)
Artificial Intelligence Review
-
-
Domingos, P.1
-
16
-
-
0022030443
-
Feature selection for automatic classification of non-gaussian data
-
Foroutan, 1. and Sklansky, J., Feature selection for automatic classification of non-gaussian data. IEEE Transactions on Systems, Man, and Cybernatics, SMC-17(2):187-198, 1987.
-
(1987)
IEEE Transactions on Systems, Man, and Cybernatics
, vol.SMC-17
, Issue.2
, pp. 187-198
-
-
Foroutan, I.1
Sklansky, J.2
-
17
-
-
0001606686
-
Integer programming by implicit enumeration and balas, method
-
Geoffrion, AM., Integer programming by implicit enumeration and balas, method. SIAM Review, 9: 178-190, 1967.
-
(1967)
SIAM Review
, vol.9
, pp. 178-190
-
-
Geoffrion, A.M.1
-
18
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte, Re., Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1):63-90,1993.
-
(1993)
Machine Learning
, vol.11
, Issue.1
, pp. 63-90
-
-
Re, H.1
-
19
-
-
0021582525
-
Feature selection for linear classifier
-
July-Aug
-
Ichino, M. and Sklansky, J., Feature selection for linear classifier. In: Proceedings of the Seventh International Conference on Pattern Recognition, volume 1, 124-127, July-Aug 1984.
-
(1984)
Proceedings of the Seventh International Conference on Pattern Recognition
, vol.1
, pp. 124-127
-
-
Ichino, M.1
Sklansky, J.2
-
20
-
-
0021487289
-
Optimum feature selection by zero-one programming
-
September/October
-
Ichino, M. and Sklansky, J., Optimum feature selection by zero-one programming. IEEE Trans. on Systems, Man and Cybernetics, SMC-I4(5):737-746, September/October 1984.
-
(1984)
IEEE Trans on Systems, Man and Cybernetics
, vol.5 SMC-I4
, pp. 737-746
-
-
Ichino, M.1
Sklansky, J.2
-
21
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
John, G.H., Kohavi, R and Pfleger, K., Irrelevant features and the subset selection problem. In: Proceedings of the Eleventh International Conference on Machine Learning, 121-129, 1994.
-
(1994)
Proceedings of the Eleventh International Conference on Machine Learning
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
29
-
-
84883676338
-
The effect of noise on concept learning
-
Morgan Kaufmann, San Mateo, CA
-
Michalski, RS., Carbonell, J.G. and Mitchell, T.M (eds.), The effect of noise on concept learning, In: Machine Learning: An Artificial Intelligence Approach (vol. II), Morgan Kaufmann, San Mateo, CA, 419-424, 1986.
-
(1986)
Machine Learning: An Artificial Intelligence Approach (II)
, pp. 419-424
-
-
Michalski, R.S.1
Carbonell, J.G.2
Mitchell, T.M.3
-
30
-
-
0003915394
-
-
Technical Report UIUCDCS-R-86-1260, University of Illinois July
-
Michalski, RS., Mozetic, I., Hong, J. and Lavrac, N., The aq15 inductive learning system: An overview and experiments. Technical Report UIUCDCS-R-86-1260, University of Illinois, July 1986.
-
(1986)
The aq15 Inductive Learning System: An Overview and Experiments
-
-
Michalski, R.S.1
Mozetic, I.2
Hong, J.3
Lavrac, N.4
-
32
-
-
85104260032
-
Efficient algorithms for minimizing cross validation error
-
Morgan Kaufmann, New Brunswick, New Jersey
-
Moore, A.W. and Lee, M.S., Efficient algorithms for minimizing cross validation error. In: Proceedings of Eleventh International Conference on Machine Learning, Morgan Kaufmann, New Brunswick, New Jersey, 190-198, 1994.
-
(1994)
Proceedings of Eleventh International Conference on Machine Learning
, pp. 190-198
-
-
Moore, A.W.1
Lee, M.S.2
-
33
-
-
84948597805
-
A comparison of seven techniques for choosing subsets of pattern recognition
-
September
-
Mucciardi, AN. and Gose, B.B., A comparison of seven techniques for choosing subsets of pattern recognition. IEEE Transactions on Computers, C-20:1023-1031, September 1971.
-
(1971)
IEEE Transactions on Computers
, vol.C-20
, pp. 1023-1031
-
-
Mucciardi, A.N.1
Gose, B.B.2
-
34
-
-
0017535866
-
A branch and bound algorithm for feature selection
-
September
-
Narendra, P.M. and Fukunaga, K., A branch and bound algorithm for feature selection. IEEE Transactions on Computers, C-26(9):917-922, September 1977.
-
(1977)
IEEE Transactions on Computers
, vol.9 C-26
, pp. 917-922
-
-
Narendra, P.M.1
Fukunaga, K.2
-
35
-
-
84976897121
-
Constructive induction using a non-greedy strategy for feature selection
-
Morgan Kaufmann, Aberdeen, Scotland
-
Oliveira, AL. and Vincentelli, A.S., Constructive induction using a non-greedy strategy for feature selection. In: Proceedings of Ninth International Conference on Machine Learning, 355-360, Morgan Kaufmann, Aberdeen, Scotland, 1992.
-
(1992)
Proceedings of Ninth International Conference on Machine Learning
, pp. 355-360
-
-
Oliveira, A.L.1
Vincentelli, A.S.2
-
36
-
-
84883704746
-
Boolean feature discovery in empirical learning
-
Pagallo, G. and Haussler, D., Boolean feature discovery in empirical learning. Machine Learning, 1(1):81-106, 1986.
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Pagallo, G.1
Haussler, D.2
-
38
-
-
33744584654
-
Induction of decision trees
-
Morgan Kaufmann
-
Quinlan, J., Induction of decision trees. In: Machine Learning, Morgan Kaufmann, 81-106. 1986.
-
(1986)
Machine Learning
, pp. 81-106
-
-
Quinlan, J.1
-
40
-
-
0018015137
-
Modelling by shortest data description
-
Rissanen, J., Modelling by shortest data description. Automatica, 14:465-471, 1978.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
41
-
-
0001259758
-
Overfitting avoidance as bias
-
Schaffer, C., Overfitting avoidance as bias. Machine Learning, 10(2):153-178,1993.
-
(1993)
Machine Learning
, vol.10
, Issue.2
, pp. 153-178
-
-
Schaffer, C.1
-
42
-
-
84983750945
-
A conservation law for generalization performance
-
Morgan Kaufmann, New Brunswick, NJ
-
Schaffer, C., A conservation law for generalization performance. In: Proceedings of Eleventh International Conference on Machine Learning, Morgan Kaufmann, New Brunswick, NJ, 259-265, 1994.
-
(1994)
Proceedings of Eleventh International Conference on Machine Learning
, pp. 259-265
-
-
Schaffer, C.1
-
43
-
-
85152626023
-
Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning
-
Schlimmer, J.e., Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning. In: Proceedings of Tenth International Conference on Machine Learning, 284-290, (1993).
-
(1993)
Proceedings of Tenth International Conference on Machine Learning
, pp. 284-290
-
-
Schlimmer, J.E.1
-
45
-
-
0025565091
-
A modelling approach to feature selection
-
June
-
Sheinvald, J., Dom, B. and Niblack, w., A modelling approach to feature selection. In: Proceedings of Tenth International Conference on Pattern Recognition, 1:535-539, June 1990.
-
(1990)
Proceedings of Tenth International Conference on Pattern Recognition
, vol.1
, pp. 535-539
-
-
Sheinvald, J.1
Dom, B.2
Niblack, W.3
-
47
-
-
0012657799
-
Prototype and feature selection by sampling and random mutation hill-climbing algorithms
-
Morgan Kaufmann, New Brunswick
-
Skalak, D.B., Prototype and feature selection by sampling and random mutation hill-climbing algorithms. In: Proceedings of Eleventh International Conference on Machine Learning, Morgan Kaufmann, New Brunswick, 293-301, 1994.
-
(1994)
Proceedings of Eleventh International Conference on Machine Learning
, pp. 293-301
-
-
Skalak, D.B.1
-
50
-
-
0024175265
-
Best first strategy for feature selection
-
Xu, L., Yan, P. and Chang, T., Best first strategy for feature selection. In: Proceedings of Ninth International Conference on Pattern Recognition, 706-708, 1988.
-
(1988)
Proceedings of Ninth International Conference on Pattern Recognition
, pp. 706-708
-
-
Xu, L.1
Yan, P.2
Chang, T.3
|